Sequential activation and inactivation of Dishevelled in the Wnt/beta-catenin pathway by casein kinases
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21285348
PubMed Central
PMC3060493
DOI
10.1074/jbc.m110.169870
PII: S0021-9258(20)53865-9
Knihovny.cz E-resources
- MeSH
- Adaptor Proteins, Signal Transducing genetics metabolism MeSH
- beta Catenin genetics metabolism MeSH
- Phosphoproteins genetics metabolism MeSH
- Phosphorylation physiology MeSH
- HEK293 Cells MeSH
- Casein Kinase Idelta genetics metabolism MeSH
- Casein Kinase 1 epsilon genetics metabolism MeSH
- Casein Kinase II genetics metabolism MeSH
- Humans MeSH
- Mice MeSH
- Peptide Mapping MeSH
- Dishevelled Proteins MeSH
- Wnt Proteins genetics metabolism MeSH
- Receptor, PAR-1 genetics metabolism MeSH
- Signal Transduction physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adaptor Proteins, Signal Transducing MeSH
- beta Catenin MeSH
- DVL3 protein, human MeSH Browser
- Dvl3 protein, mouse MeSH Browser
- Phosphoproteins MeSH
- Casein Kinase Idelta MeSH
- Casein Kinase 1 epsilon MeSH
- Casein Kinase II MeSH
- Dishevelled Proteins MeSH
- Wnt Proteins MeSH
- Receptor, PAR-1 MeSH
Dishevelled (Dvl) is a key component in the Wnt/β-catenin signaling pathway. Dvl can multimerize to form dynamic protein aggregates, which are required for the activation of downstream signaling. Upon pathway activation by Wnts, Dvl becomes phosphorylated to yield phosphorylated and shifted (PS) Dvl. Both activation of Dvl in Wnt/β-catenin signaling and Wnt-induced PS-Dvl formation are dependent on casein kinase 1 (CK1) δ/ε activity. However, the overexpression of CK1 was shown to dissolve Dvl aggregates, and endogenous PS-Dvl forms irrespective of whether or not the activating Wnt triggers the Wnt/β-catenin pathway. Using a combination of gain-of-function, loss-of-function, and domain mapping approaches, we attempted to solve this discrepancy regarding the role of CK1ε in Dvl biology. We analyzed mutual interaction of CK1δ/ε and two other Dvl kinases, CK2 and PAR1, in the Wnt/β-catenin pathway. We show that CK2 acts as a constitutive kinase whose activity is required for the further action of CK1ε. Furthermore, we demonstrate that the two consequences of CK1ε phosphorylation are separated both spatially and functionally; first, CK1ε-mediated induction of TCF/LEF-driven transcription (associated with dynamic recruitment of Axin1) is mediated via a PDZ-proline-rich region of Dvl. Second, CK1ε-mediated formation of PS-Dvl is mediated by the Dvl3 C terminus. Furthermore, we demonstrate with several methods that PS-Dvl has decreased ability to polymerize with other Dvls and could, thus, act as the inactive signaling intermediate. We propose a multistep and multikinase model for Dvl activation in the Wnt/β-catenin pathway that uncovers a built-in de-activation mechanism that is triggered by activating phosphorylation of Dvl by CK1δ/ε.
See more in PubMed
Clevers H. (2006) Cell 127, 469–480 PubMed
Malanchi I., Huelsken J. (2009) Curr. Opin. Oncol. 21, 41–46 PubMed
Schulte G., Bryja V. (2007) Trends Pharmacol. Sci. 28, 518–525 PubMed
Angers S., Moon R. T. (2009) Nat. Rev. Mol. Cell Biol. 10, 468–477 PubMed
Malbon C. C., Wang H. Y. (2006) Curr. Top. Dev. Biol. 72, 153–166 PubMed
Wallingford J. B., Habas R. (2005) Development 132, 4421–4436 PubMed
Gao C., Chen Y. G. (2010) Cell. Signal. 22, 717–727 PubMed
Wharton K. A., Jr. (2003) Dev. Biol. 253, 1–17 PubMed
Bilic J., Huang Y. L., Davidson G., Zimmermann T., Cruciat C. M., Bienz M., Niehrs C. (2007) Science 316, 1619–1622 PubMed
Schwarz-Romond T., Metcalfe C., Bienz M. (2007) J. Cell Sci. 120, 2402–2412 PubMed
Schwarz-Romond T., Fiedler M., Shibata N., Butler P. J., Kikuchi A., Higuchi Y., Bienz M. (2007) Nat. Struct. Mol. Biol. 14, 484–492 PubMed
Schwarz-Romond T., Merrifield C., Nichols B. J., Bienz M. (2005) J. Cell Sci. 118, 5269–5277 PubMed
Smalley M. J., Signoret N., Robertson D., Tilley A., Hann A., Ewan K., Ding Y., Paterson H., Dale T. C. (2005) J. Cell Sci. 118, 5279–5289 PubMed
