The cytokine TNF can trigger highly proinflammatory RIPK1-dependent cell death. Here, we show that the two adapter proteins, TANK and AZI2, suppress TNF-induced cell death by regulating the activation of TBK1 kinase. Mice lacking either TANK or AZI2 do not show an overt phenotype. Conversely, animals deficient in both adapters are born in a sub-Mendelian ratio and suffer from severe multi-organ inflammation, excessive antibody production, male sterility, and early mortality, which can be rescued by TNFR1 deficiency and significantly improved by expressing a kinase-dead form of RIPK1. Mechanistically, TANK and AZI2 both recruit TBK1 to the TNF receptor signaling complex, but with distinct kinetics due to interaction with different complex components. While TANK binds directly to the adapter NEMO, AZI2 is recruited later via deubiquitinase A20. In summary, our data show that TANK and AZI2 cooperatively sustain TBK1 activity during different stages of TNF receptor assembly to protect against autoinflammation.
- MeSH
- adaptorové proteiny signální transdukční * metabolismus genetika MeSH
- buněčná smrt MeSH
- endopeptidasy MeSH
- intracelulární signální peptidy a proteiny metabolismus genetika MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši knockoutované * MeSH
- myši MeSH
- protein-serin-threoninkinasy interagující s receptory * metabolismus genetika MeSH
- protein-serin-threoninkinasy * metabolismus genetika MeSH
- receptory TNF - typ I * metabolismus genetika MeSH
- signální transdukce MeSH
- TNF-alfa * metabolismus MeSH
- TNFAIP3 metabolismus genetika MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Adjuvant therapy and radiotherapy improves the survival of patients with metastatic and locally advanced gastric cancer (GC). However, the resistance to radiotherapy limits its clinical usage. Rhotekin 2 (RTKN2) functions as an oncogene and confers resistance to ultraviolet B-radiation and apoptosis- inducing agents. Here, the role of RTKN2 in radiosensitivity of GC cell lines was investigated. RTKN2 was found to be elevated in GC tissues and cells. A series of functional assays revealed that overexpression of RTKN2 induced GC cell proliferation, promoted GC cell migration and invasion, while inhibiting GC cell apoptosis. However, silence of RTKN2 promoted GC cell apoptosis, while repressing GC cell proliferation, invasion and migration. GC cells were exposed to irradiation, and data from cell survival and apoptotic assays showed that knock-down of RTKN2 enhanced radiosensitivity of GC through up-regulation of apoptosis and down-regulation of proliferation in irradiation-exposed GC cells. Moreover, the protein expression of β-catenin and c-Myc in GC cells was enhanced by RTKN2 over-expression, but reduced by RTKN2 silence. Interference of RTKN2 down-regulated nuclear β-catenin expression, while up-regulating cytoplasmic β-catenin in GC. In conclusion, RTKN2 contributed to cell growth and radioresistance in GC through activation of Wnt/β-catenin signalling.
- MeSH
- beta-katenin metabolismus MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory žaludku * genetika patologie radioterapie MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- regulace genové exprese u nádorů MeSH
- signální dráha Wnt MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
AIMS: Neuroinflammation is a prominent hallmark in several neurodegenerative diseases (NDs). Halting neuroinflammation can slow down the progression of NDs. Improving the efficacy of clinically available non-steroidal anti-inflammatory drugs (NSAIDs) is a promising approach that may lead to fast-track and effective disease-modifying therapies for NDs. Here, we aimed to utilize the L-type amino acid transporter 1 (LAT1) to improve the efficacy of salicylic acid as an example of an NSAID prodrug, for which brain uptake and intracellular localization have been reported earlier. MAIN METHODS: Firstly, we confirmed the improved LAT1 utilization of the salicylic acid prodrug (SA-AA) in freshly isolated primary mouse microglial cells. Secondly, we performed behavioural rotarod, open field, and four-limb hanging tests in mice, and a whole-brain proteome analysis. KEY FINDINGS: The SA-AA prodrug alleviated the lipopolysaccharide (LPS)-induced inflammation in the rotarod and hanging tests. The proteome analysis indicated decreased neuroinflammation at the molecular level. We identified 399 proteins linked to neuroinflammation out of 7416 proteins detected in the mouse brain. Among them, Gps2, Vamp8, Slc6a3, Slc18a2, Slc5a7, Rgs9, Lrrc1, Ppp1r1b, Gnal, and Adcy5/6 were associated with the drug's effects. The SA-AA prodrug attenuated the LPS-induced neuroinflammation through the regulation of critical pathways of neuroinflammation such as the cellular response to stress and transmission across chemical synapses. SIGNIFICANCE: The efficacy of NSAIDs can be improved via the utilization of LAT1 and repurposed for the treatment of neuroinflammation. This improved brain delivery and microglia localisation can be applied to other inflammatory modulators to achieve effective and targeted CNS therapies.
