De-Suppression of Mesenchymal Cell Identities and Variable Phenotypic Outcomes Associated with Knockout of Bbs1
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
210585/Z/18/Z
Wellcome Trust - United Kingdom
MR/L009978/1
Medical Research Council - United Kingdom
PubMed
37998397
PubMed Central
PMC10670506
DOI
10.3390/cells12222662
PII: cells12222662
Knihovny.cz E-zdroje
- Klíčová slova
- Bardet–Biedl syndrome, Wnt signalling, collecting duct cells, epithelial-to-mesenchymal transition, fibrosis, kidney, primary cilia,
- MeSH
- Bardetův-Biedlův syndrom * genetika metabolismus patologie MeSH
- cilie metabolismus MeSH
- lidé MeSH
- myši knockoutované MeSH
- myši MeSH
- proteiny asociované s mikrotubuly metabolismus MeSH
- proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Bbs1 protein, human MeSH Prohlížeč
- Bbs1 protein, mouse MeSH Prohlížeč
- proteiny asociované s mikrotubuly MeSH
- proteiny MeSH
Bardet-Biedl syndrome (BBS) is an archetypal ciliopathy caused by dysfunction of primary cilia. BBS affects multiple tissues, including the kidney, eye and hypothalamic satiety response. Understanding pan-tissue mechanisms of pathogenesis versus those which are tissue-specific, as well as gauging their associated inter-individual variation owing to genetic background and stochastic processes, is of paramount importance in syndromology. The BBSome is a membrane-trafficking and intraflagellar transport (IFT) adaptor protein complex formed by eight BBS proteins, including BBS1, which is the most commonly mutated gene in BBS. To investigate disease pathogenesis, we generated a series of clonal renal collecting duct IMCD3 cell lines carrying defined biallelic nonsense or frameshift mutations in Bbs1, as well as a panel of matching wild-type CRISPR control clones. Using a phenotypic screen and an unbiased multi-omics approach, we note significant clonal variability for all assays, emphasising the importance of analysing panels of genetically defined clones. Our results suggest that BBS1 is required for the suppression of mesenchymal cell identities as the IMCD3 cell passage number increases. This was associated with a failure to express epithelial cell markers and tight junction formation, which was variable amongst clones. Transcriptomic analysis of hypothalamic preparations from BBS mutant mice, as well as BBS patient fibroblasts, suggested that dysregulation of epithelial-to-mesenchymal transition (EMT) genes is a general predisposing feature of BBS across tissues. Collectively, this work suggests that the dynamic stability of the BBSome is essential for the suppression of mesenchymal cell identities as epithelial cells differentiate.
Biochemistry Center University of Heidelberg Im Neuenheimer Feld 328 69120 Heidelberg Germany
BioQuant University of Heidelberg Im Neuenheimer Feld 267 69120 Heidelberg Germany
Great Ormond Street Institute of Child Health University College London London WC1N 1EH UK
Life Sciences Department CHMLS Brunel University London Kingston Lane Uxbridge UB8 3PH UK
Zobrazit více v PubMed
Hernandez-Hernandez V., Jenkins D. Advances in the understanding of the BBSome complex structure and function. Res. Rep. Biol. 2015;6:191–201. doi: 10.2147/RRB.S65700. DOI
Nawaz H., Mujahid, Alam Khan S., Bibi F., Waqas A., Bari A., Fardous, Khan N., Muhammad N., Khan A., et al. Biallelic Variants in Seven Different Genes Associated with Clinically Suspected Bardet–Biedl Syndrome. Genes. 2023;14:1113. doi: 10.3390/genes14051113. PubMed DOI PMC
Niederlova V., Modrak M., Tsyklauri O., Huranova M., Stepanek O. Meta-analysis of genotype-phenotype associations in Bardet-Biedl syndrome uncovers differences among causative genes. Hum. Mutat. 2019;40:2068–2087. doi: 10.1002/humu.23862. PubMed DOI
JJin H., White S.R., Shida T., Schulz S., Aguiar M., Gygi S.P., Bazan J.F., Nachury M.V. The Conserved Bardet-Biedl Syndrome Proteins Assemble a Coat that Traffics Membrane Proteins to Cilia. Cell. 2010;141:1208–1219. doi: 10.1016/j.cell.2010.05.015. PubMed DOI PMC
