Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GX19-28347X
Czech Science Foundation
LX22NPO5102
National Institute for Cancer Research
13112
Dutch Cancer Society
PubMed
38000028
PubMed Central
PMC10672176
DOI
10.1126/sciadv.adh9673
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace MeSH
- kmenové buňky metabolismus MeSH
- Panethovy buňky * MeSH
- savci MeSH
- signální dráha Wnt * MeSH
- střeva MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate β-catenin-dependent (canonical) or -independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells.
Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 4058 Basel Switzerland
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Life Sciences Pohang University of Science and Technology Pohang Republic of Korea
HUB Organoids Utrecht Netherlands
Institute of Molecular Biotechnology of the Austrian Academy of Sciences 1030 Vienna Austria
Zobrazit více v PubMed
Beumer J., Clevers H., Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22, 39–53 (2021). PubMed
Colozza G., Park S. Y., Koo B. K., Clone wars: From molecules to cell competition in intestinal stem cell homeostasis and disease. Exp. Mol. Med. 54, 1367–1378 (2022). PubMed PMC
Nusse R., Clevers H., Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017). PubMed
Koo B. K., Spit M., Jordens I., Low T. Y., Stange D. E., van de Wetering M., van Es J. H., Mohammed S., Heck A. J., Maurice M. M., Clevers H., Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488, 665–669 (2012). PubMed
Hao H. X., Xie Y., Zhang Y., Charlat O., Oster E., Avello M., Lei H., Mickanin C., Liu D., Ruffner H., Mao X., Ma Q., Zamponi R., Bouwmeester T., Finan P. M., Kirschner M. W., Porter J. A., Serluca F. C., Cong F., ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485, 195–200 (2012). PubMed
Farin H. F., Jordens I., Mosa M. H., Basak O., Korving J., Tauriello D. V., de Punder K., Angers S., Peters P. J., Maurice M. M., Clevers H., Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 530, 340–343 (2016). PubMed
de Lau W., Barker N., Low T. Y., Koo B. K., Li V. S., Teunissen H., Kujala P., Haegebarth A., Peters P. J., van de Wetering M., Stange D. E., van Es J. E., Guardavaccaro D., Schasfoort R. B., Mohri Y., Nishimori K., Mohammed S., Heck A. J., Clevers H., Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011). PubMed
Glinka A., Dolde C., Kirsch N., Huang Y. L., Kazanskaya O., Ingelfinger D., Boutros M., Cruciat C. M., Niehrs C., LGR4 and LGR5 are R-spondin receptors mediating Wnt/β‐catenin and Wnt/PCP signalling. EMBO Rep. 12, 1055–1061 (2011). PubMed PMC
Tsukiyama T., Zou J., Kim J., Ogamino S., Shino Y., Masuda T., Merenda A., Matsumoto M., Fujioka Y., Hirose T., Terai S., Takahashi H., Ishitani T., Nakayama K. I., Ohba Y., Koo B. K., Hatakeyama S., A phospho-switch controls RNF43-mediated degradation of Wnt receptors to suppress tumorigenesis. Nat. Commun. 11, 4586 (2020). PubMed PMC
Giebel N., de Jaime-Soguero A., del Arco A. G., Landry J. J. M., Tietje M., Villacorta L., Benes V., Fernandez-Saiz V., Acebron S. P., USP42 protects ZNRF3/RNF43 from R-spondin-dependent clearance and inhibits Wnt signalling. EMBO Rep. 22, e51415 (2021). PubMed PMC
Colozza G., Koo B. K., Ub and Dub of RNF43/ZNRF3 in the WNT signalling pathway. EMBO Rep. 22, e52970 (2021). PubMed PMC
