Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs

. 2015 Mar 13 ; 290 (11) : 6789-98. [epub] 20150120

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25605717

Grantová podpora
Intramural NIH HHS - United States

Odkazy

PubMed 25605717
PubMed Central PMC4358105
DOI 10.1074/jbc.m114.612648
PII: S0021-9258(20)76759-1
Knihovny.cz E-zdroje

The seven-transmembrane-spanning receptors of the FZD1-10 class are bound and activated by the WNT family of lipoglycoproteins, thereby inducing a complex network of signaling pathways. However, the specificity of the interaction between mammalian WNT and FZD proteins and the subsequent signaling cascade downstream of the different WNT-FZD pairs have not been systematically addressed to date. In this study, we determined the binding affinities of various WNTs for different members of the FZD family by using bio-layer interferometry and characterized their functional selectivity in a cell system. Using purified WNTs, we show that different FZD cysteine-rich domains prefer to bind to distinct WNTs with fast on-rates and slow off-rates. In a 32D cell-based system engineered to overexpress FZD2, FZD4, or FZD5, we found that WNT-3A (but not WNT-4, -5A, or -9B) activated the WNT-β-catenin pathway through FZD2/4/5 as measured by phosphorylation of LRP6 and β-catenin stabilization. Surprisingly, different WNT-FZD pairs showed differential effects on phosphorylation of DVL2 and DVL3, revealing a previously unappreciated DVL isoform selectivity by different WNT-FZD pairs in 32D cells. In summary, we present extensive mapping of WNT-FZD cysteine-rich domain interactions complemented by analysis of WNT-FZD pair functionality in a unique cell system expressing individual FZD isoforms. Differential WNT-FZD binding and selective functional readouts suggest that endogenous WNT ligands evolved with an intrinsic natural bias toward different downstream signaling pathways, a phenomenon that could be of great importance in the design of FZD-targeting drugs.

Zobrazit více v PubMed

Chien A. J., Conrad W. H., Moon R. T. (2009) A Wnt survival guide: from flies to human disease. J. Invest. Dermatol. 129, 1614–1627 PubMed PMC

van Amerongen R., Nusse R. (2009) Towards an integrated view of Wnt signaling in development. Development 136, 3205–3214 PubMed

Schulte G. (2010) International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol. Rev. 62, 632–667 PubMed

Dijksterhuis J. P., Petersen J., Schulte G. (2014) WNT/Frizzled signaling: receptor-ligand selectivity with focus on FZD-G protein signaling and its physiological relevance. Br. J. Pharmacol. 171, 1195–1209 PubMed PMC

Egger-Adam D., Katanaev V. L. (2008) Trimeric G protein-dependent signaling by Frizzled receptors in animal development. Front. Biosci. 13, 4740–4755 PubMed

Kilander M. B., Dijksterhuis J. P., Ganji R. S., Bryja V., Schulte G. (2011) WNT-5A stimulates the GDP/GTP exchange at pertussis toxin-sensitive heterotrimeric G proteins. Cell. Signal. 23, 550–554 PubMed

Foord S. M., Bonner T. I., Neubig R. R., Rosser E. M., Pin J. P., Davenport A. P., Spedding M., Harmar A. J. (2005) International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol. Rev. 57, 279–288 PubMed

Gordon M. D., Nusse R. (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 PubMed

Kikuchi A., Yamamoto H., Kishida S. (2007) Multiplicity of the interactions of Wnt proteins and their receptors. Cell. Signal. 19, 659–671 PubMed

Naz G., Pasternack S. M., Perrin C., Mattheisen M., Refke M., Khan S., Gul A., Simons M., Ahmad W., Betz R. C. (2012) FZD6 encoding the Wnt receptor frizzled 6 is mutated in autosomal-recessive nail dysplasia. Br. J. Dermatol. 166, 1088–1094 PubMed

Janda C. Y., Waghray D., Levin A. M., Thomas C., Garcia K. C. (2012) Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 PubMed PMC

Bourhis E., Tam C., Franke Y., Bazan J. F., Ernst J., Hwang J., Costa M., Cochran A. G., Hannoush R. N. (2010) Reconstitution of a Frizzled8·Wnt3a·LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J. Biol. Chem. 285, 9172–9179 PubMed PMC

Semenov M. V., Habas R., Macdonald B. T., He X. (2007) SnapShot: noncanonical Wnt signaling pathways. Cell 131, 1378. PubMed

Macdonald B. T., Semenov M. V., He X. (2007) SnapShot: Wnt/β-catenin signaling. Cell 131, 1204. PubMed

Gao C., Chen Y. G. (2010) Dishevelled: the hub of Wnt signaling. Cell. Signal. 22, 717–727 PubMed

Kühl M., Sheldahl L. C., Park M., Miller J. R., Moon R. T. (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16, 279–283 PubMed

Hsieh J. C., Rattner A., Smallwood P. M., Nathans J. (1999) Biochemical characterization of Wnt-Frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl. Acad. Sci. U.S.A. 96, 3546–3551 PubMed PMC

Kilander M. B., Halleskog C., Schulte G. (2011) Recombinant WNTs differentially activate β-catenin-dependent and -independent signalling in mouse microglia-like cells. Acta Physiol. 203, 363–372 PubMed

Kilander M. B., Dahlström J., Schulte G. (2014) Assessment of Frizzled 6 membrane mobility by FRAP supports G protein coupling and reveals WNT-Frizzled selectivity. Cell. Signal. 26, 1943–1949 PubMed

Wess J. (1998) Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol. Ther. 80, 231–264 PubMed

Halleskog C., Dijksterhuis J. P., Kilander M. B., Becerril-Ortega J., Villaescusa J. C., Lindgren E., Arenas E., Schulte G. (2012) Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J. Neuroinflammation 9, 111. PubMed PMC

Halleskog C., Mulder J., Dahlström J., Mackie K., Hortobágyi T., Tanila H., Kumar Puli L., Färber K., Harkany T., Schulte G. (2011) WNT signaling in activated microglia is proinflammatory. Glia 59, 119–131 PubMed PMC

Rawal N., Castelo-Branco G., Sousa K. M., Kele J., Kobayashi K., Okano H., Arenas E. (2006) Dynamic temporal and cell type-specific expression of Wnt signaling components in the developing midbrain. Exp. Cell Res. 312, 1626–1636 PubMed

Sheldahl L. C., Slusarski D. C., Pandur P., Miller J. R., Kühl M., Moon R. T. (2003) Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J. Cell Biol. 161, 769–777 PubMed PMC

Halleskog C., Schulte G. (2013) WNT-3A and WNT-5A counteract lipopolysaccharide-induced pro-inflammatory changes in mouse primary microglia. J. Neurochem. 125, 803–808 PubMed

Davidson G., Wu W., Shen J., Bilic J., Fenger U., Stannek P., Glinka A., Niehrs C. (2005) Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438, 867–872 PubMed

Sheldahl L. C., Park M., Malbon C. C., Moon R. T. (1999) Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr. Biol. 9, 695–698 PubMed

Cervenka I., Wolf J., Mašek J., Krejci P., Wilcox W. R., Kozubík A., Schulte G., Gutkind J. S., Bryja V. (2011) Mitogen-activated protein kinases promote WNT/β-catenin signaling via phosphorylation of LRP6. Mol. Cell. Biol. 31, 179–189 PubMed PMC

Liu T., DeCostanzo A. J., Liu X., Wang H., Hallagan S., Moon R. T., Malbon C. C. (2001) G protein signaling from activated rat Frizzled-1 to the β-catenin-Lef-Tcf pathway. Science 292, 1718–1722 PubMed

Bilic J., Huang Y. L., Davidson G., Zimmermann T., Cruciat C. M., Bienz M., Niehrs C. (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 PubMed

Schulte G., Bryja V., Rawal N., Castelo-Branco G., Sousa K. M., Arenas E. (2005) Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation. J. Neurochem. 92, 1550–1553 PubMed

Bernatik O., Ganji R. S., Dijksterhuis J. P., Konik P., Cervenka I., Polonio T., Krejci P., Schulte G., Bryja V. (2011) Sequential activation and inactivation of Dishevelled in the Wnt/β-catenin pathway by casein kinases. J. Biol. Chem. 286, 10396–10410 PubMed PMC

Halleskog C., Schulte G. (2013) Pertussis toxin-sensitive heterotrimeric Gαi/o proteins mediate WNT/β-catenin and WNT/ERK1/2 signaling in mouse primary microglia stimulated with purified WNT-3A. Cell. Signal. 25, 822–828 PubMed

Gao X., Arenas-Ramirez N., Scales S. J., Hannoush R. N. (2011) Membrane targeting of palmitoylated Wnt and Hedgehog revealed by chemical probes. FEBS Lett. 585, 2501–2506 PubMed

Ishikawa T., Tamai Y., Zorn A. M., Yoshida H., Seldin M. F., Nishikawa S., Taketo M. M. (2001) Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development 128, 25–33 PubMed

Gao X., Hannoush R. N. (2014) Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat. Chem. Biol. 10, 61–68 PubMed

Takada R., Satomi Y., Kurata T., Ueno N., Norioka S., Kondoh H., Takao T., Takada S. (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11, 791–801 PubMed

Liu C., Wang Y., Smallwood P. M., Nathans J. (2008) An essential role for Frizzled5 in neuronal survival in the parafascicular nucleus of the thalamus. J. Neurosci. 28, 5641–5653 PubMed PMC

Willert K. H. (2008) Isolation and application of bioactive Wnt proteins. Methods Mol. Biol. 468, 17–29 PubMed

Willert K., Brown J. D., Danenberg E., Duncan A. W., Weissman I. L., Reya T., Yates J. R., 3rd, Nusse R. (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 PubMed

Cong F., Schweizer L., Varmus H. (2004) Wnt signals across the plasma membrane to activate the β-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131, 5103–5115 PubMed

Strutt H., Price M. A., Strutt D. (2006) Planar polarity is positively regulated by casein kinase Iϵ in Drosophila. Curr. Biol. 16, 1329–1336 PubMed

Gattinoni L., Ji Y., Restifo N. P. (2010) Wnt/β-catenin signaling in T-cell immunity and cancer immunotherapy. Clin. Cancer Res. 16, 4695–4701 PubMed PMC

Bernatík O., Šedová K., Schille C., Ganji R. S., Cervenka I., Trantírek L., Schambony A., Zdráhal Z., Bryja V. (2014) Functional analysis of Dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1 and Frizzled5. J. Biol. Chem. 289, 23520–23533 PubMed PMC

Ring L., Neth P., Weber C., Steffens S., Faussner A. (2014) β-Catenin-dependent pathway activation by both promiscuous “canonical” WNT3a-, and specific “noncanonical” WNT4- and WNT5a-FZD receptor combinations with strong differences in LRP5 and LRP6 dependency. Cell. Signal. 26, 260–267 PubMed

Gong Y., Bourhis E., Chiu C., Stawicki S., DeAlmeida V. I., Liu B. Y., Phamluong K., Cao T. C., Carano R. A., Ernst J. A., Solloway M., Rubinfeld B., Hannoush R. N., Wu Y., Polakis P., Costa M. (2010) Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies. PLoS ONE 5, e12682. PubMed PMC

Bernard P., Harley V. R. (2007) Wnt4 action in gonadal development and sex determination. Int. J. Biochem. Cell Biol. 39, 31–43 PubMed

Bikkavilli R. K., Malbon C. C. (2009) Mitogen-activated protein kinases and Wnt/β-catenin signaling: molecular conversations among signaling pathways. Commun. Integr. Biol. 2, 46–49 PubMed PMC

Kenakin T., Christopoulos A. (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12, 205–216 PubMed

Carmon K. S., Loose D. S. (2010) Development of a bioassay for detection of Wnt-binding affinities for individual Frizzled receptors. Anal. Biochem. 401, 288–294 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace