-
Something wrong with this record ?
Mitochondrial Retrograde Signaling Contributes to Metabolic Differentiation in Yeast Colonies
V. Plocek, K. Fadrhonc, J. Maršíková, L. Váchová, A. Pokorná, O. Hlaváček, D. Wilkinson, Z. Palková
Language English Country Switzerland
Document type Journal Article
Grant support
19-09381S
Czech Science Foundation
GAUK 958216
Charles University
RVO 61388971
Czech Academy of Sciences
NLK
Free Medical Journals
from 2000
Freely Accessible Science Journals
from 2000
PubMed Central
from 2007
Europe PubMed Central
from 2007
ProQuest Central
from 2000-03-01
Open Access Digital Library
from 2000-01-01
Open Access Digital Library
from 2007-01-01
Health & Medicine (ProQuest)
from 2000-03-01
ROAD: Directory of Open Access Scholarly Resources
from 2000
PubMed
34070491
DOI
10.3390/ijms22115597
Knihovny.cz E-resources
- MeSH
- Amino Acids metabolism MeSH
- Single-Cell Analysis MeSH
- Biosynthetic Pathways genetics MeSH
- Chromatography, Liquid MeSH
- Intracellular Signaling Peptides and Proteins genetics metabolism MeSH
- Mitochondria genetics metabolism MeSH
- Proteome genetics metabolism MeSH
- Proteomics MeSH
- Gene Expression Regulation, Fungal genetics MeSH
- Repressor Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae genetics metabolism MeSH
- Signal Transduction genetics MeSH
- Tandem Mass Spectrometry MeSH
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors genetics metabolism MeSH
- Publication type
- Journal Article MeSH
During development of yeast colonies, various cell subpopulations form, which differ in their properties and specifically localize within the structure. Three branches of mitochondrial retrograde (RTG) signaling play a role in colony development and differentiation, each of them activating the production of specific markers in different cell types. Here, aiming to identify proteins and processes controlled by the RTG pathway, we analyzed proteomes of individual cell subpopulations from colonies of strains, mutated in genes of the RTG pathway. Resulting data, along with microscopic analyses revealed that the RTG pathway predominantly regulates processes in U cells, long-lived cells with unique properties, which are localized in upper colony regions. Rtg proteins therein activate processes leading to amino acid biosynthesis, including transport of metabolic intermediates between compartments, but also repress expression of mitochondrial ribosome components, thus possibly contributing to reduced mitochondrial translation in U cells. The results reveal the RTG pathway's role in activating metabolic processes, important in U cell adaptation to altered nutritional conditions. They also point to the important role of Rtg regulators in repressing mitochondrial activity in U cells.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21018568
- 003
- CZ-PrNML
- 005
- 20210830100139.0
- 007
- ta
- 008
- 210728s2021 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijms22115597 $2 doi
- 035 __
- $a (PubMed)34070491
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Plocek, Vítězslav $u Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic
- 245 10
- $a Mitochondrial Retrograde Signaling Contributes to Metabolic Differentiation in Yeast Colonies / $c V. Plocek, K. Fadrhonc, J. Maršíková, L. Váchová, A. Pokorná, O. Hlaváček, D. Wilkinson, Z. Palková
- 520 9_
- $a During development of yeast colonies, various cell subpopulations form, which differ in their properties and specifically localize within the structure. Three branches of mitochondrial retrograde (RTG) signaling play a role in colony development and differentiation, each of them activating the production of specific markers in different cell types. Here, aiming to identify proteins and processes controlled by the RTG pathway, we analyzed proteomes of individual cell subpopulations from colonies of strains, mutated in genes of the RTG pathway. Resulting data, along with microscopic analyses revealed that the RTG pathway predominantly regulates processes in U cells, long-lived cells with unique properties, which are localized in upper colony regions. Rtg proteins therein activate processes leading to amino acid biosynthesis, including transport of metabolic intermediates between compartments, but also repress expression of mitochondrial ribosome components, thus possibly contributing to reduced mitochondrial translation in U cells. The results reveal the RTG pathway's role in activating metabolic processes, important in U cell adaptation to altered nutritional conditions. They also point to the important role of Rtg regulators in repressing mitochondrial activity in U cells.
- 650 _2
- $a aminokyseliny $x metabolismus $7 D000596
- 650 _2
- $a transkripční faktory BHLH-Zip $x genetika $x metabolismus $7 D051778
- 650 _2
- $a biosyntetické dráhy $x genetika $7 D053898
- 650 _2
- $a chromatografie kapalinová $7 D002853
- 650 _2
- $a regulace genové exprese u hub $x genetika $7 D015966
- 650 _2
- $a intracelulární signální peptidy a proteiny $x genetika $x metabolismus $7 D047908
- 650 _2
- $a mitochondrie $x genetika $x metabolismus $7 D008928
- 650 _2
- $a proteom $x genetika $x metabolismus $7 D020543
- 650 _2
- $a proteomika $7 D040901
- 650 _2
- $a represorové proteiny $x genetika $x metabolismus $7 D012097
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $x metabolismus $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x genetika $x metabolismus $7 D029701
- 650 _2
- $a signální transdukce $x genetika $7 D015398
- 650 _2
- $a analýza jednotlivých buněk $7 D059010
- 650 _2
- $a tandemová hmotnostní spektrometrie $7 D053719
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Fadrhonc, Kristýna $u Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic
- 700 1_
- $a Maršíková, Jana $u Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic
- 700 1_
- $a Váchová, Libuše $u Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 14220 Prague, Czech Republic
- 700 1_
- $a Pokorná, Alexandra $u Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 14220 Prague, Czech Republic
- 700 1_
- $a Hlaváček, Otakar $u Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 14220 Prague, Czech Republic
- 700 1_
- $a Wilkinson, Derek $u Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic
- 700 1_
- $a Palková, Zdena $u Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic
- 773 0_
- $w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 22, č. 11 (2021)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34070491 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20210830100139 $b ABA008
- 999 __
- $a ok $b bmc $g 1689610 $s 1139014
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 22 $c 11 $e 20210525 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
- GRA __
- $a 19-09381S $p Czech Science Foundation
- GRA __
- $a GAUK 958216 $p Charles University
- GRA __
- $a RVO 61388971 $p Czech Academy of Sciences
- LZP __
- $a Pubmed-20210728