Sato T., van Es J. H., Snippert H. J., Stange D. E., Vries R. G., van den Born M., Barker N., Shroyer N. F., van de Wetering M., Clevers H., Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011). PubMed PMC
Clevers H. C., Bevins C. L., Paneth cells: Maestros of the small intestinal crypts. Annu. Rev. Physiol. 75, 289–311 (2013). PubMed
Kuhn S., Geyer M., Formins as effector proteins of Rho GTPases. Small GTPases 5, e29513 (2014). PubMed PMC
Andersson-Rolf A., Merenda A., Mustata R. C., Li T., Dietmann S., Koo B. K., Simultaneous paralogue knockout using a CRISPR-concatemer in mouse small intestinal organoids. Dev. Biol. 420, 271–277 (2016). PubMed PMC
Merenda A., Andersson-Rolf A., Mustata R. C., Li T., Kim H., Koo B. K., A protocol for multiple gene knockout in mouse small intestinal organoids using a CRISPR-concatemer. J. Vis. Exp. 125, e55916 (2017). PubMed PMC
Radaszkiewicz T., Noskova M., Gomoryova K., Vondalova Blanarova O., Radaszkiewicz K. A., Pickova M., Vichova R., Gybel T., Kaiser K., Demkova L., Kucerova L., Barta T., Potesil D., Zdrahal Z., Soucek K., Bryja V., RNF43 inhibits WNT5A-driven signaling and suppresses melanoma invasion and resistance to the targeted therapy. eLife 10, (2021). PubMed PMC
Habas R., Kato Y., He X., Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel formin homology protein Daam1. Cell 107, 843–854 (2001). PubMed
Liu W., Sato A., Khadka D., Bharti R., Diaz H., Runnels L. W., Habas R., Mechanism of activation of the formin protein Daam1. Proc. Natl. Acad. Sci. U.S.A. 105, 210–215 (2008). PubMed PMC
Gurney A., Axelrod F., Bond C. J., Cain J., Chartier C., Donigan L., Fischer M., Chaudhari A., Ji M., Kapoun A. M., Lam A., Lazetic S., Ma S., Mitra S., Park I. K., Pickell K., Sato A., Satyal S., Stroud M., Tran H., Yen W. C., Lewicki J., Hoey T., Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl. Acad. Sci. U.S.A. 109, 11717–11722 (2012). PubMed PMC
Schwinn M. K., Machleidt T., Zimmerman K., Eggers C. T., Dixon A. S., Hurst R., Hall M. P., Encell L. P., Binkowski B. F., Wood K. V., CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem. Biol. 13, 467–474 (2018). PubMed
Boursier M. E., Levin S., Zimmerman K., Machleidt T., Hurst R., Butler B. L., Eggers C. T., Kirkland T. A., Wood K. V., Friedman Ohana R., The luminescent HiBiT peptide enables selective quantitation of G protein-coupled receptor ligand engagement and internalization in living cells. J. Biol. Chem. 295, 5124–5135 (2020). PubMed PMC
Marei H., Tsai W. K., Kee Y. S., Ruiz K., He J., Cox C., Sun T., Penikalapati S., Dwivedi P., Choi M., Kan D., Saenz-Lopez P., Dorighi K., Zhang P., Kschonsak Y. T., Kljavin N., Amin D., Kim I., Mancini A. G., Nguyen T., Wang C., Janezic E., Doan A., Mai E., Xi H., Gu C., Heinlein M., Biehs B., Wu J., Lehoux I., Harris S., Comps-Agrar L., Seshasayee D., de Sauvage F. J., Grimmer M., Li J., Agard N. J., de Sousa E. M. F., Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature 610, 182–189 (2022). PubMed PMC
Jiang X., Charlat O., Zamponi R., Yang Y., Cong F., Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol. Cell 58, 522–533 (2015). PubMed
Bottcher A., Buttner M., Tritschler S., Sterr M., Aliluev A., Oppenlander L., Burtscher I., Sass S., Irmler M., Beckers J., Ziegenhain C., Enard W., Schamberger A. C., Verhamme F. M., Eickelberg O., Theis F. J., Lickert H., Non-canonical Wnt/PCP signalling regulates intestinal stem cell lineage priming towards enteroendocrine and Paneth cell fates. Nat. Cell Biol. 23, 23–31 (2021). PubMed
R. Wadsworth, “The role of SRGAP2 in vertebrate gastrulation,” thesis, Temple University (2016).
Nishita M., Yoo S. K., Nomachi A., Kani S., Sougawa N., Ohta Y., Takada S., Kikuchi A., Minami Y., Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J. Cell Biol. 175, 555–562 (2006). PubMed PMC
Jaiswal R., Breitsprecher D., Collins A., Correa I. R. Jr., Xu M. Q., Goode B. L., The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr. Biol. 23, 1373–1379 (2013). PubMed PMC
Luo W., Lieu Z. Z., Manser E., Bershadsky A. D., Sheetz M. P., Formin DAAM1 organizes actin filaments in the cytoplasmic nodal actin network. PLOS ONE 11, e0163915 (2016). PubMed PMC
Niehrs C., The role of Xenopus developmental biology in unraveling Wnt signalling and antero-posterior axis formation. Dev. Biol. 482, 1–6 (2022). PubMed
Glinka A., Wu W., Delius H., Monaghan A. P., Blumenstock C., Niehrs C., Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998). PubMed
Ding Y., Colozza G., Sosa E. A., Moriyama Y., Rundle S., Salwinski L., De Robertis E. M., Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. Proc. Natl. Acad. Sci. U.S.A. 115, E9135–E9144 (2018). PubMed PMC
Colozza G., Jami-Alahmadi Y., Dsouza A., Tejeda-Munoz N., Albrecht L. V., Sosa E. A., Wohlschlegel J. A., De Robertis E. M., Wnt-inducible Lrp6-APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway. Sci. Rep. 10, 21555 (2020). PubMed PMC
Janovska P., Bryja V., Wnt signalling pathways in chronic lymphocytic leukaemia and B-cell lymphomas. Br. J. Pharmacol. 174, 4701–4715 (2017). PubMed PMC
Janovska P., Normant E., Miskin H., Bryja V., Targeting casein kinase 1 (CK1) in hematological cancers. Int. J. Mol. Sci. 21, (2020). PubMed PMC
Bader E., Migliorini A., Gegg M., Moruzzi N., Gerdes J., Roscioni S. S., Bakhti M., Brandl E., Irmler M., Beckers J., Aichler M., Feuchtinger A., Leitzinger C., Zischka H., Wang-Sattler R., Jastroch M., Tschop M., Machicao F., Staiger H., Haring H. U., Chmelova H., Chouinard J. A., Oskolkov N., Korsgren O., Speier S., Lickert H., Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 535, 430–434 (2016). PubMed
Koo B. K., van Es J. H., van den Born M., Clevers H., Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. Proc. Natl. Acad. Sci. U.S.A. 112, 7548–7550 (2015). PubMed PMC
Kida Y. S., Sato T., Miyasaka K. Y., Suto A., Ogura T., Daam1 regulates the endocytosis of EphB during the convergent extension of the zebrafish notochord. Proc. Natl. Acad. Sci. U.S.A. 104, 6708–6713 (2007). PubMed PMC
Kim G. H., Han J. K., Essential role for beta-arrestin 2 in the regulation of Xenopus convergent extension movements. EMBO J. 26, 2513–2526 (2007). PubMed PMC
Colozza G., Koo B. K., Wnt/β‐catenin signaling: Structure, assembly and endocytosis of the signalosome. Dev. Growth Differ. 63, 199–218 (2021). PubMed PMC
Albrecht L. V., Tejeda-Munoz N., De Robertis E. M., Cell biology of canonical wnt signaling. Annu. Rev. Cell Dev. Biol. 37, 369–389 (2021). PubMed
Lian G., Dettenhofer M., Lu J., Downing M., Chenn A., Wong T., Sheen V., Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development 143, 4509–4520 (2016). PubMed PMC
de Lau W., Peng W. C., Gros P., Clevers H., The R-spondin/Lgr5/Rnf43 module: Regulator of Wnt signal strength. Genes Dev. 28, 305–316 (2014). PubMed PMC
Hao H. X., Jiang X., Cong F., Control of Wnt receptor turnover by R-spondin-ZNRF3/RNF43 signaling module and its dysregulation in cancer. Cancers 8, (2016). PubMed PMC
Farnhammer F., Colozza G., Kim J., RNF43 and ZNRF3 in Wnt signaling - a master regulator at the membrane. J. Stem Cells, (2023). PubMed PMC
Zheng G. X., Terry J. M., Belgrader P., Ryvkin P., Bent Z. W., Wilson R., Ziraldo S. B., Wheeler T. D., McDermott G. P., Zhu J., Gregory M. T., Shuga J., Montesclaros L., Underwood J. G., Masquelier D. A., Nishimura S. Y., Schnall-Levin M., Wyatt P. W., Hindson C. M., Bharadwaj R., Wong A., Ness K. D., Beppu L. W., Deeg H. J., McFarland C., Loeb K. R., Valente W. J., Ericson N. G., Stevens E. A., Radich J. P., Mikkelsen T. S., Hindson B. J., Bielas J. H., Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). PubMed PMC
Hao Y., Hao S., Andersen-Nissen E., Mauck W. M. 3rd, Zheng S., Butler A., Lee M. J., Wilk A. J., Darby C., Zager M., Hoffman P., Stoeckius M., Papalexi E., Mimitou E. P., Jain J., Srivastava A., Stuart T., Fleming L. M., Yeung B., Rogers A. J., McElrath J. M., Blish C. A., Gottardo R., Smibert P., Satija R., Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021). PubMed PMC
McGinnis C. S., Murrow L. M., Gartner Z. J., DoubletFinder: Doublet detection in single-Cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8, 329–337.e4 (2019). PubMed PMC
Korsunsky I., Millard N., Fan J., Slowikowski K., Zhang F., Wei K., Baglaenko Y., Brenner M., Loh P. R., Raychaudhuri S., Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019). PubMed PMC
Fujii M., Matano M., Toshimitsu K., Takano A., Mikami Y., Nishikori S., Sugimoto S., Sato T., Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23, 787–793.e6 (2018). PubMed
Bunis D. G., Andrews J., Fragiadakis G. K., Burt T. D., Sirota M., dittoSeq: Universal user-friendly single-cell and bulk RNA sequencing visualization toolkit. Bioinformatics 36, 5535–5536 (2021). PubMed PMC
Love M. I., Huber W., Anders S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC
Paclikova P., Bernatik O., Radaszkiewicz T. W., Bryja V., The n-terminal part of the dishevelled DEP domain is required for Wnt/β-Catenin signaling in mammalian cells. Mol. Cell. Biol. 37, (2017). PubMed PMC
van Ineveld R. L., Ariese H. C. R., Wehrens E. J., Dekkers J. F., Rios A. C., Single-cell resolution three-dimensional imaging of intact organoids. J. Vis. Exp. 160, e60709 (2020). PubMed
Shevchenko A., Wilm M., Vorm O., Mann M., Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996). PubMed
Ding Y., Colozza G., Zhang K., Moriyama Y., Ploper D., Sosa E. A., Benitez M. D. J., De Robertis E. M., Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. Dev. Biol. 426, 176–187 (2017). PubMed PMC
Ren X. D., Kiosses W. B., Schwartz M. A., Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999). PubMed PMC
Colozza G., De Robertis E. M., Dact-4 is a Xenopus laevis Spemann organizer gene related to the Dapper/Frodo antagonist of β-catenin family of proteins. Gene Expr. Patterns 38, 119153 (2020). PubMed
P. D. Nieuwkoop, J. Faber, Normal Table of Xenopus laevis (Daudin) (North-Holland Publishing Company, 1967).
Ossipova O., Chuykin I., Chu C. W., Sokol S. Y., Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation. Development 142, 99–107 (2015). PubMed PMC
Session A. M., Uno Y., Kwon T., Chapman J. A., Toyoda A., Takahashi S., Fukui A., Hikosaka A., Suzuki A., Kondo M., van Heeringen S. J., Quigley I., Heinz S., Ogino H., Ochi H., Hellsten U., Lyons J. B., Simakov O., Putnam N., Stites J., Kuroki Y., Tanaka T., Michiue T., Watanabe M., Bogdanovic O., Lister R., Georgiou G., Paranjpe S. S., van Kruijsbergen I., Shu S., Carlson J., Kinoshita T., Ohta Y., Mawaribuchi S., Jenkins J., Grimwood J., Schmutz J., Mitros T., Mozaffari S. V., Suzuki Y., Haramoto Y., Yamamoto T. S., Takagi C., Heald R., Miller K., Haudenschild C., Kitzman J., Nakayama T., Izutsu Y., Robert J., Fortriede J., Burns K., Lotay V., Karimi K., Yasuoka Y., Dichmann D. S., Flajnik M. F., Houston D. W., Shendure J., DuPasquier L., Vize P. D., Zorn A. M., Ito M., Marcotte E. M., Wallingford J. B., Ito Y., Asashima M., Ueno N., Matsuda Y., Veenstra G. J., Fujiyama A., Harland R. M., Taira M., Rokhsar D. S., Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016). PubMed PMC
Colozza G., De Robertis E. M., Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus. Differentiation 88, 17–26 (2014). PubMed