Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
Intramural NIH HHS - United States
PubMed
25605717
PubMed Central
PMC4358105
DOI
10.1074/jbc.m114.612648
PII: S0021-9258(20)76759-1
Knihovny.cz E-zdroje
- Klíčová slova
- 32D Cells, Disheveled, Frizzled, Functional Selectivity, LDL Receptor-related Protein 6, Myeloid Cell, Receptor, WNT Pathway, WNT Signaling, β-Catenin (B-catenin),
- MeSH
- beta-katenin metabolismus MeSH
- buněčné linie MeSH
- fosforylace MeSH
- frizzled receptory metabolismus MeSH
- mapování interakce mezi proteiny MeSH
- mapy interakcí proteinů * MeSH
- myši MeSH
- protein - isoformy metabolismus MeSH
- proteiny Wnt metabolismus MeSH
- signální dráha Wnt * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- beta-katenin MeSH
- frizzled receptory MeSH
- protein - isoformy MeSH
- proteiny Wnt MeSH
The seven-transmembrane-spanning receptors of the FZD1-10 class are bound and activated by the WNT family of lipoglycoproteins, thereby inducing a complex network of signaling pathways. However, the specificity of the interaction between mammalian WNT and FZD proteins and the subsequent signaling cascade downstream of the different WNT-FZD pairs have not been systematically addressed to date. In this study, we determined the binding affinities of various WNTs for different members of the FZD family by using bio-layer interferometry and characterized their functional selectivity in a cell system. Using purified WNTs, we show that different FZD cysteine-rich domains prefer to bind to distinct WNTs with fast on-rates and slow off-rates. In a 32D cell-based system engineered to overexpress FZD2, FZD4, or FZD5, we found that WNT-3A (but not WNT-4, -5A, or -9B) activated the WNT-β-catenin pathway through FZD2/4/5 as measured by phosphorylation of LRP6 and β-catenin stabilization. Surprisingly, different WNT-FZD pairs showed differential effects on phosphorylation of DVL2 and DVL3, revealing a previously unappreciated DVL isoform selectivity by different WNT-FZD pairs in 32D cells. In summary, we present extensive mapping of WNT-FZD cysteine-rich domain interactions complemented by analysis of WNT-FZD pair functionality in a unique cell system expressing individual FZD isoforms. Differential WNT-FZD binding and selective functional readouts suggest that endogenous WNT ligands evolved with an intrinsic natural bias toward different downstream signaling pathways, a phenomenon that could be of great importance in the design of FZD-targeting drugs.
Zobrazit více v PubMed
Chien A. J., Conrad W. H., Moon R. T. (2009) A Wnt survival guide: from flies to human disease. J. Invest. Dermatol. 129, 1614–1627 PubMed PMC
van Amerongen R., Nusse R. (2009) Towards an integrated view of Wnt signaling in development. Development 136, 3205–3214 PubMed
Schulte G. (2010) International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol. Rev. 62, 632–667 PubMed
Dijksterhuis J. P., Petersen J., Schulte G. (2014) WNT/Frizzled signaling: receptor-ligand selectivity with focus on FZD-G protein signaling and its physiological relevance. Br. J. Pharmacol. 171, 1195–1209 PubMed PMC
Egger-Adam D., Katanaev V. L. (2008) Trimeric G protein-dependent signaling by Frizzled receptors in animal development. Front. Biosci. 13, 4740–4755 PubMed
Kilander M. B., Dijksterhuis J. P., Ganji R. S., Bryja V., Schulte G. (2011) WNT-5A stimulates the GDP/GTP exchange at pertussis toxin-sensitive heterotrimeric G proteins. Cell. Signal. 23, 550–554 PubMed
Foord S. M., Bonner T. I., Neubig R. R., Rosser E. M., Pin J. P., Davenport A. P., Spedding M., Harmar A. J. (2005) International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol. Rev. 57, 279–288 PubMed
Gordon M. D., Nusse R. (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 PubMed
Kikuchi A., Yamamoto H., Kishida S. (2007) Multiplicity of the interactions of Wnt proteins and their receptors. Cell. Signal. 19, 659–671 PubMed
Naz G., Pasternack S. M., Perrin C., Mattheisen M., Refke M., Khan S., Gul A., Simons M., Ahmad W., Betz R. C. (2012) FZD6 encoding the Wnt receptor frizzled 6 is mutated in autosomal-recessive nail dysplasia. Br. J. Dermatol. 166, 1088–1094 PubMed
Janda C. Y., Waghray D., Levin A. M., Thomas C., Garcia K. C. (2012) Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 PubMed PMC
Bourhis E., Tam C., Franke Y., Bazan J. F., Ernst J., Hwang J., Costa M., Cochran A. G., Hannoush R. N. (2010) Reconstitution of a Frizzled8·Wnt3a·LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J. Biol. Chem. 285, 9172–9179 PubMed PMC
Semenov M. V., Habas R., Macdonald B. T., He X. (2007) SnapShot: noncanonical Wnt signaling pathways. Cell 131, 1378. PubMed
Macdonald B. T., Semenov M. V., He X. (2007) SnapShot: Wnt/β-catenin signaling. Cell 131, 1204. PubMed
Gao C., Chen Y. G. (2010) Dishevelled: the hub of Wnt signaling. Cell. Signal. 22, 717–727 PubMed
Kühl M., Sheldahl L. C., Park M., Miller J. R., Moon R. T. (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16, 279–283 PubMed
Hsieh J. C., Rattner A., Smallwood P. M., Nathans J. (1999) Biochemical characterization of Wnt-Frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl. Acad. Sci. U.S.A. 96, 3546–3551 PubMed PMC
Kilander M. B., Halleskog C., Schulte G. (2011) Recombinant WNTs differentially activate β-catenin-dependent and -independent signalling in mouse microglia-like cells. Acta Physiol. 203, 363–372 PubMed
Kilander M. B., Dahlström J., Schulte G. (2014) Assessment of Frizzled 6 membrane mobility by FRAP supports G protein coupling and reveals WNT-Frizzled selectivity. Cell. Signal. 26, 1943–1949 PubMed
Wess J. (1998) Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol. Ther. 80, 231–264 PubMed
Halleskog C., Dijksterhuis J. P., Kilander M. B., Becerril-Ortega J., Villaescusa J. C., Lindgren E., Arenas E., Schulte G. (2012) Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J. Neuroinflammation 9, 111. PubMed PMC
Halleskog C., Mulder J., Dahlström J., Mackie K., Hortobágyi T., Tanila H., Kumar Puli L., Färber K., Harkany T., Schulte G. (2011) WNT signaling in activated microglia is proinflammatory. Glia 59, 119–131 PubMed PMC
Rawal N., Castelo-Branco G., Sousa K. M., Kele J., Kobayashi K., Okano H., Arenas E. (2006) Dynamic temporal and cell type-specific expression of Wnt signaling components in the developing midbrain. Exp. Cell Res. 312, 1626–1636 PubMed
Sheldahl L. C., Slusarski D. C., Pandur P., Miller J. R., Kühl M., Moon R. T. (2003) Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J. Cell Biol. 161, 769–777 PubMed PMC
Halleskog C., Schulte G. (2013) WNT-3A and WNT-5A counteract lipopolysaccharide-induced pro-inflammatory changes in mouse primary microglia. J. Neurochem. 125, 803–808 PubMed
Davidson G., Wu W., Shen J., Bilic J., Fenger U., Stannek P., Glinka A., Niehrs C. (2005) Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438, 867–872 PubMed
Sheldahl L. C., Park M., Malbon C. C., Moon R. T. (1999) Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr. Biol. 9, 695–698 PubMed
Cervenka I., Wolf J., Mašek J., Krejci P., Wilcox W. R., Kozubík A., Schulte G., Gutkind J. S., Bryja V. (2011) Mitogen-activated protein kinases promote WNT/β-catenin signaling via phosphorylation of LRP6. Mol. Cell. Biol. 31, 179–189 PubMed PMC
Liu T., DeCostanzo A. J., Liu X., Wang H., Hallagan S., Moon R. T., Malbon C. C. (2001) G protein signaling from activated rat Frizzled-1 to the β-catenin-Lef-Tcf pathway. Science 292, 1718–1722 PubMed
Bilic J., Huang Y. L., Davidson G., Zimmermann T., Cruciat C. M., Bienz M., Niehrs C. (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 PubMed
Schulte G., Bryja V., Rawal N., Castelo-Branco G., Sousa K. M., Arenas E. (2005) Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation. J. Neurochem. 92, 1550–1553 PubMed
Bernatik O., Ganji R. S., Dijksterhuis J. P., Konik P., Cervenka I., Polonio T., Krejci P., Schulte G., Bryja V. (2011) Sequential activation and inactivation of Dishevelled in the Wnt/β-catenin pathway by casein kinases. J. Biol. Chem. 286, 10396–10410 PubMed PMC
Halleskog C., Schulte G. (2013) Pertussis toxin-sensitive heterotrimeric Gαi/o proteins mediate WNT/β-catenin and WNT/ERK1/2 signaling in mouse primary microglia stimulated with purified WNT-3A. Cell. Signal. 25, 822–828 PubMed
Gao X., Arenas-Ramirez N., Scales S. J., Hannoush R. N. (2011) Membrane targeting of palmitoylated Wnt and Hedgehog revealed by chemical probes. FEBS Lett. 585, 2501–2506 PubMed
Ishikawa T., Tamai Y., Zorn A. M., Yoshida H., Seldin M. F., Nishikawa S., Taketo M. M. (2001) Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development 128, 25–33 PubMed
Gao X., Hannoush R. N. (2014) Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat. Chem. Biol. 10, 61–68 PubMed
Takada R., Satomi Y., Kurata T., Ueno N., Norioka S., Kondoh H., Takao T., Takada S. (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11, 791–801 PubMed
Liu C., Wang Y., Smallwood P. M., Nathans J. (2008) An essential role for Frizzled5 in neuronal survival in the parafascicular nucleus of the thalamus. J. Neurosci. 28, 5641–5653 PubMed PMC
Willert K. H. (2008) Isolation and application of bioactive Wnt proteins. Methods Mol. Biol. 468, 17–29 PubMed
Willert K., Brown J. D., Danenberg E., Duncan A. W., Weissman I. L., Reya T., Yates J. R., 3rd, Nusse R. (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 PubMed
Cong F., Schweizer L., Varmus H. (2004) Wnt signals across the plasma membrane to activate the β-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131, 5103–5115 PubMed
Strutt H., Price M. A., Strutt D. (2006) Planar polarity is positively regulated by casein kinase Iϵ in Drosophila. Curr. Biol. 16, 1329–1336 PubMed
Gattinoni L., Ji Y., Restifo N. P. (2010) Wnt/β-catenin signaling in T-cell immunity and cancer immunotherapy. Clin. Cancer Res. 16, 4695–4701 PubMed PMC
Bernatík O., Šedová K., Schille C., Ganji R. S., Cervenka I., Trantírek L., Schambony A., Zdráhal Z., Bryja V. (2014) Functional analysis of Dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1 and Frizzled5. J. Biol. Chem. 289, 23520–23533 PubMed PMC
Ring L., Neth P., Weber C., Steffens S., Faussner A. (2014) β-Catenin-dependent pathway activation by both promiscuous “canonical” WNT3a-, and specific “noncanonical” WNT4- and WNT5a-FZD receptor combinations with strong differences in LRP5 and LRP6 dependency. Cell. Signal. 26, 260–267 PubMed
Gong Y., Bourhis E., Chiu C., Stawicki S., DeAlmeida V. I., Liu B. Y., Phamluong K., Cao T. C., Carano R. A., Ernst J. A., Solloway M., Rubinfeld B., Hannoush R. N., Wu Y., Polakis P., Costa M. (2010) Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies. PLoS ONE 5, e12682. PubMed PMC
Bernard P., Harley V. R. (2007) Wnt4 action in gonadal development and sex determination. Int. J. Biochem. Cell Biol. 39, 31–43 PubMed
Bikkavilli R. K., Malbon C. C. (2009) Mitogen-activated protein kinases and Wnt/β-catenin signaling: molecular conversations among signaling pathways. Commun. Integr. Biol. 2, 46–49 PubMed PMC
Kenakin T., Christopoulos A. (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12, 205–216 PubMed
Carmon K. S., Loose D. S. (2010) Development of a bioassay for detection of Wnt-binding affinities for individual Frizzled receptors. Anal. Biochem. 401, 288–294 PubMed PMC
Targeting Casein Kinase 1 (CK1) in Hematological Cancers
WNT5A: a motility-promoting factor in Hodgkin lymphoma
WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with Gα12/13