Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling

. 2021 ; 9 () : 623753. [epub] 20210226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33718363

Primary cilia act as crucial regulators of embryo development and tissue homeostasis. They are instrumental for modulation of several signaling pathways, including Hedgehog, WNT, and TGF-β. However, gaps exist in our understanding of how cilia formation and function is regulated. Recent work has implicated WNT/β-catenin signaling pathway in the regulation of ciliogenesis, yet the results are conflicting. One model suggests that WNT/β-catenin signaling negatively regulates cilia formation, possibly via effects on cell cycle. In contrast, second model proposes a positive role of WNT/β-catenin signaling on cilia formation, mediated by the re-arrangement of centriolar satellites in response to phosphorylation of the key component of WNT/β-catenin pathway, β-catenin. To clarify these discrepancies, we investigated possible regulation of primary cilia by the WNT/β-catenin pathway in cell lines (RPE-1, NIH3T3, and HEK293) commonly used to study ciliogenesis. We used WNT3a to activate or LGK974 to block the pathway, and examined initiation of ciliogenesis, cilium length, and percentage of ciliated cells. We show that the treatment by WNT3a has no- or lesser inhibitory effect on cilia formation. Importantly, the inhibition of secretion of endogenous WNT ligands using LGK974 blocks WNT signaling but does not affect ciliogenesis. Finally, using knock-out cells for key WNT pathway components, namely DVL1/2/3, LRP5/6, or AXIN1/2 we show that neither activation nor deactivation of the WNT/β-catenin pathway affects the process of ciliogenesis. These results suggest that WNT/β-catenin-mediated signaling is not generally required for efficient cilia formation. In fact, activation of the WNT/β-catenin pathway in some systems seems to moderately suppress ciliogenesis.

Zobrazit více v PubMed

Angers S., Moon R. T. (2009). Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol. 10 468–477. 10.1038/nrm2717 PubMed DOI

Anvarian Z., Mykytyn K., Mukhopadhyay S., Pedersen L. B., Christensen S. T. (2019). Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15 199–219. 10.1038/s41581-019-0116-9 PubMed DOI PMC

Badura L., Swanson T., Adamowicz W., Adams J., Cianfrogna J., Fisher K., et al. (2007). An inhibitor of casein kinase Iε induces phase delays in circadian rhythms under free-running and entrained conditions. J. Pharmacol. Exp. Ther. 322 730–738. 10.1124/jpet.107.122846 PubMed DOI

Baker J. C., Beddington R. S. P., Harland R. M. (1999). Wnt signaling in Xenopus embryos inhibits Bmp4 expression and activates neural development. Genes Dev. 13 3149–3159. 10.1101/gad.13.23.3149 PubMed DOI PMC

Balmer S., Dussert A., Collu G. M., Benitez E., Iomini C., Mlodzik M. (2015). Components of intraflagellar transport complex a function independently of the cilium to regulate canonical Wnt signaling in Drosophila. Dev. Cell 34 705–718. 10.1016/j.devcel.2015.07.016 PubMed DOI PMC

Bangs F., Anderson K. V. (2017). Primary cilia and mammalian hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9:a028175. 10.1101/cshperspect.a028175 PubMed DOI PMC

Barrow J. R., Thomas K. R., Boussadia-Zahui O., Moore R., Kemler R., Capecchi M. R., et al. (2003). Ectodermal Wnt3β-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev. 17 394–409. 10.1101/gad.1044903 PubMed DOI PMC

Behrens J., Von Kries J. P., Kühl M., Bruhn L., Wedlich D., Grosschedl R., et al. (1996). Functional interaction of β-catenin with the transcription factor LEF- 1. Nature 382 638–642. 10.1038/382638a0 PubMed DOI

Berbari N. F., Sharma N., Malarkey E. B., Pieczynski J. N., Boddu R., Gaertig J., et al. (2013). Microtubule modifications and stability are altered by cilia perturbation and in cystic kidney disease. Cytoskeleton 70 24–31. 10.1002/cm.21088 PubMed DOI PMC

Bernatik O., Pejskova P., Vyslouzil D., Hanakova K., Zdrahal Z., Cajanek L. (2020). Phosphorylation of multiple proteins involved in ciliogenesis by Tau Tubulin kinase 2. Mol. Biol. Cell 31 1032–1046. 10.1091/MBC.E19-06-0334 PubMed DOI PMC

Bernatik O., Sri Ganji R., Dijksterhuis J. P., Konik P., Cervenka I., Polonio T., et al. (2011). Sequential activation and inactivation of dishevelled in the Wnt/β-catenin pathway by casein kinases. J. Biol. Chem. 286 10396–10410. 10.1074/jbc.M110.169870 PubMed DOI PMC

Bosakova M. K., Varecha M., Hampl M., Duran I., Nita A., Buchtova M., et al. (2018). Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. Hum. Mol. Genet. 27 1093–1105. 10.1093/hmg/ddy031 PubMed DOI PMC

Bryja V., Červenka I., Čajánek L. (2017). The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit. Rev. Biochem. Mol. Biol. 52 614–637. 10.1080/10409238.2017.1350135 PubMed DOI PMC

Bryja V., Schulte G., Arenas E. (2007). Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate β-catenin. Cell. Signal. 19 610–616. 10.1016/j.cellsig.2006.08.011 PubMed DOI

Butler M. T., Wallingford J. B. (2017). Planar cell polarity in development and disease. Nat. Rev. Mol. Cell Biol. 18 375–388. 10.1038/nrm.2017.11 PubMed DOI PMC

Čajánek L., Nigg E. A. (2014). Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc. Natl. Acad. Sci. U. S. A. 111:E2841-50. 10.1073/pnas.1401777111 PubMed DOI PMC

Cantagrel V., Silhavy J. L., Bielas S. L., Swistun D., Marsh S. E., Bertrand J. Y., et al. (2008). Mutations in the cilia gene ARL13B lead to the classical form of joubert syndrome. Am. J. Hum. Genet. 83 170–179. 10.1016/j.ajhg.2008.06.023 PubMed DOI PMC

Carvajal-Gonzalez J. M., Mulero-Navarro S., Mlodzik M. (2016). Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. BioEssays 38 1234–1245. 10.1002/bies.201600154 PubMed DOI PMC

Caspary T., Larkins C. E., Anderson K. V. (2007). The graded response to sonic hedgehog depends on cilia architecture. Dev. Cell 12 767–778. 10.1016/j.devcel.2007.03.004 PubMed DOI

Cevik S., Hori Y., Kaplan O. I., Kida K., Toivenon T., Foley-Fisher C., et al. (2010). Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J. Cell Biol. 188 953–969. 10.1083/jcb.200908133 PubMed DOI PMC

Chamorro M. N., Schwartz D. R., Vonica A., Brivanlou A. H., Cho K. R., Varmus H. E. (2005). FGF-20 and DKK1 are transcriptional targets of β-catenin and FGF-20 is implicated in cancer and development. EMBO J. 24 73–84. 10.1038/sj.emboj.7600460 PubMed DOI PMC

Cibois M., Luxardi G., Chevalier B., Thomé V., Mercey O., Zaragosi L. E., et al. (2015). BMP signalling controls the construction of vertebrate mucociliary epithelia. Development 142 2352–2363. 10.1242/dev.118679 PubMed DOI

Conkar D., Firat-Karalar E. N. (2020). Microtubule-associated proteins and emerging links to primary cilium structure, assembly, maintenance, and disassembly. FEBS J. 10.1111/febs.15473 Online ahead of print PubMed DOI

Corbit K. C., Aanstad P., Singla V., Norman A. R., Stainier D. Y. R., Reiter J. F. (2005). Vertebrate smoothened functions at the primary cilium. Nature 437 1018–1021. 10.1038/nature04117 PubMed DOI

Corbit K. C., Shyer A. E., Dowdle W. E., Gaulden J., Singla V., Reiter J. F. (2008). Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol. 10 70–76. 10.1038/ncb1670 PubMed DOI

Davidson G., Shen J., Huang Y. L., Su Y., Karaulanov E., Bartscherer K., et al. (2009). Cell cycle control of Wnt receptor activation. Dev. Cell 17 788–799. 10.1016/j.devcel.2009.11.006 PubMed DOI

Duldulao N. A., Lee S., Sun Z. (2009). Cilia localization is essential for in vivo functions of the Joubert syndrome protein Arl13b/Scorpion. Development 136 4033–4042. 10.1242/dev.036350 PubMed DOI PMC

Ford M. J., Yeyati P. L., Mali G. R., Keighren M. A., Waddell S. H., Mjoseng H. K., et al. (2018). A cell/cilia cycle biosensor for single-cell kinetics reveals persistence of cilia after G1/S transition is a general property in cells and mice. Dev. Cell 47 509.e5–523.e5. 10.1016/j.devcel.2018.10.027 PubMed DOI PMC

Garcia-Gonzalo F. R., Reiter J. F. (2017). Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol. 9:a028134. 10.1101/cshperspect.a028134 PubMed DOI PMC

Goetz S. C., Liem K. F., Anderson K. V. (2012). The spinocerebellar ataxia-associated gene tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell 151 847–858. 10.1016/j.cell.2012.10.010 PubMed DOI PMC

Gonçalves J., Pelletier L. (2017). The ciliary transition zone: finding the pieces and assembling the gate. Mol. Cells 40 243–253. 10.14348/molcells.2017.0054 PubMed DOI PMC

González-Sancho J. M., Greer Y. E., Abrahams C. L., Takigawa Y., Baljinnyam B., Lee K. H., et al. (2013). Functional consequences of Wnt-induced dishevelled 2 phosphorylation in canonical and noncanonical Wnt signaling. J. Biol. Chem. 288 9428–9437. 10.1074/jbc.M112.448480 PubMed DOI PMC

Han Y. G., Kim H. J., Dlugosz A. A., Ellison D. W., Gilbertson R. J., Alvarez-Buylla A. (2009). Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15 1062–1065. 10.1038/nm.2020 PubMed DOI PMC

Hanáková K., Bernatík O., Kravec M., Micka M., Kumar J., Harnoš J., et al. (2019). Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs. Cell Commun. Signal. 17:170. 10.1186/s12964-019-0470-z PubMed DOI PMC

He K., Ma X., Xu T., Li Y., Hodge A., Zhang Q., et al. (2018). Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules. Nat. Commun. 9:3310. 10.1038/s41467-018-05867-1 PubMed DOI PMC

Hendrix N. D., Wu R., Kuick R., Schwartz D. R., Fearon E. R., Cho K. R. (2006). Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res. 66 1354–1362. 10.1158/0008-5472.CAN-05-3694 PubMed DOI

Hildebrandt F., Benzing T., Katsanis N. (2011). Ciliopathies. N. Engl. J. Med. 364 1533–1543. 10.1056/nejmra1010172 PubMed DOI PMC

Hori Y., Kobayashi T., Kikko Y., Kontani K., Katada T. (2008). Domain architecture of the atypical Arf-family GTPase Arl13b involved in cilia formation. Biochem. Biophys. Res. Commun. 373 119–124. 10.1016/j.bbrc.2008.06.001 PubMed DOI

Huang P., Schier A. F. (2009). Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development 136 3089–3098. 10.1242/dev.041343 PubMed DOI PMC

Huangfu D., Liu A., Rakeman A. S., Murcia N. S., Niswander L., Anderson K. V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426 83–87. 10.1038/nature02061 PubMed DOI

Humphries A. C., Mlodzik M. (2018). From instruction to output: Wnt/PCP signaling in development and cancer. Curr. Opin. Cell Biol. 51 110–116. 10.1016/j.ceb.2017.12.005 PubMed DOI PMC

Ishikawa H., Marshall W. F. (2017). Intraflagellar transport and ciliary dynamics. Cold Spring Harb. Perspect. Biol. 9:a021998. 10.1101/cshperspect.a021998 PubMed DOI PMC

Janovska P., Verner J., Kohoutek J., Bryjova L., Gregorova M., Dzimkova M., et al. (2018). Casein kinase 1 is a therapeutic target in chronic lymphocytic leukemia. Blood 131 1206–1218. 10.1182/blood-2017-05-786947 PubMed DOI

Jenks A. D., Vyse S., Wong J. P., Kostaras E., Keller D., Burgoyne T., et al. (2018). Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep. 23 3042–3055. 10.1016/j.celrep.2018.05.016 PubMed DOI PMC

Jiang X., Hao H. X., Growney J. D., Woolfenden S., Bottiglio C., Ng N., et al. (2013). Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc. Natl. Acad. Sci. U.S.A. 110 12649–12654. 10.1073/pnas.1307218110 PubMed DOI PMC

Kim J., Jo H., Hong H., Kim M. H., Kim J. M., Lee J. K., et al. (2015). Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat. Commun. 6:6781. 10.1038/ncomms7781 PubMed DOI

Kim J. S., Crooks H., Dracheva T., Nishanian T. G., Singh B., Jen J., et al. (2002). Oncogenic β-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res. 62 2744–2748. PubMed

Kim M., Suh Y. A., Oh J. H., Lee B. R., Kim J., Jang S. J. (2016). KIF3A binds to β-arrestin for suppressing Wnt/β-catenin signalling independently of primary cilia in lung cancer. Sci. Rep. 6:32770. 10.1038/srep32770 PubMed DOI PMC

Komatsu Y., Kaartinen V., Mishina Y. (2011). Cell cycle arrest in node cells governs ciliogenesis at the node to break left-right symmetry. Development 138 3915–3920. 10.1242/dev.068833 PubMed DOI PMC

Kratochwil K., Galceran J., Tontsch S., Roth W., Grosschedl R. (2002). FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1-/- mice. Genes Dev. 16 3173–3185. 10.1101/gad.1035602 PubMed DOI PMC

Kyun M. L., Kim S. O., Lee H. G., Hwang J. A., Hwang J., Soung N. K., et al. (2020). Wnt3a stimulation promotes primary ciliogenesis through β-catenin phosphorylation-induced reorganization of centriolar satellites. Cell Rep. 30 1447.e5–1462.e5. 10.1016/j.celrep.2020.01.019 PubMed DOI

Lancaster M. A., Schroth J., Gleeson J. G. (2011). Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat. Cell Biol. 13 700–708. 10.1038/ncb2259 PubMed DOI PMC

Lauring M. C., Zhu T., Luo W., Wu W., Yu F., Toomre D. (2019). New software for automated cilia detection in cells (ACDC). Cilia 8:1. 10.1186/s13630-019-0061-z PubMed DOI PMC

Li Y., Wei Q., Zhang Y., Ling K., Hu J. (2010). The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis. J. Cell Biol. 189 1039–1051. 10.1083/jcb.200912001 PubMed DOI PMC

Liu B., Chen S., Cheng D., Jing W., Helms J. A. (2014). Primary cilia integrate hedgehog and Wnt signaling during tooth development. J. Dent. Res. 93 475–482. 10.1177/0022034514528211 PubMed DOI PMC

Liu C., Li Y., Semenov M., Han C., Baeg G. H., Tan Y., et al. (2002). Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108 837–847. 10.1016/S0092-8674(02)00685-2 PubMed DOI

Lo C. H., Lin I. H., Yang T. T., Huang Y. C., Tanos B. E., Chou P. C., et al. (2019). Phosphorylation of CEP83 by TTBK2 is necessary for cilia initiation. J. Cell Biol. 218 3489–3505. 10.1083/JCB.201811142 PubMed DOI PMC

Löber C., Lenz-Stöppler C., Dobbelstein M. (2002). Adenovirus E1-transformed cells grow despite the continuous presence of transcriptionally active p53. J. Gen. Virol. 83 2047–2057. 10.1099/0022-1317-83-8-2047 PubMed DOI

Lu Q., Insinna C., Ott C., Stauffer J., Pintado P. A., Rahajeng J., et al. (2015). Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat. Cell Biol. 17 228–240. 10.1038/ncb3109 PubMed DOI PMC

May-Simera H., Kelley M. W. (2012). Planar cell polarity in the inner ear. Curr. Top. Dev. Biol. 101 111–140. 10.1016/B978-0-12-394592-1.00006-5 PubMed DOI

McDermott K. M., Liu B. Y., Tlsty T. D., Pazour G. J. (2010). Primary cilia regulate branching morphogenesis during mammary gland development. Curr. Biol. 20 731–737. 10.1016/j.cub.2010.02.048 PubMed DOI PMC

Mirvis M., Stearns T., Nelson W. J. (2018). Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem. J. 475 2329–2353. 10.1042/BCJ20170453 PubMed DOI PMC

Mitchison H. M., Valente E. M. (2017). Motile and non-motile cilia in human pathology: from function to phenotypes. J. Pathol. 241 294–309. 10.1002/path.4843 PubMed DOI

Molenaar M., Van De Wetering M., Oosterwegel M., Peterson-Maduro J., Godsave S., Korinek V., et al. (1996). XTcf-3 transcription factor mediates β-catenin-induced axis formation in xenopus embryos. Cell 86 391–399. 10.1016/S0092-8674(00)80112-9 PubMed DOI

Nachury M. V. (2018). The molecular machines that traffic signaling receptors into and out of cilia. Curr. Opin. Cell Biol. 51 124–131. 10.1016/j.ceb.2018.03.004 PubMed DOI PMC

Nachury M. V., Mick D. U. (2019). Establishing and regulating the composition of cilia for signal transduction. Nat. Rev. Mol. Cell Biol. 20 389–405. 10.1038/s41580-019-0116-4 PubMed DOI PMC

Naik S., Piwnica-Worms D. (2007). Real-time imaging of β-catenin dynamics in cells and living mice. Proc. Natl. Acad. Sci. U.S.A. 104 17465–17470. 10.1073/pnas.0704465104 PubMed DOI PMC

Nakagawa N., Li J., Yabuno-Nakagawa K., Eom T. Y., Cowles M., Mapp T., et al. (2017). APC sets the Wnt tone necessary for cerebral cortical progenitor development. Genes Dev. 31 1679–1692. 10.1101/gad.302679.117 PubMed DOI PMC

Neugebauer J. M., Amack J. D., Peterson A. G., Bisgrove B. W., Yost H. J. (2009). FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458 651–654. 10.1038/nature07753 PubMed DOI PMC

Niehrs C., Acebron S. P. (2012). Mitotic and mitogenic Wnt signalling. EMBO J. 31 2705–2713. 10.1038/emboj.2012.124 PubMed DOI PMC

Nusse R., Clevers H. (2017). Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169 985–999. 10.1016/j.cell.2017.05.016 PubMed DOI

Ocbina P. J. R., Tuson M., Anderson K. V. (2009). Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PLoS One 4:e6839. 10.1371/journal.pone.0006839 PubMed DOI PMC

Oda T., Chiba S., Nagai T., Mizuno K. (2014). Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis. Genes to Cells 19, 927–940. 10.1111/gtc.12191 PubMed DOI

Paclíková P., Bernatík O., Radaszkiewicz T. W., Bryja V. (2017). The N-terminal part of the dishevelled DEP domain is required for Wnt/β-catenin signaling in mammalian cells. Mol. Cell. Biol. 37:e145-17. 10.1128/mcb.00145-17 PubMed DOI PMC

Park T. J., Mitchell B. J., Abitua P. B., Kintner C., Wallingford J. B. (2008). Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat. Genet. 40 871–879. 10.1038/ng.104 PubMed DOI PMC

Patnaik S. R., Kretschmer V., Brücker L., Schneider S., Volz A. K., Oancea-Castillo L., et al. (2019). Bardet–Biedl Syndrome proteins regulate cilia disassembly during tissue maturation. Cell. Mol. Life Sci. 76 757–775. 10.1007/s00018-018-2966-x PubMed DOI PMC

Pejskova P., Reilly M. L., Bino L., Bernatik O., Dolanska L., Ganji R. S., et al. (2020). KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling. J. Cell Biol. 219:e201904107. 10.1083/JCB.201904107 PubMed DOI PMC

Pinson K. I., Brennan J., Monkley S., Avery B. J., Skarnes W. C. (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407 535–538. 10.1038/35035124 PubMed DOI

Piperno G., LeDizet M., Chang X. J. (1987). Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J. Cell Biol. 104 289–302. 10.1083/jcb.104.2.289 PubMed DOI PMC

Pitaval A., Tseng Q., Bornens M., Théry M. (2010). Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J. Cell Biol. 191 303–312. 10.1083/jcb.201004003 PubMed DOI PMC

Pugacheva E. N., Jablonski S. A., Hartman T. R., Henske E. P., Golemis E. A. (2007). HEF1-dependent aurora a activation induces disassembly of the primary cilium. Cell 129 1351–1363. 10.1016/j.cell.2007.04.035 PubMed DOI PMC

Reiter J. F., Leroux M. R. (2017). Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18 533–547. 10.1038/nrm.2017.60 PubMed DOI PMC

Rieder C. L., Jensen C. G., Jensen L. C. W. (1979). The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line. J. Ultrasructure Res. 68 173–185. 10.1016/S0022-5320(79)90152-7 PubMed DOI

Rohatgi R., Milenkovic L., Scott M. P. (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science 317 372–376. 10.1126/science.1139740 PubMed DOI

Sampilo N. F., Stepicheva N. A., Zaidi S. A. M., Wang L., Wu W., Wikramanayake A., et al. (2018). Inhibition of microRNA suppression of dishevelled results in Wnt pathway-associated developmental defects in sea urchin. Development 145:dev167130. 10.1242/dev.167130 PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Schmidt K. N., Kuhns S., Neuner A., Hub B., Zentgraf H., Pereira G. (2012). Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J. Cell Biol. 199 1083–1101. 10.1083/jcb.201202126 PubMed DOI PMC

Seeley E. S., Nachury M. V. (2010). The perennial organelle: assembly and disassembly of the primary cilium. J. Cell Sci. 123 511–518. 10.1242/jcs.061093 PubMed DOI PMC

Shimokawa T., Furukawa Y., Sakai M., Li M., Miwa N., Lin Y. M., et al. (2003). Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the β-catenin/T-cell factor complex. Cancer Res. 63 6116–6120. PubMed

Shnitsar I., Bashkurov M., Masson G. R., Ogunjimi A. A., Mosessian S., Cabeza E. A., et al. (2015). PTEN regulates cilia through dishevelled. Nat. Commun. 6:8388. 10.1038/ncomms9388 PubMed DOI PMC

Shu W., Guttentag S., Wang Z., Andl T., Ballard P., Lu M. M., et al. (2005). Wnt/β-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev. Biol. 283 226–239. 10.1016/j.ydbio.2005.04.014 PubMed DOI

Sokol S. Y. (1996). Analysis of dishevelled signalling pathways during Xenopus development. Curr. Biol. 6 1456–1467. 10.1016/S0960-9822(96)00750-6 PubMed DOI

Sorokin S. (1962). Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15 363–377. 10.1083/jcb.15.2.363 PubMed DOI PMC

Spektor A., Tsang W. Y., Khoo D., Dynlacht B. D. (2007). Cep97 and CP110 suppress a cilia assembly program. Cell 130 678–690. 10.1016/j.cell.2007.06.027 PubMed DOI

Steinhart Z., Angers S. (2018). Wnt signaling in development and tissue homeostasis. Development 145:dev146589. 10.1242/dev.146589 PubMed DOI

Stepanenko A. A., Dmitrenko V. V. (2015). HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene 569 182–190. 10.1016/j.gene.2015.05.065 PubMed DOI

Tamai K., Semenov M., Kato Y., Spokony R., Liu C., Katsuyama Y., et al. (2000). LDL-receptor-related proteins in Wnt signal transduction. Nature 407 530–535. 10.1038/35035117 PubMed DOI

Tamai K., Zeng X., Liu C., Zhang X., Harada Y., Chang Z., et al. (2004). A Mechanism for Wnt coreceptor activation. Mol. Cell 13 149–156. 10.1016/S1097-2765(03)00484-2 PubMed DOI

Tucker R. W., Pardee A. B., Fujiwara K. (1979). Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17 527–535. 10.1016/0092-8674(79)90261-7 PubMed DOI

Vertii A., Bright A., Delaval B., Hehnly H., Doxsey S. (2015). New frontiers: discovering cilia-independent functions of cilia proteins. EMBO Rep. 16 1275–1287. 10.15252/embr.201540632 PubMed DOI PMC

Vora S. M., Fassler J. S., Phillips B. T. (2020). Centrosomes are required for proper β-catenin processing and Wnt response. Mol. Biol. Cell 31 1951–1961. 10.1091/mbc.E20-02-0139 PubMed DOI PMC

Wallingford J. B., Mitchell B. (2011). Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 25 201–213. 10.1101/gad.2008011 PubMed DOI PMC

Wallingford J. B., Rowning B. A., Vogell K. M., Rothbächer U., Fraser S. E., Harland R. M. (2000). Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405 81–85. 10.1038/35011077 PubMed DOI

Wang L., Dynlacht B. D. (2018). The regulation of cilium assembly and disassembly in development and disease. Development 145:dev151407. 10.1242/dev.151407 PubMed DOI PMC

Wehrli M., Dougan S. T., Caldwell K., O’Keefe L., Schwartz S., Valzel-Ohayon D., et al. (2000). Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407 527–530. 10.1038/35035110 PubMed DOI

Westlake C. J., Baye L. M., Nachury M. V., Wright K. J., Ervin K. E., Phu L., et al. (2011). Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc. Natl. Acad. Sci. U.S.A. 108 2759–2764. 10.1073/pnas.1018823108 PubMed DOI PMC

Wiens C. J., Tong Y., Esmail M. A., Oh E., Gerdes J. M., Wang J., et al. (2010). Bardet-biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. J. Biol. Chem. 285 16218–16230. 10.1074/jbc.M109.070953 PubMed DOI PMC

Willert K., Brown J. D., Danenberg E., Duncan A. W., Weissman I. L., Reya T., et al. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423 448–452. 10.1038/nature01611 PubMed DOI

Wong S. Y., Seol A. D., So P. L., Ermilov A. N., Bichakjian C. K., Epstein E. H., et al. (2009). Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat. Med. 15 1055–1061. 10.1038/nm.2011 PubMed DOI PMC

Wu C. T., Chen H. Y., Tang T. K. (2018). Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat. Cell Biol. 20 175–185. 10.1038/s41556-017-0018-7 PubMed DOI

Zhai L., Chaturvedi D., Cumberledge S. (2004). Drosophila Wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J. Biol. Chem. 279 33220–33227. 10.1074/jbc.M403407200 PubMed DOI

Zhan T., Rindtorff N., Boutros M. (2017). Wnt signaling in cancer. Oncogene 36 1461–1473. 10.1038/onc.2016.304 PubMed DOI PMC

Zingg D., Debbache J., Peña-Hernández R., Antunes A. T., Schaefer S. M., Cheng P. F., et al. (2018). EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. Cancer Cell 34 69.e14–84.e14. 10.1016/j.ccell.2018.06.001 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...