Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33718363
PubMed Central
PMC7952446
DOI
10.3389/fcell.2021.623753
Knihovny.cz E-zdroje
- Klíčová slova
- HEK293, NIH3T3, RPE-1, Wnt/β-catenin, Wnt3a, cell signaling, ciliogenesis, primary cilia,
- Publikační typ
- časopisecké články MeSH
Primary cilia act as crucial regulators of embryo development and tissue homeostasis. They are instrumental for modulation of several signaling pathways, including Hedgehog, WNT, and TGF-β. However, gaps exist in our understanding of how cilia formation and function is regulated. Recent work has implicated WNT/β-catenin signaling pathway in the regulation of ciliogenesis, yet the results are conflicting. One model suggests that WNT/β-catenin signaling negatively regulates cilia formation, possibly via effects on cell cycle. In contrast, second model proposes a positive role of WNT/β-catenin signaling on cilia formation, mediated by the re-arrangement of centriolar satellites in response to phosphorylation of the key component of WNT/β-catenin pathway, β-catenin. To clarify these discrepancies, we investigated possible regulation of primary cilia by the WNT/β-catenin pathway in cell lines (RPE-1, NIH3T3, and HEK293) commonly used to study ciliogenesis. We used WNT3a to activate or LGK974 to block the pathway, and examined initiation of ciliogenesis, cilium length, and percentage of ciliated cells. We show that the treatment by WNT3a has no- or lesser inhibitory effect on cilia formation. Importantly, the inhibition of secretion of endogenous WNT ligands using LGK974 blocks WNT signaling but does not affect ciliogenesis. Finally, using knock-out cells for key WNT pathway components, namely DVL1/2/3, LRP5/6, or AXIN1/2 we show that neither activation nor deactivation of the WNT/β-catenin pathway affects the process of ciliogenesis. These results suggest that WNT/β-catenin-mediated signaling is not generally required for efficient cilia formation. In fact, activation of the WNT/β-catenin pathway in some systems seems to moderately suppress ciliogenesis.
Zobrazit více v PubMed
Angers S., Moon R. T. (2009). Proximal events in Wnt signal transduction. PubMed DOI
Anvarian Z., Mykytyn K., Mukhopadhyay S., Pedersen L. B., Christensen S. T. (2019). Cellular signalling by primary cilia in development, organ function and disease. PubMed DOI PMC
Badura L., Swanson T., Adamowicz W., Adams J., Cianfrogna J., Fisher K., et al. (2007). An inhibitor of casein kinase Iε induces phase delays in circadian rhythms under free-running and entrained conditions. PubMed DOI
Baker J. C., Beddington R. S. P., Harland R. M. (1999). Wnt signaling in PubMed DOI PMC
Balmer S., Dussert A., Collu G. M., Benitez E., Iomini C., Mlodzik M. (2015). Components of intraflagellar transport complex a function independently of the cilium to regulate canonical Wnt signaling in Drosophila. PubMed DOI PMC
Bangs F., Anderson K. V. (2017). Primary cilia and mammalian hedgehog signaling. PubMed DOI PMC
Barrow J. R., Thomas K. R., Boussadia-Zahui O., Moore R., Kemler R., Capecchi M. R., et al. (2003). Ectodermal Wnt3β-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. PubMed DOI PMC
Behrens J., Von Kries J. P., Kühl M., Bruhn L., Wedlich D., Grosschedl R., et al. (1996). Functional interaction of β-catenin with the transcription factor LEF- 1. PubMed DOI
Berbari N. F., Sharma N., Malarkey E. B., Pieczynski J. N., Boddu R., Gaertig J., et al. (2013). Microtubule modifications and stability are altered by cilia perturbation and in cystic kidney disease. PubMed DOI PMC
Bernatik O., Pejskova P., Vyslouzil D., Hanakova K., Zdrahal Z., Cajanek L. (2020). Phosphorylation of multiple proteins involved in ciliogenesis by Tau Tubulin kinase 2. PubMed DOI PMC
Bernatik O., Sri Ganji R., Dijksterhuis J. P., Konik P., Cervenka I., Polonio T., et al. (2011). Sequential activation and inactivation of dishevelled in the Wnt/β-catenin pathway by casein kinases. PubMed DOI PMC
Bosakova M. K., Varecha M., Hampl M., Duran I., Nita A., Buchtova M., et al. (2018). Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. PubMed DOI PMC
Bryja V., Červenka I., Čajánek L. (2017). The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? PubMed DOI PMC
Bryja V., Schulte G., Arenas E. (2007). Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate β-catenin. PubMed DOI
Butler M. T., Wallingford J. B. (2017). Planar cell polarity in development and disease. PubMed DOI PMC
Čajánek L., Nigg E. A. (2014). Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. PubMed DOI PMC
Cantagrel V., Silhavy J. L., Bielas S. L., Swistun D., Marsh S. E., Bertrand J. Y., et al. (2008). Mutations in the cilia gene ARL13B lead to the classical form of joubert syndrome. PubMed DOI PMC
Carvajal-Gonzalez J. M., Mulero-Navarro S., Mlodzik M. (2016). Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. PubMed DOI PMC
Caspary T., Larkins C. E., Anderson K. V. (2007). The graded response to sonic hedgehog depends on cilia architecture. PubMed DOI
Cevik S., Hori Y., Kaplan O. I., Kida K., Toivenon T., Foley-Fisher C., et al. (2010). Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. PubMed DOI PMC
Chamorro M. N., Schwartz D. R., Vonica A., Brivanlou A. H., Cho K. R., Varmus H. E. (2005). FGF-20 and DKK1 are transcriptional targets of β-catenin and FGF-20 is implicated in cancer and development. PubMed DOI PMC
Cibois M., Luxardi G., Chevalier B., Thomé V., Mercey O., Zaragosi L. E., et al. (2015). BMP signalling controls the construction of vertebrate mucociliary epithelia. PubMed DOI
Conkar D., Firat-Karalar E. N. (2020). Microtubule-associated proteins and emerging links to primary cilium structure, assembly, maintenance, and disassembly. PubMed DOI
Corbit K. C., Aanstad P., Singla V., Norman A. R., Stainier D. Y. R., Reiter J. F. (2005). Vertebrate smoothened functions at the primary cilium. PubMed DOI
Corbit K. C., Shyer A. E., Dowdle W. E., Gaulden J., Singla V., Reiter J. F. (2008). Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. PubMed DOI
Davidson G., Shen J., Huang Y. L., Su Y., Karaulanov E., Bartscherer K., et al. (2009). Cell cycle control of Wnt receptor activation. PubMed DOI
Duldulao N. A., Lee S., Sun Z. (2009). Cilia localization is essential for in vivo functions of the Joubert syndrome protein Arl13b/Scorpion. PubMed DOI PMC
Ford M. J., Yeyati P. L., Mali G. R., Keighren M. A., Waddell S. H., Mjoseng H. K., et al. (2018). A cell/cilia cycle biosensor for single-cell kinetics reveals persistence of cilia after G1/S transition is a general property in cells and mice. PubMed DOI PMC
Garcia-Gonzalo F. R., Reiter J. F. (2017). Open sesame: how transition fibers and the transition zone control ciliary composition. PubMed DOI PMC
Goetz S. C., Liem K. F., Anderson K. V. (2012). The spinocerebellar ataxia-associated gene tau tubulin kinase 2 controls the initiation of ciliogenesis. PubMed DOI PMC
Gonçalves J., Pelletier L. (2017). The ciliary transition zone: finding the pieces and assembling the gate. PubMed DOI PMC
González-Sancho J. M., Greer Y. E., Abrahams C. L., Takigawa Y., Baljinnyam B., Lee K. H., et al. (2013). Functional consequences of Wnt-induced dishevelled 2 phosphorylation in canonical and noncanonical Wnt signaling. PubMed DOI PMC
Han Y. G., Kim H. J., Dlugosz A. A., Ellison D. W., Gilbertson R. J., Alvarez-Buylla A. (2009). Dual and opposing roles of primary cilia in medulloblastoma development. PubMed DOI PMC
Hanáková K., Bernatík O., Kravec M., Micka M., Kumar J., Harnoš J., et al. (2019). Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs. PubMed DOI PMC
He K., Ma X., Xu T., Li Y., Hodge A., Zhang Q., et al. (2018). Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules. PubMed DOI PMC
Hendrix N. D., Wu R., Kuick R., Schwartz D. R., Fearon E. R., Cho K. R. (2006). Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. PubMed DOI
Hildebrandt F., Benzing T., Katsanis N. (2011). Ciliopathies. PubMed DOI PMC
Hori Y., Kobayashi T., Kikko Y., Kontani K., Katada T. (2008). Domain architecture of the atypical Arf-family GTPase Arl13b involved in cilia formation. PubMed DOI
Huang P., Schier A. F. (2009). Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. PubMed DOI PMC
Huangfu D., Liu A., Rakeman A. S., Murcia N. S., Niswander L., Anderson K. V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. PubMed DOI
Humphries A. C., Mlodzik M. (2018). From instruction to output: Wnt/PCP signaling in development and cancer. PubMed DOI PMC
Ishikawa H., Marshall W. F. (2017). Intraflagellar transport and ciliary dynamics. PubMed DOI PMC
Janovska P., Verner J., Kohoutek J., Bryjova L., Gregorova M., Dzimkova M., et al. (2018). Casein kinase 1 is a therapeutic target in chronic lymphocytic leukemia. PubMed DOI
Jenks A. D., Vyse S., Wong J. P., Kostaras E., Keller D., Burgoyne T., et al. (2018). Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. PubMed DOI PMC
Jiang X., Hao H. X., Growney J. D., Woolfenden S., Bottiglio C., Ng N., et al. (2013). Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. PubMed DOI PMC
Kim J., Jo H., Hong H., Kim M. H., Kim J. M., Lee J. K., et al. (2015). Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. PubMed DOI
Kim J. S., Crooks H., Dracheva T., Nishanian T. G., Singh B., Jen J., et al. (2002). Oncogenic β-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. PubMed
Kim M., Suh Y. A., Oh J. H., Lee B. R., Kim J., Jang S. J. (2016). KIF3A binds to β-arrestin for suppressing Wnt/β-catenin signalling independently of primary cilia in lung cancer. PubMed DOI PMC
Komatsu Y., Kaartinen V., Mishina Y. (2011). Cell cycle arrest in node cells governs ciliogenesis at the node to break left-right symmetry. PubMed DOI PMC
Kratochwil K., Galceran J., Tontsch S., Roth W., Grosschedl R. (2002). FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1-/- mice. PubMed DOI PMC
Kyun M. L., Kim S. O., Lee H. G., Hwang J. A., Hwang J., Soung N. K., et al. (2020). Wnt3a stimulation promotes primary ciliogenesis through β-catenin phosphorylation-induced reorganization of centriolar satellites. PubMed DOI
Lancaster M. A., Schroth J., Gleeson J. G. (2011). Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. PubMed DOI PMC
Lauring M. C., Zhu T., Luo W., Wu W., Yu F., Toomre D. (2019). New software for automated cilia detection in cells (ACDC). PubMed DOI PMC
Li Y., Wei Q., Zhang Y., Ling K., Hu J. (2010). The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis. PubMed DOI PMC
Liu B., Chen S., Cheng D., Jing W., Helms J. A. (2014). Primary cilia integrate hedgehog and Wnt signaling during tooth development. PubMed DOI PMC
Liu C., Li Y., Semenov M., Han C., Baeg G. H., Tan Y., et al. (2002). Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. PubMed DOI
Lo C. H., Lin I. H., Yang T. T., Huang Y. C., Tanos B. E., Chou P. C., et al. (2019). Phosphorylation of CEP83 by TTBK2 is necessary for cilia initiation. PubMed DOI PMC
Löber C., Lenz-Stöppler C., Dobbelstein M. (2002). Adenovirus E1-transformed cells grow despite the continuous presence of transcriptionally active p53. PubMed DOI
Lu Q., Insinna C., Ott C., Stauffer J., Pintado P. A., Rahajeng J., et al. (2015). Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. PubMed DOI PMC
May-Simera H., Kelley M. W. (2012). Planar cell polarity in the inner ear. PubMed DOI
McDermott K. M., Liu B. Y., Tlsty T. D., Pazour G. J. (2010). Primary cilia regulate branching morphogenesis during mammary gland development. PubMed DOI PMC
Mirvis M., Stearns T., Nelson W. J. (2018). Cilium structure, assembly, and disassembly regulated by the cytoskeleton. PubMed DOI PMC
Mitchison H. M., Valente E. M. (2017). Motile and non-motile cilia in human pathology: from function to phenotypes. PubMed DOI
Molenaar M., Van De Wetering M., Oosterwegel M., Peterson-Maduro J., Godsave S., Korinek V., et al. (1996). XTcf-3 transcription factor mediates β-catenin-induced axis formation in xenopus embryos. PubMed DOI
Nachury M. V. (2018). The molecular machines that traffic signaling receptors into and out of cilia. PubMed DOI PMC
Nachury M. V., Mick D. U. (2019). Establishing and regulating the composition of cilia for signal transduction. PubMed DOI PMC
Naik S., Piwnica-Worms D. (2007). Real-time imaging of β-catenin dynamics in cells and living mice. PubMed DOI PMC
Nakagawa N., Li J., Yabuno-Nakagawa K., Eom T. Y., Cowles M., Mapp T., et al. (2017). APC sets the Wnt tone necessary for cerebral cortical progenitor development. PubMed DOI PMC
Neugebauer J. M., Amack J. D., Peterson A. G., Bisgrove B. W., Yost H. J. (2009). FGF signalling during embryo development regulates cilia length in diverse epithelia. PubMed DOI PMC
Niehrs C., Acebron S. P. (2012). Mitotic and mitogenic Wnt signalling. PubMed DOI PMC
Nusse R., Clevers H. (2017). Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. PubMed DOI
Ocbina P. J. R., Tuson M., Anderson K. V. (2009). Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PubMed DOI PMC
Oda T., Chiba S., Nagai T., Mizuno K. (2014). Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis. PubMed DOI
Paclíková P., Bernatík O., Radaszkiewicz T. W., Bryja V. (2017). The N-terminal part of the dishevelled DEP domain is required for Wnt/β-catenin signaling in mammalian cells. PubMed DOI PMC
Park T. J., Mitchell B. J., Abitua P. B., Kintner C., Wallingford J. B. (2008). Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. PubMed DOI PMC
Patnaik S. R., Kretschmer V., Brücker L., Schneider S., Volz A. K., Oancea-Castillo L., et al. (2019). Bardet–Biedl Syndrome proteins regulate cilia disassembly during tissue maturation. PubMed DOI PMC
Pejskova P., Reilly M. L., Bino L., Bernatik O., Dolanska L., Ganji R. S., et al. (2020). KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling. PubMed DOI PMC
Pinson K. I., Brennan J., Monkley S., Avery B. J., Skarnes W. C. (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. PubMed DOI
Piperno G., LeDizet M., Chang X. J. (1987). Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. PubMed DOI PMC
Pitaval A., Tseng Q., Bornens M., Théry M. (2010). Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. PubMed DOI PMC
Pugacheva E. N., Jablonski S. A., Hartman T. R., Henske E. P., Golemis E. A. (2007). HEF1-dependent aurora a activation induces disassembly of the primary cilium. PubMed DOI PMC
Reiter J. F., Leroux M. R. (2017). Genes and molecular pathways underpinning ciliopathies. PubMed DOI PMC
Rieder C. L., Jensen C. G., Jensen L. C. W. (1979). The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line. PubMed DOI
Rohatgi R., Milenkovic L., Scott M. P. (2007). Patched1 regulates hedgehog signaling at the primary cilium. PubMed DOI
Sampilo N. F., Stepicheva N. A., Zaidi S. A. M., Wang L., Wu W., Wikramanayake A., et al. (2018). Inhibition of microRNA suppression of dishevelled results in Wnt pathway-associated developmental defects in sea urchin. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. PubMed DOI PMC
Schmidt K. N., Kuhns S., Neuner A., Hub B., Zentgraf H., Pereira G. (2012). Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. PubMed DOI PMC
Seeley E. S., Nachury M. V. (2010). The perennial organelle: assembly and disassembly of the primary cilium. PubMed DOI PMC
Shimokawa T., Furukawa Y., Sakai M., Li M., Miwa N., Lin Y. M., et al. (2003). Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the β-catenin/T-cell factor complex. PubMed
Shnitsar I., Bashkurov M., Masson G. R., Ogunjimi A. A., Mosessian S., Cabeza E. A., et al. (2015). PTEN regulates cilia through dishevelled. PubMed DOI PMC
Shu W., Guttentag S., Wang Z., Andl T., Ballard P., Lu M. M., et al. (2005). Wnt/β-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. PubMed DOI
Sokol S. Y. (1996). Analysis of dishevelled signalling pathways during PubMed DOI
Sorokin S. (1962). Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. PubMed DOI PMC
Spektor A., Tsang W. Y., Khoo D., Dynlacht B. D. (2007). Cep97 and CP110 suppress a cilia assembly program. PubMed DOI
Steinhart Z., Angers S. (2018). Wnt signaling in development and tissue homeostasis. PubMed DOI
Stepanenko A. A., Dmitrenko V. V. (2015). HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. PubMed DOI
Tamai K., Semenov M., Kato Y., Spokony R., Liu C., Katsuyama Y., et al. (2000). LDL-receptor-related proteins in Wnt signal transduction. PubMed DOI
Tamai K., Zeng X., Liu C., Zhang X., Harada Y., Chang Z., et al. (2004). A Mechanism for Wnt coreceptor activation. PubMed DOI
Tucker R. W., Pardee A. B., Fujiwara K. (1979). Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. PubMed DOI
Vertii A., Bright A., Delaval B., Hehnly H., Doxsey S. (2015). New frontiers: discovering cilia-independent functions of cilia proteins. PubMed DOI PMC
Vora S. M., Fassler J. S., Phillips B. T. (2020). Centrosomes are required for proper β-catenin processing and Wnt response. PubMed DOI PMC
Wallingford J. B., Mitchell B. (2011). Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. PubMed DOI PMC
Wallingford J. B., Rowning B. A., Vogell K. M., Rothbächer U., Fraser S. E., Harland R. M. (2000). Dishevelled controls cell polarity during PubMed DOI
Wang L., Dynlacht B. D. (2018). The regulation of cilium assembly and disassembly in development and disease. PubMed DOI PMC
Wehrli M., Dougan S. T., Caldwell K., O’Keefe L., Schwartz S., Valzel-Ohayon D., et al. (2000). Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. PubMed DOI
Westlake C. J., Baye L. M., Nachury M. V., Wright K. J., Ervin K. E., Phu L., et al. (2011). Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. PubMed DOI PMC
Wiens C. J., Tong Y., Esmail M. A., Oh E., Gerdes J. M., Wang J., et al. (2010). Bardet-biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. PubMed DOI PMC
Willert K., Brown J. D., Danenberg E., Duncan A. W., Weissman I. L., Reya T., et al. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. PubMed DOI
Wong S. Y., Seol A. D., So P. L., Ermilov A. N., Bichakjian C. K., Epstein E. H., et al. (2009). Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. PubMed DOI PMC
Wu C. T., Chen H. Y., Tang T. K. (2018). Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. PubMed DOI
Zhai L., Chaturvedi D., Cumberledge S. (2004). Drosophila Wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. PubMed DOI
Zhan T., Rindtorff N., Boutros M. (2017). Wnt signaling in cancer. PubMed DOI PMC
Zingg D., Debbache J., Peña-Hernández R., Antunes A. T., Schaefer S. M., Cheng P. F., et al. (2018). EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. PubMed DOI