Sequential activation and inactivation of Dishevelled in the Wnt/beta-catenin pathway by casein kinases

. 2011 Mar 25 ; 286 (12) : 10396-410. [epub] 20110201

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21285348
Odkazy

PubMed 21285348
PubMed Central PMC3060493
DOI 10.1074/jbc.m110.169870
PII: S0021-9258(20)53865-9
Knihovny.cz E-zdroje

Dishevelled (Dvl) is a key component in the Wnt/β-catenin signaling pathway. Dvl can multimerize to form dynamic protein aggregates, which are required for the activation of downstream signaling. Upon pathway activation by Wnts, Dvl becomes phosphorylated to yield phosphorylated and shifted (PS) Dvl. Both activation of Dvl in Wnt/β-catenin signaling and Wnt-induced PS-Dvl formation are dependent on casein kinase 1 (CK1) δ/ε activity. However, the overexpression of CK1 was shown to dissolve Dvl aggregates, and endogenous PS-Dvl forms irrespective of whether or not the activating Wnt triggers the Wnt/β-catenin pathway. Using a combination of gain-of-function, loss-of-function, and domain mapping approaches, we attempted to solve this discrepancy regarding the role of CK1ε in Dvl biology. We analyzed mutual interaction of CK1δ/ε and two other Dvl kinases, CK2 and PAR1, in the Wnt/β-catenin pathway. We show that CK2 acts as a constitutive kinase whose activity is required for the further action of CK1ε. Furthermore, we demonstrate that the two consequences of CK1ε phosphorylation are separated both spatially and functionally; first, CK1ε-mediated induction of TCF/LEF-driven transcription (associated with dynamic recruitment of Axin1) is mediated via a PDZ-proline-rich region of Dvl. Second, CK1ε-mediated formation of PS-Dvl is mediated by the Dvl3 C terminus. Furthermore, we demonstrate with several methods that PS-Dvl has decreased ability to polymerize with other Dvls and could, thus, act as the inactive signaling intermediate. We propose a multistep and multikinase model for Dvl activation in the Wnt/β-catenin pathway that uncovers a built-in de-activation mechanism that is triggered by activating phosphorylation of Dvl by CK1δ/ε.

Zobrazit více v PubMed

Clevers H. (2006) Cell 127, 469–480 PubMed

Malanchi I., Huelsken J. (2009) Curr. Opin. Oncol. 21, 41–46 PubMed

Schulte G., Bryja V. (2007) Trends Pharmacol. Sci. 28, 518–525 PubMed

Angers S., Moon R. T. (2009) Nat. Rev. Mol. Cell Biol. 10, 468–477 PubMed

Malbon C. C., Wang H. Y. (2006) Curr. Top. Dev. Biol. 72, 153–166 PubMed

Wallingford J. B., Habas R. (2005) Development 132, 4421–4436 PubMed

Gao C., Chen Y. G. (2010) Cell. Signal. 22, 717–727 PubMed

Wharton K. A., Jr. (2003) Dev. Biol. 253, 1–17 PubMed

Bilic J., Huang Y. L., Davidson G., Zimmermann T., Cruciat C. M., Bienz M., Niehrs C. (2007) Science 316, 1619–1622 PubMed

Schwarz-Romond T., Metcalfe C., Bienz M. (2007) J. Cell Sci. 120, 2402–2412 PubMed

Schwarz-Romond T., Fiedler M., Shibata N., Butler P. J., Kikuchi A., Higuchi Y., Bienz M. (2007) Nat. Struct. Mol. Biol. 14, 484–492 PubMed

Schwarz-Romond T., Merrifield C., Nichols B. J., Bienz M. (2005) J. Cell Sci. 118, 5269–5277 PubMed

Smalley M. J., Signoret N., Robertson D., Tilley A., Hann A., Ewan K., Ding Y., Paterson H., Dale T. C. (2005) J. Cell Sci. 118, 5279–5289 PubMed

Bryja V., Schulte G., Rawal N., Grahn A., Arenas E. (2007) J. Cell Sci. 120, 586–595 PubMed

González-Sancho J. M., Brennan K. R., Castelo-Soccio L. A., Brown A. M. (2004) Mol. Cell. Biol. 24, 4757–4768 PubMed PMC

Bryja V., Schulte G., Arenas E. (2007) Cell. Signal. 19, 610–616 PubMed

Peters J. M., McKay R. M., McKay J. P., Graff J. M. (1999) Nature 401, 345–350 PubMed

Sakanaka C., Leong P., Xu L., Harrison S. D., Williams L. T. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 12548–12552 PubMed PMC

Kishida M., Hino Si., Michiue T., Yamamoto H., Kishida S., Fukui A., Asashima M., Kikuchi A. (2001) J. Biol. Chem. 276, 33147–33155 PubMed

Cong F., Schweizer L., Varmus H. (2004) Mol. Cell. Biol. 24, 2000–2011 PubMed PMC

Foldynová-Trantírková S., Sekyrová P., Tmejová K., Brumovská E., Bernatík O., Blankenfeldt W., Krejcí P., Kozubík A., Dolezal T., Trantírek L., Bryja V. (2010) Breast Cancer Res. 12, R30. PubMed PMC

Bryja V., Gradl D., Schambony A., Arenas E., Schulte G. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 6690–6695 PubMed PMC

Bryja V., Schambony A., Cajánek L., Dominguez I., Arenas E., Schulte G. (2008) EMBO Rep. 9, 1244–1250 PubMed PMC

Willert K., Brink M., Wodarz A., Varmus H., Nusse R. (1997) EMBO J. 16, 3089–3096 PubMed PMC

Ossipova O., Dhawan S., Sokol S., Green J. B. (2005) Dev. Cell 8, 829–841 PubMed

Korinek V., Barker N., Morin P. J., van Wichen D., de Weger R., Kinzler K. W., Vogelstein B., Clevers H. (1997) Science 275, 1784–1787 PubMed

Song D. H., Sussman D. J., Seldin D. C. (2000) J. Biol. Chem. 275, 23790–23797 PubMed

Zeng X., Huang H., Tamai K., Zhang X., Harada Y., Yokota C., Almeida K., Wang J., Doble B., Woodgett J., Wynshaw-Boris A., Hsieh J. C., He X. (2008) Development 135, 367–375 PubMed PMC

Kishida S., Yamamoto H., Hino S., Ikeda S., Kishida M., Kikuchi A. (1999) Mol. Cell. Biol. 19, 4414–4422 PubMed PMC

Li L., Yuan H., Xie W., Mao J., Caruso A. M., McMahon A., Sussman D. J., Wu D. (1999) J. Biol. Chem. 274, 129–134 PubMed

Boutros M., Paricio N., Strutt D. I., Mlodzik M. (1998) Cell 94, 109–118 PubMed

Angers S., Thorpe C. J., Biechele T. L., Goldenberg S. J., Zheng N., MacCoss M. J., Moon R. T. (2006) Nat. Cell Biol. 8, 348–357 PubMed

Klein T. J., Jenny A., Djiane A., Mlodzik M. (2006) Curr. Biol. 16, 1337–1343 PubMed

Klimowski L. K., Garcia B. A., Shabanowitz J., Hunt D. F., Virshup D. M. (2006) FEBS J. 273, 4594–4602 PubMed

Itoh K., Brott B. K., Bae G. U., Ratcliffe M. J., Sokol S. Y. (2005) J. Biol. 4, 3. PubMed PMC

Jenny A., Reynolds-Kenneally J., Das G., Burnett M., Mlodzik M. (2005) Nat. Cell Biol. 7, 691–697 PubMed

Lee Y. N., Gao Y., Wang H. Y. (2008) Cell. Signal. 20, 443–452 PubMed PMC

Gao Y., Wang H. Y. (2006) J. Biol. Chem. 281, 18394–18400 PubMed

Khan Z., Vijayakumar S., de la Torre T. V., Rotolo S., Bafico A. (2007) Mol. Cell. Biol. 27, 7291–7301 PubMed PMC

Yamamoto H., Komekado H., Kikuchi A. (2006) Dev. Cell 11, 213–223 PubMed

Witte F., Bernatik O., Kirchner K., Masek J., Mahl A., Krejci P., Mundlos S., Schambony A., Bryja V., Stricker S. (2010) FASEB J. 24, 2417–2426 PubMed

Lee J. S., Ishimoto A., Yanagawa S. (1999) J. Biol. Chem. 274, 21464–21470 PubMed

Orford K., Crockett C., Jensen J. P., Weissman A. M., Byers S. W. (1997) J. Biol. Chem. 272, 24735–24738 PubMed

Dominguez I., Mizuno J., Wu H., Imbrie G. A., Symes K., Seldin D. C. (2005) Mol. Cell. Biochem. 274, 125–131 PubMed

McKay R. M., Peters J. M., Graff J. M. (2001) Dev. Biol. 235, 388–396 PubMed

Tauriello D. V., Haegebarth A., Kuper I., Edelmann M. J., Henraat M., Canninga-van Dijk M. R., Kessler B. M., Clevers H., Maurice M. M. (2010) Mol. Cell 37, 607–619 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Carboxy-terminal polyglutamylation regulates signaling and phase separation of the Dishevelled protein

. 2024 Nov ; 43 (22) : 5635-5666. [epub] 20240930

Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling

. 2021 ; 9 () : 623753. [epub] 20210226

Targeting Casein Kinase 1 (CK1) in Hematological Cancers

. 2020 Nov 27 ; 21 (23) : . [epub] 20201127

WNT signaling inducing activity in ascites predicts poor outcome in ovarian cancer

. 2020 ; 10 (2) : 537-552. [epub] 20200101

Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs

. 2019 Dec 23 ; 17 (1) : 170. [epub] 20191223

Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1

. 2019 Apr 18 ; 10 (1) : 1804. [epub] 20190418

Dishevelled enables casein kinase 1-mediated phosphorylation of Frizzled 6 required for cell membrane localization

. 2018 Nov 30 ; 293 (48) : 18477-18493. [epub] 20181011

Analysis of binding interfaces of the human scaffold protein AXIN1 by peptide microarrays

. 2018 Oct 19 ; 293 (42) : 16337-16347. [epub] 20180830

The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic?

. 2017 Dec ; 52 (6) : 614-637. [epub] 20170725

Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins

. 2016 Aug 16 ; 113 (33) : 9304-9. [epub] 20160802

Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs

. 2015 Mar 13 ; 290 (11) : 6789-98. [epub] 20150120

Asymmetry of VANGL2 in migrating lymphocytes as a tool to monitor activity of the mammalian WNT/planar cell polarity pathway

. 2015 Jan 28 ; 13 () : 2. [epub] 20150128

Functional analysis of dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1ϵ and frizzled5

. 2014 Aug 22 ; 289 (34) : 23520-33. [epub] 20140703

β-arrestin promotes Wnt-induced low density lipoprotein receptor-related protein 6 (Lrp6) phosphorylation via increased membrane recruitment of Amer1 protein

. 2014 Jan 10 ; 289 (2) : 1128-41. [epub] 20131121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...