Cilia at the crossroad: convergence of regulatory mechanisms to govern cilia dynamics during cell signaling and the cell cycle
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
21-21612S
Grantová Agentura České Republiky
PubMed
40483459
PubMed Central
PMC12144771
DOI
10.1186/s13578-025-01403-z
PII: 10.1186/s13578-025-01403-z
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer, Cell cycle regulation, Cilia, Ciliary dynamics, Ciliary signaling, Ciliopathies, Tissue development,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cilia are versatile, microtubule-based organelles that facilitate cellular signaling, motility, and environmental sensing in eukaryotic cells. These dynamic structures act as hubs for key developmental signaling pathways, while their assembly and disassembly are intricately regulated along cell cycle transitions. Recent findings show that factors regulating ciliogenesis and cilia dynamics often integrate their roles across other cellular processes, including cell cycle regulation, cytoskeletal organization, and intracellular trafficking, ensuring multilevel crosstalk of mechanisms controlling organogenesis. Disruptions in these shared regulators lead to broad defects associated with both ciliopathies and cancer. This review explores the crosstalk of regulatory mechanisms governing cilia assembly, disassembly, and maintenance during ciliary signaling and the cell cycle, along with the broader implications for development, tissue homeostasis, and disease.
Zobrazit více v PubMed
Beales P, Jackson PK. Cilia - the prodigal organelle. Cilia. 2012;1:1–3. PubMed PMC
Sorokin SP. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci. 1968;3:207–30. PubMed
Gopalakrishnan J, et al. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J. 2023;42:e113891. PubMed PMC
Bangs F, Anderson KV. Primary cilia and mammalian Hedgehog signaling. Cold Spring Harb Perspect Biol. 2017. 10.1101/cshperspect.a028175 PubMed PMC
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet. 2023;24:421–41. PubMed PMC
Braun DA, Hildebrandt F, Ciliopathies. Cold Spring Harb Perspect Biol. 2017. 10.1101/cshperspect.a028191 PubMed PMC
Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol. 2017;241:294–309. PubMed
Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017. 10.1038/nrm.2017.60 PubMed PMC
Seeley ES, Nachury MV. The perennial organelle: assembly and disassembly of the primary cilium. J Cell Sci. 2010;123:511–8. PubMed PMC
Bornens M, Gonczy P. Centrosomes back in the limelight. Philos Trans R Soc Lond B Biol Sci. 2014. 10.1098/rstb.2013.0452 PubMed PMC
Nigg EA, Holland AJ. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol. 2018;19:297–312. PubMed PMC
Ishikawa H, Kubo A, Tsukita S. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol. 2005;7:517–24. PubMed
Balestra FR, Strnad P, Fluckiger I, Gonczy P. Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells. Dev Cell. 2013;25:555–71. PubMed
Bowler M, et al. High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nat Commun. 2019;10:993. PubMed PMC
Tanos BE, et al. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev. 2013;27:163–8. PubMed PMC
Chang T-JB, Hsu JC-C, Yang TT. Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles. Nat Commun. 2023;14:1688. PubMed PMC
Yang TT, et al. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat Commun. 2018;9:2023. PubMed PMC
Wei Q, et al. Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. Nat Commun. 2013;4:2750. PubMed PMC
Airik R, Airik M, Schueler M, Bates CM, Hildebrandt F. Roscovitine blocks collecting duct cyst growth in Cep164-deficient kidneys. Kidney Int. 2019;96:320–6. PubMed PMC
Ma D, Wang F, Teng J, Huang N, Chen J. Structure and function of distal and subdistal appendages of the mother centriole. J Cell Sci. 2023;136:jcs260560. PubMed
Mazo G, Soplop N, Wang WJ, Uryu K, Tsou MB. Spatial control of primary ciliogenesis by subdistal appendages alters Sensation-Associated properties of cilia. Dev Cell. 2016. 10.1016/j.devcel.2016.10.006 PubMed PMC
Chong WM, et al. Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages. eLife. 2020;9:e53580. PubMed PMC
Brooks ER, Wallingford JB. Multiciliated cells. Curr Biol CB. 2014;24:R973–982. PubMed PMC
Gilula NB, Satir P. The ciliary necklace. A ciliary membrane specialization. J Cell Biol. 1972;53:494–509. PubMed PMC
Garcia-Gonzalo FR, Reiter JF. Open Sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb Perspect Biol. 2017;9:a028134. PubMed PMC
Mercey O, Mukherjee S, Guichard P, Hamel V. The molecular architecture of the ciliary transition zones. Curr Opin Cell Biol. 2024;88:102361. PubMed
Yang T. Superresolution pattern recognition reveals the architectural map of the ciliary transition zone. Sci Rep. 2015;5:14096. PubMed PMC
Shi X, et al. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat Cell Biol. 2017;19:1178–88. PubMed PMC
Nachury MV, Mick DU. Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol. 2019;20:389–405. PubMed PMC
Gupta GD, et al. A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell. 2015;163:1484–99. PubMed PMC
Diener DR, Lupetti P, Rosenbaum JL. Proteomic analysis of isolated ciliary transition zones reveals the presence of ESCRT proteins. Curr Biol CB. 2015;25:379–84. PubMed PMC
Sang L, et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell. 2011;145:513–28. PubMed PMC
Wiegering A, et al. Cell type-specific regulation of ciliary transition zone assembly in vertebrates. EMBO J. 2018;37:e97791. PubMed PMC
Jenkins PM, McEwen DP, Martens JR. Olfactory cilia: linking sensory cilia function and human disease. Chem Senses. 2009;34:451–64. PubMed PMC
Cho JH, et al. Islet primary cilia motility controls insulin secretion. Sci Adv. 2022;8:eabq8486. PubMed PMC
Sun S, Fisher RL, Bowser SS, Pentecost BT, Sui H. Three-dimensional architecture of epithelial primary cilia. Proc. Natl. Acad. Sci. U. S. A. 2019;116:9370–9379. PubMed PMC
Kiesel P, et al. The molecular structure of mammalian primary cilia revealed by cryo-electron tomography. Nat Struct Mol Biol. 2020;27:1115–24. PubMed PMC
Sorokin S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol. 1962;15:363–77. PubMed PMC
Molla-Herman A, et al. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci. 2010;123:1785–95. PubMed
Garcia G, Raleigh DR, Reiter JF. How the ciliary membrane is organized Inside-Out to communicate Outside-In. Curr Biol. 2018;28:R421–34. PubMed PMC
Conduit SE, Davies EM, Fulcher AJ, Oorschot V, Mitchell CA. Superresolution microscopy reveals distinct phosphoinositide subdomains within the cilia transition zone. Front Cell Dev Biol. 2021;9:634649. PubMed PMC
Garcia-Gonzalo FR, et al. Phosphoinositides regulate ciliary protein trafficking to modulate Hedgehog signaling. Dev Cell. 2015;34:400–9. PubMed PMC
Conduit SE, Vanhaesebroeck B. Phosphoinositide lipids in primary cilia biology. Biochem J. 2020;477:3541–65. PubMed PMC
Hilgendorf KI, Myers BR, Reiter JF. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol. 2024;25:555–73. PubMed PMC
Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE. Primary cilia are specialized calcium signaling organelles. Nature. 2013;504:311–4. PubMed PMC
Paolocci E, Zaccolo M. Compartmentalised cAMP signalling in the primary cilium. Front Physiol. 2023. 10.3389/fphys.2023.1187134 PubMed PMC
Nachury MV. How do cilia organize signalling cascades? Philos Trans R Soc B Biol Sci. 2014;369:20130465. PubMed PMC
Binó L, et al. A protocol for generation and live-cell imaging analysis of primary cilia reporter cell lines. STAR Protoc. 2022;3:101199. PubMed PMC
Tucker RW, Pardee AB, Fujiwara K. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell. 1979;17:527–35. PubMed
Izawa I, Goto H, Kasahara K, Inagaki M. Current topics of functional links between primary cilia and cell cycle. Cilia. 2015. 10.1186/s13630-015-0021-1 PubMed PMC
Ford MJ, et al. A cell/cilia cycle biosensor for single-cell kinetics reveals persistence of cilia after G1/S transition is a general property in cells and mice. Dev Cell. 2018;47:509–e5235. PubMed PMC
Bangs FK, Schrode N, Hadjantonakis A-K, Anderson K. V. Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol. 2015;17:113–22. PubMed PMC
Sotelo JR. Trujillo-Cenóz, O. Electron microscope study on the development of ciliary components of the neural epithelium of the chick embryo. Z Für Zellforsch Mikrosk Anat. 1958;49:1–12. PubMed
Kumar D, Reiter J. How the centriole builds its cilium: of mothers, daughters, and the acquisition of appendages. Curr Opin Struct Biol. 2021;66:41–8. PubMed
Wang L, Dynlacht BD. The regulation of cilium assembly and disassembly in development and disease. Development. 2018. 10.1242/dev.151407 PubMed PMC
Labat-de-Hoz L, et al. A model for primary cilium biogenesis by polarized epithelial cells: role of the midbody remnant and associated specialized membranes. Front Cell Dev Biol. 2020;8:622918. PubMed PMC
Wu C-T, Chen H-Y, Tang TK. Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat Cell Biol. 2018;20:175–85. PubMed
Lu Q, et al. Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol. 2015. 10.1038/ncb3109
Ganga AK, et al. Rab34 GTPase mediates ciliary membrane formation in the intracellular ciliogenesis pathway. Curr Biol. 2021;31:2895–e29057. PubMed PMC
Stuck MW, Chong WM, Liao J-C, Pazour GJ. Rab34 is necessary for early stages of intracellular ciliogenesis. Curr Biol CB. 2021;31:2887–e28944. PubMed PMC
Yoshimura S-I, Egerer J, Fuchs E, Haas AK, Barr FA. Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol. 2007;178:363–9. PubMed PMC
Westlake CJ, et al. Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci U S A. 2011;108:2759–64. PubMed PMC
Knödler A, et al. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci U S A. 2010;107:6346–51. PubMed PMC
Nachury MV, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell. 2007;129:1201–13. PubMed
Shakya S, Westlake CJ. Recent advances in understanding assembly of the primary cilium membrane. Fac Rev. 2021;10:16. PubMed PMC
Schmidt KN, et al. Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol. 2012;199:1083–101. PubMed PMC
Siller SS, et al. Conditional knockout mice for the distal appendage protein CEP164 reveal its essential roles in airway multiciliated cell differentiation. PLOS Genet. 2017;13:e1007128. PubMed PMC
Joo K, et al. CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc Natl Acad Sci U S A. 2013;110:5987–92. PubMed PMC
Sillibourne JE, et al. Primary ciliogenesis requires the distal appendage component Cep123. Biol Open. 2013;2:535–45. PubMed PMC
Kurtulmus B, et al. LRRC45 contributes to early steps of axoneme extension. J Cell Sci. 2018;131:jcs223594. PubMed
Kanie T, et al. A hierarchical pathway for assembly of the distal appendages that organize primary cilia. eLife. 2025;14:e85999. PubMed PMC
Goetz SC, Liem KF Jr., Anderson K. V. The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell. 2012;151:847–58. PubMed PMC
Cajanek L, Nigg EA. Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc Natl Acad Sci U S A. 2014;111:E2841–50. PubMed PMC
Rosa E, Silva I, et al. Molecular mechanisms underlying the role of the centriolar CEP164-TTBK2 complex in ciliopathies. Struct Lond Engl 1993. 2022;30:114–e1289. PubMed PMC
Lo C-H, et al. Phosphorylation of CEP83 by TTBK2 is necessary for cilia initiation. J Cell Biol. 2019;218:3489–505. PubMed PMC
Bernatik O, et al. Phosphorylation of multiple proteins involved in ciliogenesis by Tau tubulin kinase 2. Mol Biol Cell. 2020;31:1032–46. PubMed PMC
Spektor A, Tsang WY, Khoo D, Dynlacht BD. Cep97 and CP110 suppress a cilia assembly program. Cell. 2007;130:678–90. PubMed
Kobayashi T, Tsang WY, Li J, Lane W, Dynlacht B. D. Centriolar Kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell. 2011;145:914–25. PubMed
Benk Vysloužil D, et al. Tau-tubulin kinase 2 restrains microtubule-depolymerizer KIF2A to support primary cilia growth. Cell Commun Signal. 2025;23:73. PubMed PMC
Oda T, Chiba S, Nagai T, Mizuno K. Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis. Genes Cells. 2014;19:927–40. PubMed
Huang N, et al. M-Phase phosphoprotein 9 regulates ciliogenesis by modulating CP110-CEP97 complex localization at the mother centriole. Nat Commun. 2018;9:4511. PubMed PMC
Schmidt TI, et al. Control of centriole length by CPAP and CP110. Curr Biol CB. 2009;19:1005–11. PubMed
Prosser SL, Morrison CG. Centrin2 regulates CP110 removal in primary cilium formation. J Cell Biol. 2015;208:693–701. PubMed PMC
Dobbelaere J, Schmidt Cernohorska M, Huranova M, Slade D, Dammermann A. Cep97 is required for centriole structural integrity and cilia formation in Drosophila. Curr Biol CB. 2020;30:3045–e30567. PubMed
Yadav SP, et al. Centrosomal protein CP110 controls maturation of the mother centriole during cilia biogenesis. Dev Camb Engl. 2016;143:1491–501. PubMed PMC
Walentek P et al. Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis. eLife 2016;5:e17557. PubMed PMC
Pedersen LB, Rosenbaum JL. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol. 2008;85:23–61. PubMed
Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A. 1993;90:5519–23. PubMed PMC
Bhogaraju S, et al. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science. 2013;341:1009–12. PubMed PMC
Lechtreck K. Cargo adapters expand the transport range of intraflagellar transport. J Cell Sci. 2022;135:jcs260408. PubMed PMC
Pigino G. Intraflagellar transport. Curr Biol CB. 2021;31:R530–6. PubMed
Stepanek L, Pigino G. Microtubule doublets are double-track railways for intraflagellar transport trains. Science. 2016;352:721–4. PubMed
Yang TT, et al. Superresolution pattern recognition reveals the architectural map of the ciliary transition zone. Sci Rep. 2015;5:14096. PubMed PMC
Yang TT, Tran MNT, Chong WM, Huang C-E, Liao J-C. Single-particle tracking localization microscopy reveals nonaxonemal dynamics of intraflagellar transport proteins at the base of mammalian primary cilia. Mol Biol Cell. 2019;30:828–37. PubMed PMC
van den Hoek H, et al. In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science. 2022;377:543–8. PubMed
Van De Craft J, Harris JA, Kubo T, Witman GB, Lechtreck KF. Diffusion rather than intraflagellar transport likely provides most of the tubulin required for axonemal assembly in Chlamydomonas. J Cell Sci. 2020;133:jcs249805. PubMed PMC
Mukhopadhyay S, et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev. 2010;24:2180–93. PubMed PMC
Nachury MV. The molecular machines that traffic signaling receptors into and out of cilia. Curr Opin Cell Biol. 2018;51:124–31. PubMed PMC
Han S, et al. TULP3 is required for localization of membrane-associated proteins ARL13B and INPP5E to primary cilia. Biochem Biophys Res Commun. 2019;509:227–34. PubMed
Ansley SJ, et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature. 2003;425:628–33. PubMed
Niederlova V, Modrak M, Tsyklauri O, Huranova M, Stepanek O. Meta-analysis of genotype-phenotype associations in Bardet-Biedl syndrome uncovers differences among causative genes. Hum Mutat. 2019;40:2068–87. PubMed
Prasai A, et al. The BBSome assembly is spatially controlled by BBS1 and BBS4 in human cells. J Biol Chem. 2020;295:14279–90. PubMed PMC
Zhang Q, Yu D, Seo S, Stone EM, Sheffield VC. Intrinsic protein-Protein Interaction-mediated and Chaperonin-assisted sequential assembly of stable Bardet-Biedl syndrome protein complex, the BBSome. J Biol Chem. 2012;287:20625–35. PubMed PMC
Blacque OE, et al. Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev. 2004;18:1630–42. PubMed PMC
Ye F, Nager AR, Nachury MV. BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. J Cell Biol. 2018;217:1847–68. PubMed PMC
Yan H, et al. TALPID3 and ANKRD26 selectively orchestrate FBF1 localization and cilia gating. Nat Commun. 2020;11:2196. PubMed PMC
Nigg EA, Stearns T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol. 2011;13:1154–60. PubMed PMC
Mirvis M, Siemers KA, Nelson WJ, Stearns TP. Primary cilium loss in mammalian cells occurs predominantly by whole-cilium shedding. PLOS Biol. 2019;17:e3000381. PubMed PMC
Rieder CL, Jensen CG, Jensen LCW. The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line. J Ultrastruct Res. 1979;68:173–85. PubMed
Liang Y, Meng D, Zhu B, Pan J. Mechanism of ciliary disassembly. Cell Mol Life Sci. 2016;73:1787–802. PubMed PMC
Quarmby LM. Cellular deflagellation. Int Rev Cytol. 2004;233:47–91. PubMed
Toro-Tapia G, Das RM. Primary cilium remodeling mediates a cell signaling switch in differentiating neurons. Sci Adv. 2020;6:eabb0601. PubMed PMC
Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis E. A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell. 2007;129:1351–63. PubMed PMC
Pan J, Wang Q, Snell WJ. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev Cell. 2004;6:445–51. PubMed
Kobayashi T, et al. HDAC2 promotes loss of primary cilia in pancreatic ductal adenocarcinoma. EMBO Rep. 2017;18:334–43. PubMed PMC
Zhang Y, et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol. 2008;28:1688–701. PubMed PMC
Łysyganicz PK, et al. Loss of deacetylation enzymes Hdac6 and Sirt2 promotes acetylation of cytoplasmic tubulin, but suppresses axonemal acetylation in zebrafish cilia. Front Cell Dev Biol. 2021;9:676214. PubMed PMC
McKenna ED, Sarbanes SL, Cummings SW, Roll-Mecak A. The tubulin code, from molecules to health and disease. Annu Rev Cell Dev Biol. 2023;39:331–61. PubMed
Reilly ML, Benmerah A. Ciliary kinesins beyond IFT: cilium length, disassembly, cargo transport and signaling. Biol Cell. 2019. 10.1111/boc.201800074 PubMed
Miyamoto T, et al. The Microtubule-Depolymerizing activity of a mitotic Kinesin protein KIF2A drives primary cilia disassembly coupled with cell proliferation. Cell Rep. 2015. 10.1016/j.celrep.2015.01.003 PubMed PMC
Watanabe T, et al. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation. J Cell Biol. 2015;210:737–51. PubMed PMC
Kim S, Lee K, Choi J-H, Ringstad N, Dynlacht BD. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat Commun. 2015;6:8087. PubMed PMC
Phua SC, et al. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell. 2017;168:264–e27915. PubMed PMC
Nager AR, et al. An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell. 2017;168:252–e26314. PubMed PMC
Prasai A, et al. BBSome-deficient cells activate intraciliary CDC42 to trigger actin-dependent ciliary ectocytosis. EMBO Rep. 2024. 10.1038/s44319-024-00326-z PubMed PMC
Stilling S, Kalliakoudas T, Benninghoven-Frey H, Inoue T, Falkenburger BH. PIP2 determines length and stability of primary cilia by balancing membrane turnovers. Commun Biol. 2022;5:93. PubMed PMC
Patnaik SR, et al. Bardet-Biedl syndrome proteins regulate cilia disassembly during tissue maturation. Cell Mol Life Sci CMLS. 2019;76:757–75. PubMed PMC
Inoko A, et al. Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J Cell Biol. 2012;197:391–405. PubMed PMC
Huang M, et al. Cell cycle arrest induced by trichoplein depletion is independent of cilia assembly. J Cell Physiol. 2022;237:2703–12. PubMed
Bryja V, Cervenka I, Cajanek L. The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit Rev Biochem Mol Biol. 2017;52:614–37. PubMed PMC
Fry AM, O’Regan L, Sabir SR, Bayliss R. Cell cycle regulation by the NEK family of protein kinases. J Cell Sci. 2012;125:4423–33. PubMed PMC
Wang W, Wu T, Kirschner MW. The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. eLife. 2014;3:e03083. PubMed PMC
Viol L et al. Nek2 kinase displaces distal appendages from the mother centriole prior to mitosis. J Cell Biol. 2020. 10.1083/jcb.201907136 PubMed PMC
Kong D, et al. Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. J Cell Biol. 2014;206:855–65. PubMed PMC
Bukanov NO, Smith LA, Klinger KW, Ledbetter SR. Ibraghimov-Beskrovnaya, O. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature. 2006;444:949–52. PubMed
Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol. 2015;11:451–64. PubMed PMC
Tran PV, et al. THM1 negatively modulates mouse Sonic Hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat Genet. 2008;40:403–10. PubMed PMC
Tran PV, et al. Downregulating Hedgehog signaling reduces renal cystogenic potential of mouse models. J Am Soc Nephrol JASN. 2014;25:2201–12. PubMed PMC
Ou G, Scholey JM. Motor Cooperation during mitosis and ciliogenesis. Annu Rev Cell Dev Biol. 2022;38:49–74. PubMed
Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009;10:682–96. PubMed
Haraguchi K, Hayashi T, Jimbo T, Yamamoto T, Akiyama T. Role of the Kinesin-2 family protein, KIF3, during mitosis. J Biol Chem. 2006;281:4094–9. PubMed
Gruneberg U, et al. KIF14 and Citron kinase act together to promote efficient cytokinesis. J Cell Biol. 2006;172:363–72. PubMed PMC
Carleton M, et al. RNA interference-mediated Silencing of mitotic Kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Mol Cell Biol. 2006;26:3853–63. PubMed PMC
Pejskova P et al. KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling. J Cell Biol. 2020. 10.1083/jcb.201904107 PubMed PMC
Mikulenkova E et al. Kinesin-3 KIF14 Regulates Intraflagellar Transport Dynamics in Primary Cilia. 2025;644298 Preprint at 10.1101/2025.03.20.644298 (2025).
Delaval B, Bright A, Lawson ND, Doxsey S. The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol. 2011;13:461–8. PubMed PMC
Taulet N, et al. IFT proteins spatially control the geometry of cleavage furrow ingression and lumen positioning. Nat Commun. 2017;8:1928. PubMed PMC
Vitre B, et al. IFT proteins interact with HSET to promote supernumerary centrosome clustering in mitosis. EMBO Rep. 2020;21:e49234. PubMed PMC
Wood CR, et al. IFT proteins accumulate during cell division and localize to the cleavage furrow in Chlamydomonas. PLoS ONE. 2012;7:e30729. PubMed PMC
Vuong LT, et al. Kinesin-2 and IFT-A act as a complex promoting nuclear localization of β-catenin during Wnt signalling. Nat Commun. 2018;9:5304. PubMed PMC
Balmer S, et al. Components of intraflagellar transport complex A function independently of the cilium to regulate canonical Wnt signaling in Drosophila. Dev Cell. 2015;34:705–18. PubMed PMC
Kim JC, et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet. 2004;36:462–70. PubMed
Kim JC, et al. MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. J Cell Sci. 2005;118:1007–20. PubMed
Wang W-J, et al. CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base. Nat Cell Biol. 2013;15:591–601. PubMed PMC
Leon A, Omri B, Gely A, Klein C, Crisanti P. QN1/KIAA1009: a new essential protein for chromosome segregation and mitotic spindle assembly. Oncogene. 2006;25:1887–95. PubMed
Lovera M, Lüders J. The ciliary impact of nonciliary gene mutations. Trends Cell Biol. 2021;31:876–87. PubMed
Wieser S, Pines J. The biochemistry of mitosis. Cold Spring Harb Perspect Biol. 2015. 10.1101/cshperspect.a015776 PubMed PMC
Pichaud F, Walther RF, Nunes de Almeida F. Regulation of Cdc42 and its effectors in epithelial morphogenesis. J Cell Sci. 2019. 10.1242/jcs.217869 PubMed
Hehnly H, Chen C-T, Powers CM, Liu H-L, Doxsey S. The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol. 2012;22:1944–50. PubMed PMC
Ang AL, et al. Recycling endosomes can serve as intermediates during transport from the golgi to the plasma membrane of MDCK cells. J Cell Biol. 2004;167:531–43. PubMed PMC
Jin H, et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell. 2010;141:1208–19. PubMed PMC
Guo D-F, et al. The BBSome in POMC and AgRP neurons is necessary for body weight regulation and sorting of metabolic receptors. Diabetes. 2019;68:1591–603. PubMed PMC
Leitch CC, Lodh S, Prieto-Echagüe V, Badano JL. Zaghloul, N. A. Basal body proteins regulate Notch signaling through endosomal trafficking. J Cell Sci. 2014;127:2407–19. PubMed PMC
Cantagrel V, et al. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am J Hum Genet. 2008;83:170–9. PubMed PMC
Caspary T, Larkins CE, Anderson KV. The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell. 2007;12:767–78. PubMed
Larkins CE, Aviles GDG, East MP, Kahn RA, Caspary T. Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol Biol Cell. 2011;22:4694–703. PubMed PMC
Humbert MC, et al. ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc Natl Acad Sci U S A. 2012;109:19691–6. PubMed PMC
Gigante ED, Taylor MR, Ivanova AA, Kahn RA, Caspary T. ARL13B regulates Sonic Hedgehog signaling from outside primary cilia. eLife. 2020. 10.7554/eLife.50434 PubMed PMC
Ferent J, et al. The ciliary protein Arl13b functions outside of the primary cilium in Shh-mediated axon guidance. Cell Rep. 2019;29:3356–e33663. PubMed PMC
Serwas D, Su TY, Roessler M, Wang S, Dammermann A. Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in C. elegans. J Cell Biol. 2017;216:1659–71. PubMed PMC
Bowie E, Norris R, Anderson KV, Goetz SC. Spinocerebellar ataxia type 11-associated alleles of Ttbk2 dominantly interfere with ciliogenesis and cilium stability. PLoS Genet. 2018;14:e1007844. PubMed PMC
Nguyen A, Goetz SC. TTBK2 controls cilium stability by regulating distinct modules of centrosomal proteins. Mol Biol Cell. 2023;34:ar8. PubMed PMC
Engelke MF, et al. Acute Inhibition of heterotrimeric Kinesin-2 function reveals mechanisms of intraflagellar transport in mammalian cilia. Curr Biol. 2019;29:1137–e11484. PubMed PMC
Ye F, et al. Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors. eLife. 2013;2:e00654. PubMed PMC
Jensen VL, et al. Role for intraflagellar transport in building a functional transition zone. EMBO Rep. 2018;19:e45862. PubMed PMC
Vuolo L, Stevenson NL, Heesom KJ, Stephens DJ. Dynein-2 intermediate chains play crucial but distinct roles in primary cilia formation and function. eLife. 2018;7:e39655. PubMed PMC
Absalon S, et al. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell. 2008;19:929–44. PubMed PMC
Scheidel N, Blacque OE. Intraflagellar transport complex A genes differentially regulate cilium formation and transition zone gating. Curr Biol CB. 2018;28:3279–e32872. PubMed
De-Castro ARG, et al. WDR60-mediated dynein-2 loading into cilia powers retrograde IFT and transition zone crossing. J Cell Biol. 2021;221:e202010178. PubMed PMC
Bujakowska KM, et al. Mutations in IFT172 cause isolated retinal degeneration and Bardet–Biedl syndrome. Hum Mol Genet. 2015;24:230–42. PubMed PMC
Janke C, Magiera MM. The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol. 2020;21:307–26. PubMed
Verhey KJ, Gaertig J. The tubulin code. Cell Cycle. 2007;6:2152–60. PubMed
Sirajuddin M, Rice LM, Vale RD. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol. 2014;16:335–44. PubMed PMC
Viar GA, Pigino G. Tubulin posttranslational modifications through the lens of new technologies. Curr Opin Cell Biol. 2024;88:102362. PubMed
Gadadhar S, et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science. 2021;371:eabd4914. PubMed PMC
Suryavanshi S, et al. Tubulin glutamylation regulates ciliary motility by altering inner dynein arm activity. Curr Biol CB. 2010;20:435–40. PubMed PMC
O’Hagan R, et al. Glutamylation regulates transport, specializes function, and sculpts the structure of cilia. Curr Biol. 2017;27:3430–e34416. PubMed PMC
Hong S-R, et al. Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling. Nat Commun. 2018;9:1732. PubMed PMC
Kalebic N, et al. αTAT1 is the major α-tubulin acetyltransferase in mice. Nat Commun. 2013;4:1962. PubMed
Verhey KJ, Ohi R. Causes, costs and consequences of kinesin motors communicating through the microtubule lattice. J Cell Sci. 2023;136:jcs260735. PubMed PMC
Mao S, et al. Motile cilia of human airway epithelia contain Hedgehog signaling components that mediate noncanonical Hedgehog signaling. Proc Natl Acad Sci U S A. 2018;115:1370–5. PubMed PMC
Seidl C, et al. Mucociliary Wnt signaling promotes cilia biogenesis and beating. Nat Commun. 2023;14:1259. PubMed PMC
Nonami Y, Narita K, Nakamura H, Inoue T, Takeda S. Developmental changes in ciliary motility on choroid plexus epithelial cells during the perinatal period. Cytoskeleton. 2013;70:797–803. PubMed
Ott CM, et al. Permanent Deconstruction of intracellular primary cilia in differentiating granule cell neurons. J Cell Biol. 2024;223:e202404038. PubMed PMC
Rozycki M, et al. The fate of the primary cilium during myofibroblast transition. Mol Biol Cell. 2014;25:643–57. PubMed PMC
Müller A, et al. Structure, interaction and nervous connectivity of beta cell primary cilia. Nat Commun. 2024;15:9168. PubMed PMC
Ingham PW. Hedgehog signaling. Curr Top Dev Biol. 2022;149:1–58. PubMed
Hall ET, et al. Cytoneme signaling provides essential contributions to mammalian tissue patterning. Cell. 2024;187:276–e29323. PubMed PMC
Mukhopadhyay S, et al. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic Hedgehog pathway via cAMP signaling. Cell. 2013;152:210–23. PubMed
Truong ME, et al. Vertebrate cells differentially interpret ciliary and extraciliary cAMP. Cell. 2021;184:2911–e292618. PubMed PMC
Hwang S-H, Somatilaka BN, White K, Mukhopadhyay S. Ciliary and extraciliary Gpr161 pools repress Hedgehog signaling in a tissue-specific manner. eLife. 2021. 10.7554/eLife.67121 PubMed PMC
May EA, et al. Time-resolved proteomics profiling of the ciliary Hedgehog response. J Cell Biol. 2021;220:e202007207. PubMed PMC
Pal K, et al. Smoothened determines β-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol. 2016;212:861–75. PubMed PMC
Yue S, et al. Requirement of Smurf-mediated endocytosis of Patched1 in Sonic Hedgehog signal reception. eLife. 2014;3:e02555. PubMed PMC
Ansari SS, et al. Sonic Hedgehog activates prostaglandin signaling to stabilize primary cilium length. J Cell Biol. 2024;223:e202306002. PubMed PMC
Ho EK, Tsai AE, Stearns T. Transient primary cilia mediate robust Hedgehog Pathway-Dependent cell cycle control. Curr Biol CB. 2020;30:2829–e28355. PubMed PMC
Min M, Rong Y, Tian C, Spencer SL. Temporal integration of mitogen history in mother cells controls proliferation of daughter cells. Science. 2020;368:1261–5. PubMed PMC
Fu W, Asp P, Canter B, Dynlacht B D. Primary cilia control Hedgehog signaling during muscle differentiation and are deregulated in rhabdomyosarcoma. Proc Natl Acad Sci U S A. 2014;111:9151–6. PubMed PMC
Straface G, et al. Sonic Hedgehog regulates angiogenesis and myogenesis during post-natal skeletal muscle regeneration. J Cell Mol Med. 2009;13:2424–35. PubMed PMC
Palla AR, et al. Primary cilia on muscle stem cells are critical to maintain regenerative capacity and are lost during aging. Nat Commun. 2022;13:1439. PubMed PMC
Kopinke D, Roberson EC, Reiter JF. Ciliary Hedgehog signaling restricts Injury-Induced adipogenesis. Cell. 2017;170:340–e35112. PubMed PMC
Cruz C, et al. Foxj1 regulates floor plate cilia architecture and modifies the response of cells to Sonic Hedgehog signalling. Dev Camb Engl. 2010;137:4271–82. PubMed PMC
Hagenlocher C, Walentek P, Ller M, Thumberger C, T., Feistel K. Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. Cilia 2013;2:12. PubMed PMC
Das RM, Storey KG. Apical abscission alters cell polarity and dismantles the primary cilium during neurogenesis. Science. 2014;343:200–4. PubMed PMC
Zhang Q, Seo S, Bugge K, Stone EM, Sheffield V. C. BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum Mol Genet. 2012;21:1945–53. PubMed PMC
Bachmann VA et al. Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling. Proc. Natl. Acad. Sci. U. S. A. 2016;113:7786–7791. PubMed PMC
Schembs L, et al. The ciliary gene INPP5E confers dorsal telencephalic identity to human cortical organoids by negatively regulating Sonic Hedgehog signaling. Cell Rep. 2022;39:110811. PubMed PMC
Schmidt S, et al. Primary cilia and SHH signaling impairments in human and mouse models of Parkinson’s disease. Nat Commun. 2022;13:4819. PubMed PMC
Nusse R, Clevers H. Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99. PubMed
Wallingford JB, Mitchell B. Strange as it May Seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 2011;25:201–13. PubMed PMC
May-Simera HL, Kelley MW, Cilia. Wnt signaling, and the cytoskeleton. Cilia. 2012;1:7. PubMed PMC
Zhang K, et al. Primary cilia are WNT-transducing organelles whose biogenesis is controlled by a WNT-PP1 axis. Dev Cell. 2023;58:139–e1548. PubMed
Gerdes JM, et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet. 2007;39:1350–60. PubMed
Simons M, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet. 2005;37:537–43. PubMed PMC
Corbit KC, et al. Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol. 2008;10:70–6. PubMed
Huang P, Schier AF. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development. 2009;136:3089–98. PubMed PMC
Ocbina PJR, Tuson M, Anderson KV. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PLoS ONE. 2009. 10.1371/journal.pone.0006839 PubMed PMC
Sugiyama N, Tsukiyama T, Yamaguchi TP, Yokoyama T. The canonical Wnt signaling pathway is not Involved in renal cyst development in the kidneys of Inv mutant mice. Kidney Int. 2011;79:957–65. PubMed PMC
El-Brolosy MA, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;568:193–7. PubMed PMC
Walentek P, Beyer T, Thumberger T, Schweickert A, Blum M. ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus Left-Right development. Cell Rep. 2012;1:516–27. PubMed
Yu X, Ng CP, Habacher H, Roy S. Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet. 2008;40:1445–53. PubMed
Bernatik O, Paclikova P, Kotrbova A, Bryja V, Cajanek L. Primary cilia formation does not rely on WNT/β-Catenin signaling. Front Cell Dev Biol. 2021;9:623753. PubMed PMC
Freke GM, et al. De-Suppression of mesenchymal cell identities and variable phenotypic outcomes associated with knockout of Bbs1. Cells. 2023;12:2662. PubMed PMC
Horwitz A, Levi-Carmel N, Shnaider O, Birk R. BBS genes are involved in accelerated proliferation and early differentiation of BBS-related tissues. Differ Res Biol Divers. 2024;135:100745. PubMed
Volz A-K, et al. Bardet-Biedl syndrome proteins modulate the release of bioactive extracellular vesicles. Nat Commun. 2021;12:5671. PubMed PMC
Bryja V, et al. The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo. Mol Biol Cell. 2009;20:924–36. PubMed PMC
Janečková E, et al. Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis. Development. 2023;150:dev201189. PubMed PMC
Holmen SL, et al. Essential role of β-Catenin in postnatal bone acquisition. J Biol Chem. 2005;280:21162–8. PubMed
Li Y, Yang S, Liu Y, Qin L, Yang S. IFT20 governs mesenchymal stem cell fate through positively regulating TGF-β-Smad2/3-Glut1 signaling mediated glucose metabolism. Redox Biol. 2022;54:102373. PubMed PMC
Johnson GP, Fair S, Hoey DA. Primary cilium-mediated MSC mechanotransduction is dependent on Gpr161 regulation of Hedgehog signalling. Bone. 2021;145:115846. PubMed
Hilgendorf KI, et al. Omega-3 fatty acids activate ciliary FFAR4 to control adipogenesis. Cell. 2019;179:1289–e130521. PubMed PMC
Zhu D, Shi S, Wang H, Liao K. Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J Cell Sci. 2009;122:2760–8. PubMed
Marion V, et al. Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc Natl Acad Sci U S A. 2009;106:1820–5. PubMed PMC
Ritter A, et al. Restoration of primary cilia in obese adipose-derived mesenchymal stem cells by inhibiting Aurora A or extracellular signal-regulated kinase. Stem Cell Res Ther. 2019;10:255. PubMed PMC
Tamura M, Sato MM, Nashimoto M. Regulation of CXCL12 expression by canonical Wnt signaling in bone marrow stromal cells. Int J Biochem Cell Biol. 2011;43:760–7. PubMed
Tsyklauri O, et al. Bardet-Biedl syndrome ciliopathy is linked to altered hematopoiesis and dysregulated self-tolerance. EMBO Rep. 2021;22:e50785. PubMed PMC
Clement CA, et al. TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep. 2013;3:1806–14. PubMed
Mönnich M, et al. CEP128 localizes to the subdistal appendages of the mother centriole and regulates TGF-β/BMP signaling at the primary cilium. Cell Rep. 2018;22:2584–92. PubMed
Christensen ST, Morthorst SK, Mogensen JB, Pedersen LB. Primary cilia and coordination of receptor tyrosine kinase (RTK) and transforming growth factor Β (TGF-β) signaling. Cold Spring Harb Perspect Biol. 2017;9:a028167. PubMed PMC
Kawasaki M, et al. TGF-β suppresses Ift88 expression in chondrocytic ATDC5 cells: TGF-β REGULATES IFT88. J Cell Physiol. 2015;230:2788–95. PubMed
Tözser J, et al. TGF-β signaling regulates the differentiation of motile cilia. Cell Rep. 2015;11:1000–7. PubMed PMC
Labour M-N, Riffault M, Christensen ST, Hoey DA. TGFβ1 - induced recruitment of human bone mesenchymal stem cells is mediated by the primary cilium in a SMAD3-dependent manner. Sci Rep. 2016;6:35542. PubMed PMC
Liu M, Alharbi M, Graves D, Yang S. IFT80 is required for fracture healing through controlling the regulation of TGF-β signaling in chondrocyte differentiation and function. J Bone Min Res Off J Am Soc Bone Min Res. 2020;35:571–82. PubMed PMC
Kawasaki M, et al. Primary cilia suppress the fibrotic activity of atrial fibroblasts from patients with atrial fibrillation in vitro. Sci Rep. 2024;14:12470. PubMed PMC
Zhang W, et al. Dual Inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 attenuates TGFβ1 induced lung and tumor fibrosis. Cell Death Dis. 2020;11:765. PubMed PMC
Waddell SH, et al. A TGFβ-ECM-integrin signaling axis drives structural reconfiguration of the bile duct to promote polycystic liver disease. Sci Transl Med. 2023;15:eabq5930. PubMed PMC
Hong R, et al. XIAP-mediated degradation of IFT88 disrupts HSC cilia to stimulate HSC activation and liver fibrosis. EMBO Rep. 2024;25:1055–74. PubMed PMC
Gradilone SA, et al. HDAC6 Inhibition restores ciliary expression and decreases tumor growth. Cancer Res. 2013;73:2259–70. PubMed PMC
Paul C, et al. Loss of primary cilia promotes inflammation and carcinogenesis. EMBO Rep. 2022;23:e55687. PubMed PMC
Zhou B, et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther. 2022;7:95. PubMed PMC
Ezratty EJ, et al. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell. 2011;145:1129–41. PubMed PMC
Wang W, et al. IFT-A deficiency in juvenile mice impairs biliary development and exacerbates ADPKD liver disease. J Pathol. 2021;254:289–302. PubMed PMC
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Dev Camb Engl. 2011;138:3593–612. PubMed
Ezratty EJ, Pasolli HA, Fuchs EA. Presenilin-2-ARF4 trafficking axis modulates Notch signaling during epidermal differentiation. J Cell Biol. 2016;214:89–101. PubMed PMC
Mazelova J, et al. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J. 2009;28:183–92. PubMed PMC
Grisanti L, Revenkova E, Gordon RE, Iomini C. Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway. Dev Camb Engl. 2016;143:2160–71. PubMed PMC
Liu Z, et al. Primary cilia regulate hematopoietic stem and progenitor cell specification through Notch signaling in zebrafish. Nat Commun. 2019;10:1839. PubMed PMC
Lopes SS, et al. Notch signalling regulates left-right asymmetry through ciliary length control. Dev Camb Engl. 2010;137:3625–32. PubMed
Li X, et al. Primary cilia mediate Klf2-dependant Notch activation in regenerating heart. Protein Cell. 2020;11:433–45. PubMed PMC
Serra CFH, et al. Prominin 1 and Notch regulate ciliary length and dynamics in multiciliated cells of the airway epithelium. iScience. 2022;25:104751. PubMed PMC
Rausch V, Hansen CG. The Hippo pathway, YAP/TAZ, and the plasma membrane. Trends Cell Biol. 2020;30:32–48. PubMed
Jenks AD, et al. Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep. 2018;23:3042–55. PubMed PMC
Srivastava S, et al. A human patient-derived cellular model of Joubert syndrome reveals ciliary defects which can be rescued with targeted therapies. Hum Mol Genet. 2017;26:4657–67. PubMed PMC
Hynes AM, et al. Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therapeutic target for nephronophthisis. Proc Natl Acad Sci U S A. 2014;111:9893–8. PubMed PMC
Wong SY, et al. Primary cilia can both mediate and suppress Hedgehog pathway–dependent tumorigenesis. Nat Med. 2009;15:1055–61. PubMed PMC
Han Y-G, et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med. 2009;15:1062–5. PubMed PMC
Wu VM, Chen SC, Arkin MR, Reiter JF. Small molecule inhibitors of Smoothened ciliary localization and ciliogenesis. Proc. Natl. Acad. Sci. 109, 13644–13649 (2012). PubMed PMC
Halkina T, et al. Discovery of potent and brain-penetrant Tau tubulin kinase 1 (TTBK1) inhibitors that lower Tau phosphorylation in vivo. J Med Chem. 2021;64:6358–80. PubMed
Bashore FM, et al. Modulation of Tau tubulin kinases (TTBK1 and TTBK2) impacts ciliogenesis. Sci Rep. 2023;13:6118. PubMed PMC
Lin AC, et al. Modulating Hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med. 2009;15:1421–5. PubMed
Thompson CL, Wiles A, Poole CA, Knight MM. Lithium chloride modulates chondrocyte primary cilia and inhibits Hedgehog signaling. FASEB J Off Publ Fed Am Soc Exp Biol. 2016;30:716–26. PubMed
Peng Z, et al. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway. PLoS ONE. 2013;8:e61457. PubMed PMC
Cao Y, et al. Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc Natl Acad Sci U S A. 2009;106:21819–24. PubMed PMC
Mergen M, et al. The nephronophthisis gene product NPHP2/Inversin interacts with Aurora A and interferes with HDAC6-mediated cilia disassembly. Nephrol Dial Transpl Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2013;28:2744–53. PubMed
Yanda MK, Liu Q, Cebotaru V, Guggino WB, Cebotaru L. Histone deacetylase 6 inhibition reduces cysts by decreasing cAMP and Ca2 + in knock-out mouse models of polycystic kidney disease. J Biol Chem. 2017;292:17897–908. PubMed PMC
Cebotaru L, et al. Inhibition of histone deacetylase 6 activity reduces cyst growth in polycystic kidney disease. Kidney Int. 2016;90:90–9. PubMed PMC
Frasca A, et al. MECP2 mutations affect ciliogenesis: a novel perspective for Rett syndrome and related disorders. EMBO Mol Med. 2020;12:e10270. PubMed PMC
Ritter A, et al. Primary cilia are dysfunctional in obese adipose-derived mesenchymal stem cells. Stem Cell Rep. 2018;10:583–99. PubMed PMC
Xie C, et al. Reversal of ciliary mechanisms of disassembly rescues olfactory dysfunction in ciliopathies. JCI Insight. 2022;7:e158736. PubMed PMC