- MeSH
- antiflogistika nesteroidní * farmakologie MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- kyselina salicylová farmakologie MeSH
- lipopolysacharidy MeSH
- mikroglie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neurodegenerativní nemoci * metabolismus MeSH
- neurozánětlivé nemoci * farmakoterapie MeSH
- prekurzory léčiv * farmakologie MeSH
- proteom metabolismus MeSH
- zánět farmakoterapie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Ciliopathies represent a disease class characterized by a broad range of phenotypes including polycystic kidneys and skeletal anomalies. Ciliopathic skeletal phenotypes are among the most common and most difficult to treat due to a poor understanding of the pathological mechanisms leading to disease. Using an avian model (talpid2) for a human ciliopathy with both kidney and skeletal anomalies (orofaciodigital syndrome 14), we identified disruptions in the FGF23-PTH axis that resulted in reduced calcium uptake in the developing mandible and subsequent micrognathia. Although pharmacological intervention with the U.S. Food and Drug Administration (FDA)-approved pan-FGFR inhibitor AZD4547 alone rescued expression of the FGF target SPRY2, it did not significantly rescue micrognathia. In contrast, treatment with a cocktail of AZD4547 and teriparatide acetate, a PTH agonist and FDA-approved treatment for osteoporosis, resulted in molecular, cellular and phenotypic rescue of ciliopathic micrognathia in talpid2 mutants. Together, these data provide novel insight into pathological molecular mechanisms associated with ciliopathic skeletal phenotypes and a potential therapeutic strategy for a pleiotropic disease class with limited to no treatment options.
- MeSH
- cilie metabolismus MeSH
- ciliopatie * farmakoterapie genetika metabolismus MeSH
- fenotyp MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- mikrognacie * metabolismus patologie MeSH
- proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Despite constant advances in the field of pediatric oncology, the survival rate of high-risk neuroblastoma patients remains poor. The molecular and genetic features of neuroblastoma, such as MYCN amplification and stemness status, have established themselves not only as potent prognostic and predictive factors but also as intriguing targets for personalized therapy. Novel thiosemicarbazones target both total level and activity of a number of proteins involved in some of the most important signaling pathways in neuroblastoma. In this study, we found that di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) potently decreases N-MYC in MYCN-amplified and c-MYC in MYCN-nonamplified neuroblastoma cell lines. Furthermore, DpC succeeded in downregulating total EGFR and phosphorylation of its most prominent tyrosine residues through the involvement of NDRG1, a positive prognostic marker in neuroblastoma, which was markedly upregulated after thiosemicarbazone treatment. These findings could provide useful knowledge for the treatment of MYC-driven neuroblastomas that are unresponsive to conventional therapies.
- MeSH
- amplifikace genu účinky léků MeSH
- biologické modely MeSH
- chelátory železa farmakologie MeSH
- down regulace účinky léků MeSH
- erbB receptory metabolismus MeSH
- fosforylace účinky léků MeSH
- fyziologický stres účinky léků MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- neuroblastom metabolismus patologie MeSH
- proteiny buněčného cyklu metabolismus MeSH
- protoonkogen n-myc metabolismus MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- pyridiny farmakologie MeSH
- signální transdukce * MeSH
- thiosemikarbazony farmakologie MeSH
- tvar buňky účinky léků MeSH
- umlčování genů účinky léků MeSH
- upregulace účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Mitochondrial retrograde signaling is a mitochondria-to-nucleus communication pathway, conserved from yeast to humans, by which dysfunctional mitochondria relay signals that lead to cell stress adaptation in physiopathological conditions via changes in nuclear gene expression. The most comprehensive picture of components and regulation of retrograde signaling has been obtained in Saccharomyces cerevisiae, where retrograde-target gene expression is regulated by RTG genes. In this chapter, we describe methods to measure mitochondrial retrograde pathway activation at the level of mRNA and protein products in yeast model systems, including cell suspensions and microcolonies. In particular, we will focus on three major procedures: mRNA levels of RTG-target genes, such as those encoding for peroxisomal citrate synthase (CIT2), aconitase, and NAD+-specific isocitrate dehydrogenase subunit 1 by real-time PCR; expression analysis of CIT2-gene protein product (Cit2p-GFP) by Western blot and fluorescence microscopy; the phosphorylation status of transcriptional factor Rtg1/3p which controls RTG-target gene transcription.
- MeSH
- akonitáthydratasa genetika metabolismus MeSH
- buněčné jádro genetika metabolismus MeSH
- citrátsynthasa genetika metabolismus MeSH
- fosforylace MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- isocitrátdehydrogenasa genetika metabolismus MeSH
- mitochondrie metabolismus patologie MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- signální transdukce MeSH
- transkripční faktory BHLH-Zip metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understood. Here we show that Tpr depletion generates transcription-dependent replication stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy visualization of replication intermediates show that Tpr deficient cells exhibit slow and asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of Tpr-interacting proteins mediating RNA processing, such as MATR3 and SUGP2, and functional experiments confirm that their depletion trigger cellular phenotypes shared with Tpr deficiency. Mechanistic studies reveal the interplay of Tpr with GANP, a component of the TREX-2 complex. The Tpr-GANP interaction is supported by their shared protein level alterations in a cohort of ovarian carcinomas. Our results reveal links between nucleoporins, DNA transcription and replication, and the existence of a network physically connecting replication forks with transcription, splicing, and mRNA export machinery.
- MeSH
- acetyltransferasy genetika metabolismus MeSH
- HeLa buňky MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus MeSH
- komplex proteinů jaderného póru genetika metabolismus MeSH
- lidé MeSH
- mapy interakcí proteinů MeSH
- nádory genetika MeSH
- nestabilita genomu MeSH
- poškození DNA MeSH
- protoonkogenní proteiny genetika metabolismus MeSH
- replikace DNA * MeSH
- transport RNA MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During development of yeast colonies, various cell subpopulations form, which differ in their properties and specifically localize within the structure. Three branches of mitochondrial retrograde (RTG) signaling play a role in colony development and differentiation, each of them activating the production of specific markers in different cell types. Here, aiming to identify proteins and processes controlled by the RTG pathway, we analyzed proteomes of individual cell subpopulations from colonies of strains, mutated in genes of the RTG pathway. Resulting data, along with microscopic analyses revealed that the RTG pathway predominantly regulates processes in U cells, long-lived cells with unique properties, which are localized in upper colony regions. Rtg proteins therein activate processes leading to amino acid biosynthesis, including transport of metabolic intermediates between compartments, but also repress expression of mitochondrial ribosome components, thus possibly contributing to reduced mitochondrial translation in U cells. The results reveal the RTG pathway's role in activating metabolic processes, important in U cell adaptation to altered nutritional conditions. They also point to the important role of Rtg regulators in repressing mitochondrial activity in U cells.
- MeSH
- aminokyseliny metabolismus MeSH
- analýza jednotlivých buněk MeSH
- biosyntetické dráhy genetika MeSH
- chromatografie kapalinová MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- proteomika MeSH
- regulace genové exprese u hub genetika MeSH
- represorové proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- signální transdukce genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- transkripční faktory BHLH-Zip genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
LST1 is a small adaptor protein expressed in leukocytes of myeloid lineage. Due to the binding to protein tyrosine phosphatases SHP1 and SHP2 it was thought to have negative regulatory function in leukocyte signaling. It was also shown to be involved in cytoskeleton regulation and generation of tunneling nanotubes. LST1 gene is located in MHCIII locus close to many immunologically relevant genes. In addition, its expression increases under inflammatory conditions such as viral infection, rheumatoid arthritis and inflammatory bowel disease and its deficiency was shown to result in slightly increased sensitivity to influenza infection in mice. However, little else is known about its role in the immune system homeostasis and immune response. Here we show that similar to humans, LST1 is expressed in mice in the cells of the myeloid lineage. In vivo, its deficiency results in alterations in multiple leukocyte subset abundance in steady state and under inflammatory conditions. Moreover, LST1-deficient mice show significant level of resistance to dextran sodium sulphate (DSS) induced acute colitis, a model of inflammatory bowel disease. These data demonstrate that LST1 regulates leukocyte abundance in lymphoid organs and inflammatory response in the gut.
- MeSH
- biologické markery MeSH
- dendritické buňky imunologie metabolismus MeSH
- fosforylace MeSH
- genotyp MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus MeSH
- kolitida etiologie metabolismus patologie MeSH
- leukocyty imunologie metabolismus MeSH
- lidé MeSH
- lipopolysacharidy imunologie MeSH
- makrofágy imunologie metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši knockoutované MeSH
- myši MeSH
- náchylnost k nemoci MeSH
- regulace genové exprese * MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
While GASP-1 and GASP-2 proteins are known to regulate myogenesis by inhibiting myostatin, their structural organization suggests a putative role as multivalent protease inhibitors controlling different protease activities. In this study, we show the noncompetitive and competitive antitrypsin activities of the full-length GASP-1 and GASP-2 proteins, respectively, by using a bacterial system production and in vitro enzymatic experiments. The role of the second Kunitz domain in this functional duality is described by assessing the antitrypsin activity of GASP-1/2 chimeric proteins. Molecular dynamics simulations support the experimental data to rationalize differences in binding modes between trypsin and the GASP-1 and GASP-2 second Kunitz domains. A new inhibition mechanism was evidenced for the second Kunitz domain of GASP-2, in which the conventional cationic residue of trypsin inhibitors was substituted by the strongly interacting glutamine residue.
- MeSH
- buněčná diferenciace fyziologie MeSH
- buněčné linie MeSH
- intracelulární signální peptidy a proteiny chemie metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- mezibuněčné signální peptidy a proteiny chemie metabolismus MeSH
- myoblasty cytologie metabolismus MeSH
- myši MeSH
- proliferace buněk fyziologie MeSH
- sekundární struktura proteinů MeSH
- simulace molekulární dynamiky * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH