Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33718363
PubMed Central
PMC7952446
DOI
10.3389/fcell.2021.623753
Knihovny.cz E-zdroje
- Klíčová slova
- HEK293, NIH3T3, RPE-1, Wnt/β-catenin, Wnt3a, cell signaling, ciliogenesis, primary cilia,
- Publikační typ
- časopisecké články MeSH
Primary cilia act as crucial regulators of embryo development and tissue homeostasis. They are instrumental for modulation of several signaling pathways, including Hedgehog, WNT, and TGF-β. However, gaps exist in our understanding of how cilia formation and function is regulated. Recent work has implicated WNT/β-catenin signaling pathway in the regulation of ciliogenesis, yet the results are conflicting. One model suggests that WNT/β-catenin signaling negatively regulates cilia formation, possibly via effects on cell cycle. In contrast, second model proposes a positive role of WNT/β-catenin signaling on cilia formation, mediated by the re-arrangement of centriolar satellites in response to phosphorylation of the key component of WNT/β-catenin pathway, β-catenin. To clarify these discrepancies, we investigated possible regulation of primary cilia by the WNT/β-catenin pathway in cell lines (RPE-1, NIH3T3, and HEK293) commonly used to study ciliogenesis. We used WNT3a to activate or LGK974 to block the pathway, and examined initiation of ciliogenesis, cilium length, and percentage of ciliated cells. We show that the treatment by WNT3a has no- or lesser inhibitory effect on cilia formation. Importantly, the inhibition of secretion of endogenous WNT ligands using LGK974 blocks WNT signaling but does not affect ciliogenesis. Finally, using knock-out cells for key WNT pathway components, namely DVL1/2/3, LRP5/6, or AXIN1/2 we show that neither activation nor deactivation of the WNT/β-catenin pathway affects the process of ciliogenesis. These results suggest that WNT/β-catenin-mediated signaling is not generally required for efficient cilia formation. In fact, activation of the WNT/β-catenin pathway in some systems seems to moderately suppress ciliogenesis.
Zobrazit více v PubMed
Angers S., Moon R. T. (2009). Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol. 10 468–477. 10.1038/nrm2717 PubMed DOI
Anvarian Z., Mykytyn K., Mukhopadhyay S., Pedersen L. B., Christensen S. T. (2019). Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15 199–219. 10.1038/s41581-019-0116-9 PubMed DOI PMC
Badura L., Swanson T., Adamowicz W., Adams J., Cianfrogna J., Fisher K., et al. (2007). An inhibitor of casein kinase Iε induces phase delays in circadian rhythms under free-running and entrained conditions. J. Pharmacol. Exp. Ther. 322 730–738. 10.1124/jpet.107.122846 PubMed DOI
Baker J. C., Beddington R. S. P., Harland R. M. (1999). Wnt signaling in Xenopus embryos inhibits Bmp4 expression and activates neural development. Genes Dev. 13 3149–3159. 10.1101/gad.13.23.3149 PubMed DOI PMC
Balmer S., Dussert A., Collu G. M., Benitez E., Iomini C., Mlodzik M. (2015). Components of intraflagellar transport complex a function independently of the cilium to regulate canonical Wnt signaling in Drosophila. Dev. Cell 34 705–718. 10.1016/j.devcel.2015.07.016 PubMed DOI PMC
Bangs F., Anderson K. V. (2017). Primary cilia and mammalian hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9:a028175. 10.1101/cshperspect.a028175 PubMed DOI PMC
Barrow J. R., Thomas K. R., Boussadia-Zahui O., Moore R., Kemler R., Capecchi M. R., et al. (2003). Ectodermal Wnt3β-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev. 17 394–409. 10.1101/gad.1044903 PubMed DOI PMC
Behrens J., Von Kries J. P., Kühl M., Bruhn L., Wedlich D., Grosschedl R., et al. (1996). Functional interaction of β-catenin with the transcription factor LEF- 1. Nature 382 638–642. 10.1038/382638a0 PubMed DOI
Berbari N. F., Sharma N., Malarkey E. B., Pieczynski J. N., Boddu R., Gaertig J., et al. (2013). Microtubule modifications and stability are altered by cilia perturbation and in cystic kidney disease. Cytoskeleton 70 24–31. 10.1002/cm.21088 PubMed DOI PMC
Bernatik O., Pejskova P., Vyslouzil D., Hanakova K., Zdrahal Z., Cajanek L. (2020). Phosphorylation of multiple proteins involved in ciliogenesis by Tau Tubulin kinase 2. Mol. Biol. Cell 31 1032–1046. 10.1091/MBC.E19-06-0334 PubMed DOI PMC
Bernatik O., Sri Ganji R., Dijksterhuis J. P., Konik P., Cervenka I., Polonio T., et al. (2011). Sequential activation and inactivation of dishevelled in the Wnt/β-catenin pathway by casein kinases. J. Biol. Chem. 286 10396–10410. 10.1074/jbc.M110.169870 PubMed DOI PMC
Bosakova M. K., Varecha M., Hampl M., Duran I., Nita A., Buchtova M., et al. (2018). Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. Hum. Mol. Genet. 27 1093–1105. 10.1093/hmg/ddy031 PubMed DOI PMC
Bryja V., Červenka I., Čajánek L. (2017). The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit. Rev. Biochem. Mol. Biol. 52 614–637. 10.1080/10409238.2017.1350135 PubMed DOI PMC
Bryja V., Schulte G., Arenas E. (2007). Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate β-catenin. Cell. Signal. 19 610–616. 10.1016/j.cellsig.2006.08.011 PubMed DOI
Butler M. T., Wallingford J. B. (2017). Planar cell polarity in development and disease. Nat. Rev. Mol. Cell Biol. 18 375–388. 10.1038/nrm.2017.11 PubMed DOI PMC
Čajánek L., Nigg E. A. (2014). Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc. Natl. Acad. Sci. U. S. A. 111:E2841-50. 10.1073/pnas.1401777111 PubMed DOI PMC
Cantagrel V., Silhavy J. L., Bielas S. L., Swistun D., Marsh S. E., Bertrand J. Y., et al. (2008). Mutations in the cilia gene ARL13B lead to the classical form of joubert syndrome. Am. J. Hum. Genet. 83 170–179. 10.1016/j.ajhg.2008.06.023 PubMed DOI PMC
Carvajal-Gonzalez J. M., Mulero-Navarro S., Mlodzik M. (2016). Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. BioEssays 38 1234–1245. 10.1002/bies.201600154 PubMed DOI PMC
Caspary T., Larkins C. E., Anderson K. V. (2007). The graded response to sonic hedgehog depends on cilia architecture. Dev. Cell 12 767–778. 10.1016/j.devcel.2007.03.004 PubMed DOI
Cevik S., Hori Y., Kaplan O. I., Kida K., Toivenon T., Foley-Fisher C., et al. (2010). Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J. Cell Biol. 188 953–969. 10.1083/jcb.200908133 PubMed DOI PMC
Chamorro M. N., Schwartz D. R., Vonica A., Brivanlou A. H., Cho K. R., Varmus H. E. (2005). FGF-20 and DKK1 are transcriptional targets of β-catenin and FGF-20 is implicated in cancer and development. EMBO J. 24 73–84. 10.1038/sj.emboj.7600460 PubMed DOI PMC
Cibois M., Luxardi G., Chevalier B., Thomé V., Mercey O., Zaragosi L. E., et al. (2015). BMP signalling controls the construction of vertebrate mucociliary epithelia. Development 142 2352–2363. 10.1242/dev.118679 PubMed DOI
Conkar D., Firat-Karalar E. N. (2020). Microtubule-associated proteins and emerging links to primary cilium structure, assembly, maintenance, and disassembly. FEBS J. 10.1111/febs.15473 Online ahead of print PubMed DOI
Corbit K. C., Aanstad P., Singla V., Norman A. R., Stainier D. Y. R., Reiter J. F. (2005). Vertebrate smoothened functions at the primary cilium. Nature 437 1018–1021. 10.1038/nature04117 PubMed DOI
Corbit K. C., Shyer A. E., Dowdle W. E., Gaulden J., Singla V., Reiter J. F. (2008). Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol. 10 70–76. 10.1038/ncb1670 PubMed DOI
Davidson G., Shen J., Huang Y. L., Su Y., Karaulanov E., Bartscherer K., et al. (2009). Cell cycle control of Wnt receptor activation. Dev. Cell 17 788–799. 10.1016/j.devcel.2009.11.006 PubMed DOI
Duldulao N. A., Lee S., Sun Z. (2009). Cilia localization is essential for in vivo functions of the Joubert syndrome protein Arl13b/Scorpion. Development 136 4033–4042. 10.1242/dev.036350 PubMed DOI PMC
Ford M. J., Yeyati P. L., Mali G. R., Keighren M. A., Waddell S. H., Mjoseng H. K., et al. (2018). A cell/cilia cycle biosensor for single-cell kinetics reveals persistence of cilia after G1/S transition is a general property in cells and mice. Dev. Cell 47 509.e5–523.e5. 10.1016/j.devcel.2018.10.027 PubMed DOI PMC
Garcia-Gonzalo F. R., Reiter J. F. (2017). Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol. 9:a028134. 10.1101/cshperspect.a028134 PubMed DOI PMC
Goetz S. C., Liem K. F., Anderson K. V. (2012). The spinocerebellar ataxia-associated gene tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell 151 847–858. 10.1016/j.cell.2012.10.010 PubMed DOI PMC
Gonçalves J., Pelletier L. (2017). The ciliary transition zone: finding the pieces and assembling the gate. Mol. Cells 40 243–253. 10.14348/molcells.2017.0054 PubMed DOI PMC
González-Sancho J. M., Greer Y. E., Abrahams C. L., Takigawa Y., Baljinnyam B., Lee K. H., et al. (2013). Functional consequences of Wnt-induced dishevelled 2 phosphorylation in canonical and noncanonical Wnt signaling. J. Biol. Chem. 288 9428–9437. 10.1074/jbc.M112.448480 PubMed DOI PMC
Han Y. G., Kim H. J., Dlugosz A. A., Ellison D. W., Gilbertson R. J., Alvarez-Buylla A. (2009). Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15 1062–1065. 10.1038/nm.2020 PubMed DOI PMC
Hanáková K., Bernatík O., Kravec M., Micka M., Kumar J., Harnoš J., et al. (2019). Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs. Cell Commun. Signal. 17:170. 10.1186/s12964-019-0470-z PubMed DOI PMC
He K., Ma X., Xu T., Li Y., Hodge A., Zhang Q., et al. (2018). Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules. Nat. Commun. 9:3310. 10.1038/s41467-018-05867-1 PubMed DOI PMC
Hendrix N. D., Wu R., Kuick R., Schwartz D. R., Fearon E. R., Cho K. R. (2006). Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res. 66 1354–1362. 10.1158/0008-5472.CAN-05-3694 PubMed DOI
Hildebrandt F., Benzing T., Katsanis N. (2011). Ciliopathies. N. Engl. J. Med. 364 1533–1543. 10.1056/nejmra1010172 PubMed DOI PMC
Hori Y., Kobayashi T., Kikko Y., Kontani K., Katada T. (2008). Domain architecture of the atypical Arf-family GTPase Arl13b involved in cilia formation. Biochem. Biophys. Res. Commun. 373 119–124. 10.1016/j.bbrc.2008.06.001 PubMed DOI
Huang P., Schier A. F. (2009). Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development 136 3089–3098. 10.1242/dev.041343 PubMed DOI PMC
Huangfu D., Liu A., Rakeman A. S., Murcia N. S., Niswander L., Anderson K. V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426 83–87. 10.1038/nature02061 PubMed DOI
Humphries A. C., Mlodzik M. (2018). From instruction to output: Wnt/PCP signaling in development and cancer. Curr. Opin. Cell Biol. 51 110–116. 10.1016/j.ceb.2017.12.005 PubMed DOI PMC
Ishikawa H., Marshall W. F. (2017). Intraflagellar transport and ciliary dynamics. Cold Spring Harb. Perspect. Biol. 9:a021998. 10.1101/cshperspect.a021998 PubMed DOI PMC
Janovska P., Verner J., Kohoutek J., Bryjova L., Gregorova M., Dzimkova M., et al. (2018). Casein kinase 1 is a therapeutic target in chronic lymphocytic leukemia. Blood 131 1206–1218. 10.1182/blood-2017-05-786947 PubMed DOI
Jenks A. D., Vyse S., Wong J. P., Kostaras E., Keller D., Burgoyne T., et al. (2018). Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep. 23 3042–3055. 10.1016/j.celrep.2018.05.016 PubMed DOI PMC
Jiang X., Hao H. X., Growney J. D., Woolfenden S., Bottiglio C., Ng N., et al. (2013). Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc. Natl. Acad. Sci. U.S.A. 110 12649–12654. 10.1073/pnas.1307218110 PubMed DOI PMC
Kim J., Jo H., Hong H., Kim M. H., Kim J. M., Lee J. K., et al. (2015). Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat. Commun. 6:6781. 10.1038/ncomms7781 PubMed DOI
Kim J. S., Crooks H., Dracheva T., Nishanian T. G., Singh B., Jen J., et al. (2002). Oncogenic β-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res. 62 2744–2748. PubMed
Kim M., Suh Y. A., Oh J. H., Lee B. R., Kim J., Jang S. J. (2016). KIF3A binds to β-arrestin for suppressing Wnt/β-catenin signalling independently of primary cilia in lung cancer. Sci. Rep. 6:32770. 10.1038/srep32770 PubMed DOI PMC
Komatsu Y., Kaartinen V., Mishina Y. (2011). Cell cycle arrest in node cells governs ciliogenesis at the node to break left-right symmetry. Development 138 3915–3920. 10.1242/dev.068833 PubMed DOI PMC
Kratochwil K., Galceran J., Tontsch S., Roth W., Grosschedl R. (2002). FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1-/- mice. Genes Dev. 16 3173–3185. 10.1101/gad.1035602 PubMed DOI PMC
Kyun M. L., Kim S. O., Lee H. G., Hwang J. A., Hwang J., Soung N. K., et al. (2020). Wnt3a stimulation promotes primary ciliogenesis through β-catenin phosphorylation-induced reorganization of centriolar satellites. Cell Rep. 30 1447.e5–1462.e5. 10.1016/j.celrep.2020.01.019 PubMed DOI
Lancaster M. A., Schroth J., Gleeson J. G. (2011). Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat. Cell Biol. 13 700–708. 10.1038/ncb2259 PubMed DOI PMC
Lauring M. C., Zhu T., Luo W., Wu W., Yu F., Toomre D. (2019). New software for automated cilia detection in cells (ACDC). Cilia 8:1. 10.1186/s13630-019-0061-z PubMed DOI PMC
Li Y., Wei Q., Zhang Y., Ling K., Hu J. (2010). The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis. J. Cell Biol. 189 1039–1051. 10.1083/jcb.200912001 PubMed DOI PMC
Liu B., Chen S., Cheng D., Jing W., Helms J. A. (2014). Primary cilia integrate hedgehog and Wnt signaling during tooth development. J. Dent. Res. 93 475–482. 10.1177/0022034514528211 PubMed DOI PMC
Liu C., Li Y., Semenov M., Han C., Baeg G. H., Tan Y., et al. (2002). Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108 837–847. 10.1016/S0092-8674(02)00685-2 PubMed DOI
Lo C. H., Lin I. H., Yang T. T., Huang Y. C., Tanos B. E., Chou P. C., et al. (2019). Phosphorylation of CEP83 by TTBK2 is necessary for cilia initiation. J. Cell Biol. 218 3489–3505. 10.1083/JCB.201811142 PubMed DOI PMC
Löber C., Lenz-Stöppler C., Dobbelstein M. (2002). Adenovirus E1-transformed cells grow despite the continuous presence of transcriptionally active p53. J. Gen. Virol. 83 2047–2057. 10.1099/0022-1317-83-8-2047 PubMed DOI
Lu Q., Insinna C., Ott C., Stauffer J., Pintado P. A., Rahajeng J., et al. (2015). Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat. Cell Biol. 17 228–240. 10.1038/ncb3109 PubMed DOI PMC
May-Simera H., Kelley M. W. (2012). Planar cell polarity in the inner ear. Curr. Top. Dev. Biol. 101 111–140. 10.1016/B978-0-12-394592-1.00006-5 PubMed DOI
McDermott K. M., Liu B. Y., Tlsty T. D., Pazour G. J. (2010). Primary cilia regulate branching morphogenesis during mammary gland development. Curr. Biol. 20 731–737. 10.1016/j.cub.2010.02.048 PubMed DOI PMC
Mirvis M., Stearns T., Nelson W. J. (2018). Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem. J. 475 2329–2353. 10.1042/BCJ20170453 PubMed DOI PMC
Mitchison H. M., Valente E. M. (2017). Motile and non-motile cilia in human pathology: from function to phenotypes. J. Pathol. 241 294–309. 10.1002/path.4843 PubMed DOI
Molenaar M., Van De Wetering M., Oosterwegel M., Peterson-Maduro J., Godsave S., Korinek V., et al. (1996). XTcf-3 transcription factor mediates β-catenin-induced axis formation in xenopus embryos. Cell 86 391–399. 10.1016/S0092-8674(00)80112-9 PubMed DOI
Nachury M. V. (2018). The molecular machines that traffic signaling receptors into and out of cilia. Curr. Opin. Cell Biol. 51 124–131. 10.1016/j.ceb.2018.03.004 PubMed DOI PMC
Nachury M. V., Mick D. U. (2019). Establishing and regulating the composition of cilia for signal transduction. Nat. Rev. Mol. Cell Biol. 20 389–405. 10.1038/s41580-019-0116-4 PubMed DOI PMC
Naik S., Piwnica-Worms D. (2007). Real-time imaging of β-catenin dynamics in cells and living mice. Proc. Natl. Acad. Sci. U.S.A. 104 17465–17470. 10.1073/pnas.0704465104 PubMed DOI PMC
Nakagawa N., Li J., Yabuno-Nakagawa K., Eom T. Y., Cowles M., Mapp T., et al. (2017). APC sets the Wnt tone necessary for cerebral cortical progenitor development. Genes Dev. 31 1679–1692. 10.1101/gad.302679.117 PubMed DOI PMC
Neugebauer J. M., Amack J. D., Peterson A. G., Bisgrove B. W., Yost H. J. (2009). FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458 651–654. 10.1038/nature07753 PubMed DOI PMC
Niehrs C., Acebron S. P. (2012). Mitotic and mitogenic Wnt signalling. EMBO J. 31 2705–2713. 10.1038/emboj.2012.124 PubMed DOI PMC
Nusse R., Clevers H. (2017). Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169 985–999. 10.1016/j.cell.2017.05.016 PubMed DOI
Ocbina P. J. R., Tuson M., Anderson K. V. (2009). Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PLoS One 4:e6839. 10.1371/journal.pone.0006839 PubMed DOI PMC
Oda T., Chiba S., Nagai T., Mizuno K. (2014). Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis. Genes to Cells 19, 927–940. 10.1111/gtc.12191 PubMed DOI
Paclíková P., Bernatík O., Radaszkiewicz T. W., Bryja V. (2017). The N-terminal part of the dishevelled DEP domain is required for Wnt/β-catenin signaling in mammalian cells. Mol. Cell. Biol. 37:e145-17. 10.1128/mcb.00145-17 PubMed DOI PMC
Park T. J., Mitchell B. J., Abitua P. B., Kintner C., Wallingford J. B. (2008). Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat. Genet. 40 871–879. 10.1038/ng.104 PubMed DOI PMC
Patnaik S. R., Kretschmer V., Brücker L., Schneider S., Volz A. K., Oancea-Castillo L., et al. (2019). Bardet–Biedl Syndrome proteins regulate cilia disassembly during tissue maturation. Cell. Mol. Life Sci. 76 757–775. 10.1007/s00018-018-2966-x PubMed DOI PMC
Pejskova P., Reilly M. L., Bino L., Bernatik O., Dolanska L., Ganji R. S., et al. (2020). KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling. J. Cell Biol. 219:e201904107. 10.1083/JCB.201904107 PubMed DOI PMC
Pinson K. I., Brennan J., Monkley S., Avery B. J., Skarnes W. C. (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407 535–538. 10.1038/35035124 PubMed DOI
Piperno G., LeDizet M., Chang X. J. (1987). Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J. Cell Biol. 104 289–302. 10.1083/jcb.104.2.289 PubMed DOI PMC
Pitaval A., Tseng Q., Bornens M., Théry M. (2010). Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J. Cell Biol. 191 303–312. 10.1083/jcb.201004003 PubMed DOI PMC
Pugacheva E. N., Jablonski S. A., Hartman T. R., Henske E. P., Golemis E. A. (2007). HEF1-dependent aurora a activation induces disassembly of the primary cilium. Cell 129 1351–1363. 10.1016/j.cell.2007.04.035 PubMed DOI PMC
Reiter J. F., Leroux M. R. (2017). Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18 533–547. 10.1038/nrm.2017.60 PubMed DOI PMC
Rieder C. L., Jensen C. G., Jensen L. C. W. (1979). The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line. J. Ultrasructure Res. 68 173–185. 10.1016/S0022-5320(79)90152-7 PubMed DOI
Rohatgi R., Milenkovic L., Scott M. P. (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science 317 372–376. 10.1126/science.1139740 PubMed DOI
Sampilo N. F., Stepicheva N. A., Zaidi S. A. M., Wang L., Wu W., Wikramanayake A., et al. (2018). Inhibition of microRNA suppression of dishevelled results in Wnt pathway-associated developmental defects in sea urchin. Development 145:dev167130. 10.1242/dev.167130 PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Schmidt K. N., Kuhns S., Neuner A., Hub B., Zentgraf H., Pereira G. (2012). Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J. Cell Biol. 199 1083–1101. 10.1083/jcb.201202126 PubMed DOI PMC
Seeley E. S., Nachury M. V. (2010). The perennial organelle: assembly and disassembly of the primary cilium. J. Cell Sci. 123 511–518. 10.1242/jcs.061093 PubMed DOI PMC
Shimokawa T., Furukawa Y., Sakai M., Li M., Miwa N., Lin Y. M., et al. (2003). Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the β-catenin/T-cell factor complex. Cancer Res. 63 6116–6120. PubMed
Shnitsar I., Bashkurov M., Masson G. R., Ogunjimi A. A., Mosessian S., Cabeza E. A., et al. (2015). PTEN regulates cilia through dishevelled. Nat. Commun. 6:8388. 10.1038/ncomms9388 PubMed DOI PMC
Shu W., Guttentag S., Wang Z., Andl T., Ballard P., Lu M. M., et al. (2005). Wnt/β-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev. Biol. 283 226–239. 10.1016/j.ydbio.2005.04.014 PubMed DOI
Sokol S. Y. (1996). Analysis of dishevelled signalling pathways during Xenopus development. Curr. Biol. 6 1456–1467. 10.1016/S0960-9822(96)00750-6 PubMed DOI
Sorokin S. (1962). Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15 363–377. 10.1083/jcb.15.2.363 PubMed DOI PMC
Spektor A., Tsang W. Y., Khoo D., Dynlacht B. D. (2007). Cep97 and CP110 suppress a cilia assembly program. Cell 130 678–690. 10.1016/j.cell.2007.06.027 PubMed DOI
Steinhart Z., Angers S. (2018). Wnt signaling in development and tissue homeostasis. Development 145:dev146589. 10.1242/dev.146589 PubMed DOI
Stepanenko A. A., Dmitrenko V. V. (2015). HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene 569 182–190. 10.1016/j.gene.2015.05.065 PubMed DOI
Tamai K., Semenov M., Kato Y., Spokony R., Liu C., Katsuyama Y., et al. (2000). LDL-receptor-related proteins in Wnt signal transduction. Nature 407 530–535. 10.1038/35035117 PubMed DOI
Tamai K., Zeng X., Liu C., Zhang X., Harada Y., Chang Z., et al. (2004). A Mechanism for Wnt coreceptor activation. Mol. Cell 13 149–156. 10.1016/S1097-2765(03)00484-2 PubMed DOI
Tucker R. W., Pardee A. B., Fujiwara K. (1979). Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17 527–535. 10.1016/0092-8674(79)90261-7 PubMed DOI
Vertii A., Bright A., Delaval B., Hehnly H., Doxsey S. (2015). New frontiers: discovering cilia-independent functions of cilia proteins. EMBO Rep. 16 1275–1287. 10.15252/embr.201540632 PubMed DOI PMC
Vora S. M., Fassler J. S., Phillips B. T. (2020). Centrosomes are required for proper β-catenin processing and Wnt response. Mol. Biol. Cell 31 1951–1961. 10.1091/mbc.E20-02-0139 PubMed DOI PMC
Wallingford J. B., Mitchell B. (2011). Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 25 201–213. 10.1101/gad.2008011 PubMed DOI PMC
Wallingford J. B., Rowning B. A., Vogell K. M., Rothbächer U., Fraser S. E., Harland R. M. (2000). Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405 81–85. 10.1038/35011077 PubMed DOI
Wang L., Dynlacht B. D. (2018). The regulation of cilium assembly and disassembly in development and disease. Development 145:dev151407. 10.1242/dev.151407 PubMed DOI PMC
Wehrli M., Dougan S. T., Caldwell K., O’Keefe L., Schwartz S., Valzel-Ohayon D., et al. (2000). Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407 527–530. 10.1038/35035110 PubMed DOI
Westlake C. J., Baye L. M., Nachury M. V., Wright K. J., Ervin K. E., Phu L., et al. (2011). Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc. Natl. Acad. Sci. U.S.A. 108 2759–2764. 10.1073/pnas.1018823108 PubMed DOI PMC
Wiens C. J., Tong Y., Esmail M. A., Oh E., Gerdes J. M., Wang J., et al. (2010). Bardet-biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. J. Biol. Chem. 285 16218–16230. 10.1074/jbc.M109.070953 PubMed DOI PMC
Willert K., Brown J. D., Danenberg E., Duncan A. W., Weissman I. L., Reya T., et al. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423 448–452. 10.1038/nature01611 PubMed DOI
Wong S. Y., Seol A. D., So P. L., Ermilov A. N., Bichakjian C. K., Epstein E. H., et al. (2009). Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat. Med. 15 1055–1061. 10.1038/nm.2011 PubMed DOI PMC
Wu C. T., Chen H. Y., Tang T. K. (2018). Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat. Cell Biol. 20 175–185. 10.1038/s41556-017-0018-7 PubMed DOI
Zhai L., Chaturvedi D., Cumberledge S. (2004). Drosophila Wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J. Biol. Chem. 279 33220–33227. 10.1074/jbc.M403407200 PubMed DOI
Zhan T., Rindtorff N., Boutros M. (2017). Wnt signaling in cancer. Oncogene 36 1461–1473. 10.1038/onc.2016.304 PubMed DOI PMC
Zingg D., Debbache J., Peña-Hernández R., Antunes A. T., Schaefer S. M., Cheng P. F., et al. (2018). EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. Cancer Cell 34 69.e14–84.e14. 10.1016/j.ccell.2018.06.001 PubMed DOI