Bryja V., Schulte G., Rawal N., Grahn A., Arenas E. (2007) J. Cell Sci. 120, 586–595 PubMed
González-Sancho J. M., Brennan K. R., Castelo-Soccio L. A., Brown A. M. (2004) Mol. Cell. Biol. 24, 4757–4768 PubMed PMC
Bryja V., Schulte G., Arenas E. (2007) Cell. Signal. 19, 610–616 PubMed
Peters J. M., McKay R. M., McKay J. P., Graff J. M. (1999) Nature 401, 345–350 PubMed
Sakanaka C., Leong P., Xu L., Harrison S. D., Williams L. T. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 12548–12552 PubMed PMC
Kishida M., Hino Si., Michiue T., Yamamoto H., Kishida S., Fukui A., Asashima M., Kikuchi A. (2001) J. Biol. Chem. 276, 33147–33155 PubMed
Cong F., Schweizer L., Varmus H. (2004) Mol. Cell. Biol. 24, 2000–2011 PubMed PMC
Foldynová-Trantírková S., Sekyrová P., Tmejová K., Brumovská E., Bernatík O., Blankenfeldt W., Krejcí P., Kozubík A., Dolezal T., Trantírek L., Bryja V. (2010) Breast Cancer Res. 12, R30. PubMed PMC
Bryja V., Gradl D., Schambony A., Arenas E., Schulte G. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 6690–6695 PubMed PMC
Bryja V., Schambony A., Cajánek L., Dominguez I., Arenas E., Schulte G. (2008) EMBO Rep. 9, 1244–1250 PubMed PMC
Willert K., Brink M., Wodarz A., Varmus H., Nusse R. (1997) EMBO J. 16, 3089–3096 PubMed PMC
Ossipova O., Dhawan S., Sokol S., Green J. B. (2005) Dev. Cell 8, 829–841 PubMed
Korinek V., Barker N., Morin P. J., van Wichen D., de Weger R., Kinzler K. W., Vogelstein B., Clevers H. (1997) Science 275, 1784–1787 PubMed
Song D. H., Sussman D. J., Seldin D. C. (2000) J. Biol. Chem. 275, 23790–23797 PubMed
Zeng X., Huang H., Tamai K., Zhang X., Harada Y., Yokota C., Almeida K., Wang J., Doble B., Woodgett J., Wynshaw-Boris A., Hsieh J. C., He X. (2008) Development 135, 367–375 PubMed PMC
Kishida S., Yamamoto H., Hino S., Ikeda S., Kishida M., Kikuchi A. (1999) Mol. Cell. Biol. 19, 4414–4422 PubMed PMC
Li L., Yuan H., Xie W., Mao J., Caruso A. M., McMahon A., Sussman D. J., Wu D. (1999) J. Biol. Chem. 274, 129–134 PubMed
Boutros M., Paricio N., Strutt D. I., Mlodzik M. (1998) Cell 94, 109–118 PubMed
Angers S., Thorpe C. J., Biechele T. L., Goldenberg S. J., Zheng N., MacCoss M. J., Moon R. T. (2006) Nat. Cell Biol. 8, 348–357 PubMed
Klein T. J., Jenny A., Djiane A., Mlodzik M. (2006) Curr. Biol. 16, 1337–1343 PubMed
Klimowski L. K., Garcia B. A., Shabanowitz J., Hunt D. F., Virshup D. M. (2006) FEBS J. 273, 4594–4602 PubMed
Itoh K., Brott B. K., Bae G. U., Ratcliffe M. J., Sokol S. Y. (2005) J. Biol. 4, 3. PubMed PMC
Jenny A., Reynolds-Kenneally J., Das G., Burnett M., Mlodzik M. (2005) Nat. Cell Biol. 7, 691–697 PubMed
Lee Y. N., Gao Y., Wang H. Y. (2008) Cell. Signal. 20, 443–452 PubMed PMC
Gao Y., Wang H. Y. (2006) J. Biol. Chem. 281, 18394–18400 PubMed
Khan Z., Vijayakumar S., de la Torre T. V., Rotolo S., Bafico A. (2007) Mol. Cell. Biol. 27, 7291–7301 PubMed PMC
Yamamoto H., Komekado H., Kikuchi A. (2006) Dev. Cell 11, 213–223 PubMed
Witte F., Bernatik O., Kirchner K., Masek J., Mahl A., Krejci P., Mundlos S., Schambony A., Bryja V., Stricker S. (2010) FASEB J. 24, 2417–2426 PubMed
Lee J. S., Ishimoto A., Yanagawa S. (1999) J. Biol. Chem. 274, 21464–21470 PubMed
Orford K., Crockett C., Jensen J. P., Weissman A. M., Byers S. W. (1997) J. Biol. Chem. 272, 24735–24738 PubMed
Dominguez I., Mizuno J., Wu H., Imbrie G. A., Symes K., Seldin D. C. (2005) Mol. Cell. Biochem. 274, 125–131 PubMed
McKay R. M., Peters J. M., Graff J. M. (2001) Dev. Biol. 235, 388–396 PubMed
Tauriello D. V., Haegebarth A., Kuper I., Edelmann M. J., Henraat M., Canninga-van Dijk M. R., Kessler B. M., Clevers H., Maurice M. M. (2010) Mol. Cell 37, 607–619 PubMed
Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling
Targeting Casein Kinase 1 (CK1) in Hematological Cancers
WNT signaling inducing activity in ascites predicts poor outcome in ovarian cancer
Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs
Analysis of binding interfaces of the human scaffold protein AXIN1 by peptide microarrays
Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins