KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32348467
PubMed Central
PMC7265313
DOI
10.1083/jcb.201904107
PII: 151721
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- aurora kinasa A antagonisté a inhibitory genetika metabolismus MeSH
- bazální tělíska metabolismus MeSH
- buněčný cyklus genetika MeSH
- chromatografie kapalinová MeSH
- cilie genetika metabolismus patologie MeSH
- HEK293 buňky MeSH
- interfáze fyziologie MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus MeSH
- kineziny genetika metabolismus MeSH
- lidé MeSH
- mitóza genetika MeSH
- onkogenní proteiny genetika metabolismus MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- proteiny hedgehog metabolismus MeSH
- RNA interference MeSH
- signální transdukce genetika MeSH
- sodíkové kanály metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- AURKA protein, human MeSH Prohlížeč
- aurora kinasa A MeSH
- citron-kinase MeSH Prohlížeč
- FBF1 protein, human MeSH Prohlížeč
- intracelulární signální peptidy a proteiny MeSH
- KIF14 protein, human MeSH Prohlížeč
- kineziny MeSH
- onkogenní proteiny MeSH
- protein-serin-threoninkinasy MeSH
- proteiny hedgehog MeSH
- SCLT1 protein, human MeSH Prohlížeč
- sodíkové kanály MeSH
Primary cilia play critical roles in development and disease. Their assembly and disassembly are tightly coupled to cell cycle progression. Here, we present data identifying KIF14 as a regulator of cilia formation and Hedgehog (HH) signaling. We show that RNAi depletion of KIF14 specifically leads to defects in ciliogenesis and basal body (BB) biogenesis, as its absence hampers the efficiency of primary cilium formation and the dynamics of primary cilium elongation, and disrupts the localization of the distal appendage proteins SCLT1 and FBF1 and components of the IFT-B complex. We identify deregulated Aurora A activity as a mechanism contributing to the primary cilium and BB formation defects seen after KIF14 depletion. In addition, we show that primary cilia in KIF14-depleted cells are defective in response to HH pathway activation, independently of the effects of Aurora A. In sum, our data point to KIF14 as a critical node connecting cell cycle machinery, effective ciliogenesis, and HH signaling.
Central European Institute of Technology Brno Czech Republic
Department of Histology and Embryology Masaryk University Faculty of Medicine Brno Czech Republic
Zobrazit více v PubMed
Ali B.R., Silhavy J.L., Akawi N.A., Gleeson J.G., and Al-Gazali L.. 2012. A mutation in KIF7 is responsible for the autosomal recessive syndrome of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance. Orphanet J. Rare Dis. 7:27 10.1186/1750-1172-7-27 PubMed DOI PMC
Anastas S.B., Mueller D., Semple-Rowland S.L., Breunig J.J., and Sarkisian M.R.. 2011. Failed cytokinesis of neural progenitors in citron kinase-deficient rats leads to multiciliated neurons. Cereb. Cortex. 21:338–344. 10.1093/cercor/bhq099 PubMed DOI
Anderson R.G.W. 1972. The three-dimensional structure of the basal body from the rhesus monkey oviduct. J. Cell Biol. 54:246–265. 10.1083/jcb.54.2.246 PubMed DOI PMC
Anvarian Z., Mykytyn K., Mukhopadhyay S., Pedersen L.B., and Christensen S.T.. 2019. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15:199–219. 10.1038/s41581-019-0116-9 PubMed DOI PMC
Badano J.L., Mitsuma N., Beales P.L., and Katsanis N.. 2006. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7:125–148. 10.1146/annurev.genom.7.080505.115610 PubMed DOI
Baker K., and Beales P.L.. 2009. Making sense of cilia in disease: the human ciliopathies. Am. J. Med. Genet. C. Semin. Med. Genet. 151C:281–295. 10.1002/ajmg.c.30231 PubMed DOI
Bangs F., and Anderson K.V.. 2017. Primary Cilia and Mammalian Hedgehog Signaling. Cold Spring Harb. Perspect. Biol. 9 a028175 10.1101/cshperspect.a028175 PubMed DOI PMC
Barta T., Peskova L., Collin J., Montaner D., Neganova I., Armstrong L., and Lako M.. 2016. Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells. 34:246–251. 10.1002/stem.2220 PubMed DOI PMC
Bassi Z.I., Verbrugghe K.J., Capalbo L., Gregory S., Montembault E., Glover D.M., and D’Avino P.P.. 2011. Sticky/Citron kinase maintains proper RhoA localization at the cleavage site during cytokinesis. J. Cell Biol. 195:595–603. 10.1083/jcb.201105136 PubMed DOI PMC
Bassi Z.I., Audusseau M., Riparbelli M.G., Callaini G., and D’Avino P.P.. 2013. Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proc. Natl. Acad. Sci. USA. 110:9782–9787. 10.1073/pnas.1301328110 PubMed DOI PMC
Bazzi H., and Anderson K.V.. 2014. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc. Natl. Acad. Sci. USA. 111:E1491–E1500. 10.1073/pnas.1400568111 PubMed DOI PMC
Bernabé-Rubio M., Andrés G., Casares-Arias J., Fernández-Barrera J., Rangel L., Reglero-Real N., Gershlick D.C., Fernández J.J., Millán J., Correas I., et al. . 2016. Novel role for the midbody in primary ciliogenesis by polarized epithelial cells. J. Cell Biol. 214:259–273. 10.1083/jcb.201601020 PubMed DOI PMC
Bernabé-Rubio M., Bosch-Fortea M., García E., de la Serna J.B., and Alonso M.A.. 2019. The ciliary membrane of polarized epithelial cells stems from a midbody remnant-associated membrane patch with condensed nanodomains. bioRxiv. doi: (Preprint posted June 11, 2019). 10.1101/667642 DOI
Bowler M., Kong D., Sun S., Nanjundappa R., Evans L., Farmer V., Holland A., Mahjoub M.R., Sui H., and Loncarek J.. 2019. High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nat. Commun. 10:993 10.1038/s41467-018-08216-4 PubMed DOI PMC
Braun D.A., and Hildebrandt F.. 2017. Ciliopathies. Cold Spring Harb. Perspect. Biol. 9 a028191 10.1101/cshperspect.a028191 PubMed DOI PMC
Briscoe J., and Thérond P.P.. 2013. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14:416–429. 10.1038/nrm3598 PubMed DOI
Bryja V., Červenka I., and Čajánek L.. 2017. The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit. Rev. Biochem. Mol. Biol. 52:614–637. 10.1080/10409238.2017.1350135 PubMed DOI PMC
Bukanov N.O., Smith L.A., Klinger K.W., Ledbetter S.R., and Ibraghimov-Beskrovnaya O.. 2006. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature. 444:949–952. 10.1038/nature05348 PubMed DOI
Čajánek L., and Nigg E.A.. 2014. Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc. Natl. Acad. Sci. USA. 111:E2841–E2850. 10.1073/pnas.1401777111 PubMed DOI PMC
Carleton M., Mao M., Biery M., Warrener P., Kim S., Buser C., Marshall C.G., Fernandes C., Annis J., and Linsley P.S.. 2006. RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Mol. Cell. Biol. 26:3853–3863. 10.1128/MCB.26.10.3853-3863.2006 PubMed DOI PMC
Carmena M., Ruchaud S., and Earnshaw W.C.. 2009. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr. Opin. Cell Biol. 21:796–805. 10.1016/j.ceb.2009.09.008 PubMed DOI PMC
Chaki M., Airik R., Ghosh A.K., Giles R.H., Chen R., Slaats G.G., Wang H., Hurd T.W., Zhou W., Cluckey A., et al. . 2012. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 150:533–548. 10.1016/j.cell.2012.06.028 PubMed DOI PMC
Cole D.G., Diener D.R., Himelblau A.L., Beech P.L., Fuster J.C., and Rosenbaum J.L.. 1998. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141:993–1008. 10.1083/jcb.141.4.993 PubMed DOI PMC
Dafinger C., Liebau M.C., Elsayed S.M., Hellenbroich Y., Boltshauser E., Korenke G.C., Fabretti F., Janecke A.R., Ebermann I., Nürnberg G., et al. . 2011. Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics. J. Clin. Invest. 121:2662–2667. 10.1172/JCI43639 PubMed DOI PMC
Delaval B., Bright A., Lawson N.D., and Doxsey S.. 2011. The cilia protein IFT88 is required for spindle orientation in mitosis. Nat. Cell Biol. 13:461–468. 10.1038/ncb2202 PubMed DOI PMC
Di Cunto F., Imarisio S., Hirsch E., Broccoli V., Bulfone A., Migheli A., Atzori C., Turco E., Triolo R., Dotto G.P., et al. . 2000. Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron. 28:115–127. 10.1016/S0896-6273(00)00090-8 PubMed DOI
El-Brolosy M.A., and Stainier D.Y.R.. 2017. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet. 13 e1006780 10.1371/journal.pgen.1006780 PubMed DOI PMC
Endoh-Yamagami S., Evangelista M., Wilson D., Wen X., Theunissen J.-W., Phamluong K., Davis M., Scales S.J., Solloway M.J., de Sauvage F.J., et al. . 2009. The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr. Biol. 19:1320–1326. 10.1016/j.cub.2009.06.046 PubMed DOI
Evan G.I., Lewis G.K., Ramsay G., and Bishop J.M.. 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5:3610–3616. 10.1128/MCB.5.12.3610 PubMed DOI PMC
Filges I., Nosova E., Bruder E., Tercanli S., Townsend K., Gibson W.T., Röthlisberger B., Heinimann K., Hall J.G., Gregory-Evans C.Y., et al. . 2014. Exome sequencing identifies mutations in KIF14 as a novel cause of an autosomal recessive lethal fetal ciliopathy phenotype. Clin. Genet. 86:220–228. 10.1111/cge.12301 PubMed DOI
Fırat-Karalar E.N., and Stearns T.. 2014. The centriole duplication cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 20130460 10.1098/rstb.2013.0460 PubMed DOI PMC
Gabriel E., Wason A., Ramani A., Gooi L.M., Keller P., Pozniakovsky A., Poser I., Noack F., Telugu N.S., Calegari F., et al. . 2016. CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J. 35:803–819. 10.15252/embj.201593679 PubMed DOI PMC
Garcia-Gonzalo F.R., and Reiter J.F.. 2017. Open Sesame: How Transition Fibers and the Transition Zone Control Ciliary Composition. Cold Spring Harb. Perspect. Biol. 9 a028134 10.1101/cshperspect.a028134 PubMed DOI PMC
Gerdes J.M., Davis E.E., and Katsanis N.. 2009. The vertebrate primary cilium in development, homeostasis, and disease. Cell. 137:32–45. 10.1016/j.cell.2009.03.023 PubMed DOI PMC
Goetz S.C., and Anderson K.V.. 2010. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11:331–344. 10.1038/nrg2774 PubMed DOI PMC
Goetz S.C., Liem K.F. Jr., and Anderson K.V.. 2012. The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell. 151:847–858. 10.1016/j.cell.2012.10.010 PubMed DOI PMC
Gradilone S.A., Radtke B.N., Bogert P.S., Huang B.Q., Gajdos G.B., and LaRusso N.F.. 2013. HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res. 73:2259–2270. 10.1158/0008-5472.CAN-12-2938 PubMed DOI PMC
Graser S., Stierhof Y.-D., Lavoie S.B., Gassner O.S., Lamla S., Le Clech M., and Nigg E.A.. 2007. Cep164, a novel centriole appendage protein required for primary cilium formation. J. Cell Biol. 179:321–330. 10.1083/jcb.200707181 PubMed DOI PMC
Gruneberg U., Neef R., Li X., Chan E.H.Y., Chalamalasetty R.B., Nigg E.A., and Barr F.A.. 2006. KIF14 and citron kinase act together to promote efficient cytokinesis. J. Cell Biol. 172:363–372. 10.1083/jcb.200511061 PubMed DOI PMC
Gupta G.D., Coyaud É., Gonçalves J., Mojarad B.A., Liu Y., Wu Q., Gheiratmand L., Comartin D., Tkach J.M., Cheung S.W.T., et al. . 2015. A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell. 163:1484–1499. 10.1016/j.cell.2015.10.065 PubMed DOI PMC
Hall E.A., Keighren M., Ford M.J., Davey T., Jarman A.P., Smith L.B., Jackson I.J., and Mill P.. 2013. Acute versus chronic loss of mammalian Azi1/Cep131 results in distinct ciliary phenotypes. PLoS Genet. 9 e1003928 10.1371/journal.pgen.1003928 PubMed DOI PMC
He M., Subramanian R., Bangs F., Omelchenko T., Liem K.F. Jr., Kapoor T.M., and Anderson K.V.. 2014. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16:663–672. 10.1038/ncb2988 PubMed DOI PMC
Heidet L., Morinière V., Henry C., De Tomasi L., Reilly M.L., Humbert C., Alibeu O., Fourrage C., Bole-Feysot C., Nitschké P., et al. . 2017. Targeted Exome Sequencing Identifies PBX1 as Involved in Monogenic Congenital Anomalies of the Kidney and Urinary Tract. J. Am. Soc. Nephrol. 28:2901–2914. 10.1681/ASN.2017010043 PubMed DOI PMC
Hirokawa N., Noda Y., Tanaka Y., and Niwa S.. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10:682–696. 10.1038/nrm2774 PubMed DOI
Hirota T., Kunitoku N., Sasayama T., Marumoto T., Zhang D., Nitta M., Hatakeyama K., and Saya H.. 2003. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell. 114:585–598. 10.1016/S0092-8674(03)00642-1 PubMed DOI
Huang N., Zhang D., Li F., Chai P., Wang S., Teng J., and Chen J.. 2018. M-Phase Phosphoprotein 9 regulates ciliogenesis by modulating CP110-CEP97 complex localization at the mother centriole. Nat. Commun. 9:4511 10.1038/s41467-018-06990-9 PubMed DOI PMC
Hutterer A., Berdnik D., Wirtz-Peitz F., Zigman M., Schleiffer A., and Knoblich J.A.. 2006. Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev. Cell. 11:147–157. 10.1016/j.devcel.2006.06.002 PubMed DOI
Inaba H., Goto H., Kasahara K., Kumamoto K., Yonemura S., Inoko A., Yamano S., Wanibuchi H., He D., Goshima N., et al. . 2016. Ndel1 suppresses ciliogenesis in proliferating cells by regulating the trichoplein-Aurora A pathway. J. Cell Biol. 212:409–423. 10.1083/jcb.201507046 PubMed DOI PMC
Inoko A., Matsuyama M., Goto H., Ohmuro-Matsuyama Y., Hayashi Y., Enomoto M., Ibi M., Urano T., Yonemura S., Kiyono T., et al. . 2012. Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J. Cell Biol. 197:391–405. 10.1083/jcb.201106101 PubMed DOI PMC
Ishikawa H., Kubo A., Tsukita S., and Tsukita S.. 2005. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat. Cell Biol. 7:517–524. 10.1038/ncb1251 PubMed DOI
Izawa I., Goto H., Kasahara K., and Inagaki M.. 2015. Current topics of functional links between primary cilia and cell cycle. Cilia. 4:12 10.1186/s13630-015-0021-1 PubMed DOI PMC
Jakobsen L., Vanselow K., Skogs M., Toyoda Y., Lundberg E., Poser I., Falkenby L.G., Bennetzen M., Westendorf J., Nigg E.A., et al. . 2011. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J. 30:1520–1535. 10.1038/emboj.2011.63 PubMed DOI PMC
Kim S., Lee K., Choi J.-H., Ringstad N., and Dynlacht B.D.. 2015. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat. Commun. 6:8087 10.1038/ncomms9087 PubMed DOI PMC
Kinzel D., Boldt K., Davis E.E., Burtscher I., Trümbach D., Diplas B., Attié-Bitach T., Wurst W., Katsanis N., Ueffing M., et al. . 2010. Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev. Cell. 19:66–77. 10.1016/j.devcel.2010.06.005 PubMed DOI PMC
Kobayashi T., and Dynlacht B.D.. 2011. Regulating the transition from centriole to basal body. J. Cell Biol. 193:435–444. 10.1083/jcb.201101005 PubMed DOI PMC
Kobayashi T., Tsang W.Y., Li J., Lane W., and Dynlacht B.D.. 2011. Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell. 145:914–925. 10.1016/j.cell.2011.04.028 PubMed DOI
Korobeynikov V., Deneka A.Y., and Golemis E.A.. 2017. Mechanisms for nonmitotic activation of Aurora-A at cilia. Biochem. Soc. Trans. 45:37–49. 10.1042/BST20160142 PubMed DOI PMC
Kozyreva V.K., McLaughlin S.L., Livengood R.H., Calkins R.A., Kelley L.C., Rajulapati A., Ice R.J., Smolkin M.B., Weed S.A., and Pugacheva E.N.. 2014. NEDD9 regulates actin dynamics through cortactin deacetylation in an AURKA/HDAC6-dependent manner. Mol. Cancer Res. 12:681–693. 10.1158/1541-7786.MCR-13-0654 PubMed DOI PMC
Kufer T.A., Silljé H.H.W., Körner R., Gruss O.J., Meraldi P., and Nigg E.A.. 2002. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol. 158:617–623. 10.1083/jcb.200204155 PubMed DOI PMC
Kuhns S., Schmidt K.N., Reymann J., Gilbert D.F., Neuner A., Hub B., Carvalho R., Wiedemann P., Zentgraf H., Erfle H., et al. . 2013. The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. J. Cell Biol. 200:505–522. 10.1083/jcb.201206013 PubMed DOI PMC
Lechtreck K.F. 2015. IFT-cargo interactions and protein transport in cilia. Trends Biochem. Sci. 40:765–778. 10.1016/j.tibs.2015.09.003 PubMed DOI PMC
Lee J., Platt K.A., Censullo P., and Ruiz i Altaba A.. 1997. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development. 124:2537–2552. PubMed
Littlepage L.E., Wu H., Andresson T., Deanehan J.K., Amundadottir L.T., and Ruderman J.V.. 2002. Identification of phosphorylated residues that affect the activity of the mitotic kinase Aurora-A. Proc. Natl. Acad. Sci. USA. 99:15440–15445. 10.1073/pnas.202606599 PubMed DOI PMC
Lu Q., Insinna C., Ott C., Stauffer J., Pintado P.A., Rahajeng J., Baxa U., Walia V., Cuenca A., Hwang Y.-S., et al. . 2015. Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat. Cell Biol. 17:228–240. 10.1038/ncb3109 PubMed DOI PMC
Makrythanasis P., Maroofian R., Stray-Pedersen A., Musaev D., Zaki M.S., Mahmoud I.G., Selim L., Elbadawy A., Jhangiani S.N., Coban Akdemir Z.H., et al. . 2018. Biallelic variants in KIF14 cause intellectual disability with microcephaly. Eur. J. Hum. Genet. 26:330–339. 10.1038/s41431-017-0088-9 PubMed DOI PMC
Marszalek J.R., Ruiz-Lozano P., Roberts E., Chien K.R., and Goldstein L.S.B.. 1999. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl. Acad. Sci. USA. 96:5043–5048. 10.1073/pnas.96.9.5043 PubMed DOI PMC
McKenzie C., and D’Avino P.P.. 2016. Investigating cytokinesis failure as a strategy in cancer therapy. Oncotarget. 7:87323–87341. 10.18632/oncotarget.13556 PubMed DOI PMC
Meijer L., Borgne A., Mulner O., Chong J.P., Blow J.J., Inagaki N., Inagaki M., Delcros J.G., and Moulinoux J.P.. 1997. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243:527–536. 10.1111/j.1432-1033.1997.t01-2-00527.x PubMed DOI
Meraldi P., Honda R., and Nigg E.A.. 2002. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21:483–492. 10.1093/emboj/21.4.483 PubMed DOI PMC
Mick D.U., Rodrigues R.B., Leib R.D., Adams C.M., Chien A.S., Gygi S.P., and Nachury M.V.. 2015. Proteomics of Primary Cilia by Proximity Labeling. Dev. Cell. 35:497–512. 10.1016/j.devcel.2015.10.015 PubMed DOI PMC
Mitchison H.M., and Valente E.M.. 2017. Motile and non-motile cilia in human pathology: from function to phenotypes. J. Pathol. 241:294–309. 10.1002/path.4843 PubMed DOI
Moawia A., Shaheen R., Rasool S., Waseem S.S., Ewida N., Budde B., Kawalia A., Motameny S., Khan K., Fatima A., et al. . 2017. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. Ann. Neurol. 82:562–577. 10.1002/ana.25044 PubMed DOI
Morris R.L., and Scholey J.M.. 1997. Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos. J. Cell Biol. 138:1009–1022. 10.1083/jcb.138.5.1009 PubMed DOI PMC
Mukhopadhyay S., and Rohatgi R.. 2014. G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin. Cell Dev. Biol. 33:63–72. 10.1016/j.semcdb.2014.05.002 PubMed DOI PMC
Nigg E.A., and Holland A.J.. 2018. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat. Rev. Mol. Cell Biol. 19:297–312. 10.1038/nrm.2017.127 PubMed DOI PMC
Oda T., Chiba S., Nagai T., and Mizuno K.. 2014. Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis. Genes Cells. 19:927–940. 10.1111/gtc.12191 PubMed DOI
Ohkura H., Török T., Tick G., Hoheisel J., Kiss I., and Glover D.M.. 1997. Mutation of a gene for a Drosophila kinesin-like protein, Klp38B, leads to failure of cytokinesis. J. Cell Sci. 110:945–954. PubMed
Orth J.D., Loewer A., Lahav G., and Mitchison T.J.. 2012. Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol. Biol. Cell. 23:567–576. 10.1091/mbc.e11-09-0781 PubMed DOI PMC
Pan J., Wang Q., and Snell W.J.. 2004. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev. Cell. 6:445–451. 10.1016/S1534-5807(04)00064-4 PubMed DOI
Plotnikova O.V., Nikonova A.S., Loskutov Y.V., Kozyulina P.Y., Pugacheva E.N., and Golemis E.A.. 2012. Calmodulin activation of Aurora-A kinase (AURKA) is required during ciliary disassembly and in mitosis. Mol. Biol. Cell. 23:2658–2670. 10.1091/mbc.e11-12-1056 PubMed DOI PMC
Pugacheva E.N., Jablonski S.A., Hartman T.R., Henske E.P., and Golemis E.A.. 2007. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell. 129:1351–1363. 10.1016/j.cell.2007.04.035 PubMed DOI PMC
Ran J., Yang Y., Li D., Liu M., and Zhou J.. 2015. Deacetylation of α-tubulin and cortactin is required for HDAC6 to trigger ciliary disassembly. Sci. Rep. 5:12917 10.1038/srep12917 PubMed DOI PMC
Reilly M.L., and Benmerah A.. 2019. Ciliary kinesins beyond IFT: Cilium length, disassembly, cargo transport and signalling. Biol. Cell. 111:79–94. 10.1111/boc.201800074 PubMed DOI
Reilly M.L., Stokman M.F., Magry V., Jeanpierre C., Alves M., Paydar M., Hellinga J., Delous M., Pouly D., Failler M., et al. . 2019. Loss of function mutations in KIF14 cause severe microcephaly and kidney development defects in humans and zebrafish. Hum. Mol. Genet. 28:778–795. 10.1093/hmg/ddy381 PubMed DOI PMC
Reiter J.F., and Leroux M.R.. 2017. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18:533–547. 10.1038/nrm.2017.60 PubMed DOI PMC
Reiter J., Blacque O., and Leroux M.. 2012. The base of the cilium: Roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13:608–618. PubMed PMC
Renzova T., Bohaciakova D., Esner M., Pospisilova V., Barta T., Hampl A., and Cajanek L.. 2018. Inactivation of PLK4-STIL Module Prevents Self-Renewal and Triggers p53-Dependent Differentiation in Human Pluripotent Stem Cells. Stem Cell Reports. 11:959–972. 10.1016/j.stemcr.2018.08.008 PubMed DOI PMC
Rosenbaum J.L., and Witman G.B.. 2002. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3:813–825. 10.1038/nrm952 PubMed DOI
Roux K.J., Kim D.I., Raida M., and Burke B.. 2012. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196:801–810. 10.1083/jcb.201112098 PubMed DOI PMC
Sánchez I., and Dynlacht B.D.. 2016. Cilium assembly and disassembly. Nat. Cell Biol. 18:711–717. 10.1038/ncb3370 PubMed DOI PMC
Satir P., Pedersen L.B., and Christensen S.T.. 2010. The primary cilium at a glance. J. Cell Sci. 123:499–503. 10.1242/jcs.050377 PubMed DOI PMC
Schmidt K.N., Kuhns S., Neuner A., Hub B., Zentgraf H., and Pereira G.. 2012. Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J. Cell Biol. 199:1083–1101. 10.1083/jcb.201202126 PubMed DOI PMC
Scholey J.M. 2003. Intraflagellar transport. Annu. Rev. Cell Dev. Biol. 19:423–443. 10.1146/annurev.cellbio.19.111401.091318 PubMed DOI
Seeley E.S., and Nachury M.V.. 2010. The perennial organelle: assembly and disassembly of the primary cilium. J. Cell Sci. 123:511–518. 10.1242/jcs.061093 PubMed DOI PMC
Sillibourne J.E., Hurbain I., Grand-Perret T., Goud B., Tran P., and Bornens M.. 2013. Primary ciliogenesis requires the distal appendage component Cep123. Biol. Open. 2:535–545. 10.1242/bio.20134457 PubMed DOI PMC
Silva J.C., Gorenstein M.V., Li G.-Z., Vissers J.P.C., and Geromanos S.J.. 2006. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell. Proteomics. 5:144–156. 10.1074/mcp.M500230-MCP200 PubMed DOI
Silverman M.A., and Leroux M.R.. 2009. Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. Trends Cell Biol. 19:306–316. 10.1016/j.tcb.2009.04.002 PubMed DOI
Smith K.R., Kieserman E.K., Wang P.I., Basten S.G., Giles R.H., Marcotte E.M., and Wallingford J.B.. 2011. A role for central spindle proteins in cilia structure and function. Cytoskeleton (Hoboken). 68:112–124. 10.1002/cm.20498 PubMed DOI PMC
Sorokin S. 1962. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15:363–377. 10.1083/jcb.15.2.363 PubMed DOI PMC
Spektor A., Tsang W.Y., Khoo D., and Dynlacht B.D.. 2007. Cep97 and CP110 suppress a cilia assembly program. Cell. 130:678–690. 10.1016/j.cell.2007.06.027 PubMed DOI
Stejskal K., Potěšil D., and Zdráhal Z.. 2013. Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 12:3057–3062. 10.1021/pr400183v PubMed DOI
Tanos B.E., Yang H.-J., Soni R., Wang W.-J., Macaluso F.P., Asara J.M., and Tsou M.-F.B.. 2013. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev. 27:163–168. 10.1101/gad.207043.112 PubMed DOI PMC
Verhey K.J., Kaul N., and Soppina V.. 2011. Kinesin assembly and movement in cells. Annu. Rev. Biophys. 40:267–288. 10.1146/annurev-biophys-042910-155310 PubMed DOI
Walter A.O., Seghezzi W., Korver W., Sheung J., and Lees E.. 2000. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene. 19:4906–4916. 10.1038/sj.onc.1203847 PubMed DOI
Wei Q., Xu Q., Zhang Y., Li Y., Zhang Q., Hu Z., Harris P.C., Torres V.E., Ling K., and Hu J.. 2013. Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. Nat. Commun. 4:2750 10.1038/ncomms3750 PubMed DOI PMC
Wheway G., Schmidts M., Mans D.A., Szymanska K., Nguyen T.T., Racher H., Phelps I.G., Toedt G., Kennedy J., Wunderlich K.A., et al. ; University of Washington Center for Mendelian Genomics . 2015. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat. Cell Biol. 17:1074–1087. 10.1038/ncb3201 PubMed DOI PMC
Wu C.-T., Chen H.-Y., and Tang T.K.. 2018. Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat. Cell Biol. 20:175–185. 10.1038/s41556-017-0018-7 PubMed DOI
Yadav S.P., Sharma N.K., Liu C., Dong L., Li T., and Swaroop A.. 2016. Centrosomal protein CP110 controls maturation of the mother centriole during cilia biogenesis. Development. 143:1491–1501. 10.1242/dev.130120 PubMed DOI PMC
Yan X., Habedanck R., and Nigg E.A.. 2006. A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol. Biol. Cell. 17:634–644. 10.1091/mbc.e05-08-0810 PubMed DOI PMC
Yang T.T., Chong W.M., Wang W.-J., Mazo G., Tanos B., Chen Z., Tran T.M.N., Chen Y.-D., Weng R.R., Huang C.-E., et al. . 2018. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat. Commun. 9:2023 10.1038/s41467-018-04469-1 PubMed DOI PMC
Zhu C., Zhao J., Bibikova M., Leverson J.D., Bossy-Wetzel E., Fan J.-B., Abraham R.T., and Jiang W.. 2005. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol. Biol. Cell. 16:3187–3199. 10.1091/mbc.e05-02-0167 PubMed DOI PMC