Mourão A., Nager A.R., Nachury M.V., Lorentzen E. Structural basis for membrane targeting of the BBSome by ARL6. Nat. Struct. Mol. Biol. 2014;21:1035–1041. doi: 10.1038/nsmb.2920. PubMed DOI PMC
Hernandez-Hernandez V., Pravincumar P., Diaz-Font A., May-Simera H., Jenkins D., Knight M., Beales P.L. Bardet–Biedl syndrome proteins control the cilia length through regulation of actin polymerization. Hum. Mol. Genet. 2013;22:3858–3868. doi: 10.1093/hmg/ddt241. PubMed DOI PMC
Ewerling A., Maissl V., Wickstead B., May-Simera H.L. Neofunctionalization of ciliary BBS proteins to nuclear roles is likely a frequent innovation across eukaryotes. iScience. 2023;26:106410. doi: 10.1016/j.isci.2023.106410. PubMed DOI PMC
Baldari C.T., Rosenbaum J. Intraflagellar transport: It’s not just for cilia anymore. Curr. Opin. Cell Biol. 2009;22:75–80. doi: 10.1016/j.ceb.2009.10.010. PubMed DOI PMC
Taschner M., Lorentzen A., Mourão A., Collins T., Freke G.M., Moulding D., Basquin J., Jenkins D., Lorentzen E. Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis. eLife. 2018;7:e33067. doi: 10.7554/eLife.33067. PubMed DOI PMC
Perretta-Tejedor N., Freke G., Seda M., Long D.A., Jenkins D. Generating Mutant Renal Cell Lines Using CRISPR Technologies. Methods Mol. Biol. 2020;2067:323–340. doi: 10.1007/978-1-4939-9841-8_20. PubMed DOI PMC
van Dam T.J., Wheway G., Slaats G.G., SYSCILIA Study Group. Huynen M.A., Giles R.H. The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium. Cilia. 2013;2:7. doi: 10.1186/2046-2530-2-7. PubMed DOI PMC
van Dam T.J.P., Kennedy J., van der Lee R., de Vrieze E., Wunderlich K.A., Rix S., Dougherty G.W., Lambacher N.J., Li C., Jensen V.L., et al. CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS ONE. 2019;14:e0216705. doi: 10.1371/journal.pone.0216705. PubMed DOI PMC
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
The Gene Ontology Consortium The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47:D330–D338. doi: 10.1093/nar/gky1055. PubMed DOI PMC
Nozaki S., Katoh Y., Kobayashi T., Nakayama K. BBS1 is involved in retrograde trafficking of ciliary GPCRs in the context of the BBSome complex. PLoS ONE. 2018;13:e01950055. doi: 10.1371/journal.pone.0195005. PubMed DOI PMC
Prasai A., Cernohorska M.S., Ruppova K., Niederlova V., Andelova M., Draber P., Stepanek O., Huranova M. The BBSome assembly is spatially controlled by BBS1 and BBS4 in human cells. J. Biol. Chem. 2020;295:14279–14290. doi: 10.1074/jbc.RA120.013905. PubMed DOI PMC
Yang S., Bahl K., Chou H.-T., Woodsmith J., Stelzl U., Walz T., Nachury M.V. Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes. eLife. 2020;9:e55954. doi: 10.7554/eLife.55954. PubMed DOI PMC
Szaszi K., Amoozadeh Y. New insights into functions, regulation, and pathological roles of tight junctions in kidney tubular epithelium. Int. Rev. Cell Mol. Biol. 2014;308:205–271. doi: 10.1016/B978-0-12-800097-7.00006-3. PubMed DOI
Mendonsa A.M., Na T.Y., Gumbiner B.M. E-cadherin in contact inhibition and cancer. Oncogene. 2018;37:4769–4780. doi: 10.1038/s41388-018-0304-2. PubMed DOI PMC
Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Liberzon A., Subramanian A., Pinchback R., Thorvaldsdóttir H., Tamayo P., Mesirov J.P. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–1740. doi: 10.1093/bioinformatics/btr260. PubMed DOI PMC
Liberzon A., Birger C., Thorvaldsdóttir H., Ghandi M., Mesirov J.P., Tamayo P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 2015;1:417–425. doi: 10.1016/j.cels.2015.12.004. PubMed DOI PMC
Gascue C., Tan P.L., Cardenas-Rodriguez M., Libisch G., Fernandez-Calero T., Liu Y.P., Astrada S., Robello C., Naya H., Katsanis N., et al. Direct role of Bardet–Biedl syndrome proteins in transcriptional regulation. J. Cell Sci. 2012;125:362–375. doi: 10.1242/jcs.089375. PubMed DOI PMC
Kilpinen H., Goncalves A., Leha A., Afzal V., Alasoo K., Ashford S., Bala S., Bensaddek D., Casale F.P., Culley O.J., et al. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature. 2017;546:370–375. doi: 10.1038/nature22403. Erratum in Nature 2017, 546, 686. PubMed DOI PMC
Gröger C.J., Grubinger M., Waldhör T., Vierlinger K., Mikulits W. Meta-Analysis of Gene Expression Signatures Defining the Epithelial to Mesenchymal Transition during Cancer Progression. PLoS ONE. 2012;7:e51136. doi: 10.1371/journal.pone.0051136. PubMed DOI PMC
Iyer V., Boroviak K., Thomas M., Doe B., Riva L., Ryder E., Adams D.J. No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. PLoS Genet. 2018;14:e1007503. doi: 10.1371/journal.pgen.1007503. PubMed DOI PMC
Forbes T.A., Howden S.E., Lawlor K., Phipson B., Maksimovic J., Hale L., Wilson S., Quinlan C., Ho G., Holman K., et al. Patient-iPSC-Derived Kidney Organoids Show Functional Validation of a Ciliopathic Renal Phenotype and Reveal Underlying Pathogenetic Mechanisms. Am. J. Hum. Genet. 2018;102:816–831. doi: 10.1016/j.ajhg.2018.03.014. PubMed DOI PMC
May-Simera H.L., Wan Q., Jha B.S., Hartford J., Khristov V., Dejene R., Chang J., Patnaik S., Lu Q., Banerjee P., et al. Primary Cilium-Mediated Retinal Pigment Epithelium Maturation Is Disrupted in Ciliopathy Patient Cells. Cell Rep. 2018;22:189–205. doi: 10.1016/j.celrep.2017.12.038. PubMed DOI PMC
Lamouille S., Xu J., Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014;15:178–196. doi: 10.1038/nrm3758. PubMed DOI PMC
Aschauer L., Gruber L.N., Pfaller W., Limonciel A., Athersuch T.J., Cavill R., Khan A., Gstraunthaler G., Grillari J., Grillari R., et al. Delineation of the Key Aspects in the Regulation of Epithelial Monolayer Formation. Mol. Cell. Biol. 2013;33:2535–2550. doi: 10.1128/MCB.01435-12. PubMed DOI PMC
Delous M., Hellman N.E., Gaudé H.-M., Silbermann F., Le Bivic A., Salomon R., Antignac C., Saunier S. Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum. Mol. Genet. 2009;18:4711–4723. doi: 10.1093/hmg/ddp434. PubMed DOI PMC
Sang L., Miller J.J., Corbit K.C., Giles R.H., Brauer M.J., Otto E.A., Baye L.M., Wen X., Scales S.J., Kwong M., et al. Mapping the NPHP-JBTS-MKS Protein Network Reveals Ciliopathy Disease Genes and Pathways. Cell. 2011;145:513–528. doi: 10.1016/j.cell.2011.04.019. PubMed DOI PMC
Tobin J.L., Di Franco M., Eichers E., May-Simera H., Garcia M., Yan J., Quinlan R., Justice M.J., Hennekam R.C., Briscoe J., et al. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung’s disease in Bardet–Biedl syndrome. Proc. Natl. Acad. Sci. USA. 2008;105:6714–6719. doi: 10.1073/pnas.0707057105. PubMed DOI PMC
Colla T.T.C.S., Dixon J., Edwards S.J., Gladwin A.J., Dixon M.J., Loftus S.K., Bonner C.A., Koprivnikar K., Wasmuth J.J. Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. Nat. Genet. 1996;12:130–136. doi: 10.1038/ng0296-130. PubMed DOI
Gál Z., Nieto B., Boukoura S., Rasmussen A.V., Larsen D.H. Treacle Sticks the Nucleolar Responses to DNA Damage Together. Front. Cell Dev. Biol. 2022;10:892006. doi: 10.3389/fcell.2022.892006. PubMed DOI PMC
Ng S.B., Buckingham K.J., Lee C., Bigham A.W., Tabor H.K., Dent K.M., Huff C.D., Shannon P.T., Jabs E.W., Nickerson D.A., et al. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 2010;42:30–35. doi: 10.1038/ng.499. PubMed DOI PMC
White R.M., Cech J., Ratanasirintrawoot S., Lin C.Y., Rahl P.B., Burke C.J., Langdon E., Tomlinson M.L., Mosher J.T., Kaufman C.K., et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature. 2011;471:518–522. doi: 10.1038/nature09882. PubMed DOI PMC
Santos F., Moreira C., Nóbrega-Pereira S., de Jesus B.B. New Insights into the Role of Epithelial–Mesenchymal Transition during Aging. Int. J. Mol. Sci. 2019;20:891. doi: 10.3390/ijms20040891. PubMed DOI PMC
Meyer J.R., Krentz A.D., Berg R.L., Richardson J.G., Pomeroy J., Hebbring S.J., Haws R.M. Kidney failure in Bardet–Biedl syndrome. Clin. Genet. 2022;101:429–441. doi: 10.1111/cge.14119. PubMed DOI PMC
Hemachandar R. Bardet–Biedl syndrome: A rare cause of end stage renal disease. Int. J. Appl. Basic Med. Res. 2015;5:70–72. doi: 10.4103/2229-516X.149254. PubMed DOI PMC
Croft J.B., Swift M. Obesity, hypertension, and renal disease in relatives of Bardet-Biedl syndrome sibs. Am. J. Med. Genet. 1990;36:37–42. doi: 10.1002/ajmg.1320360109. PubMed DOI
O’Dea D., Parfrey P.S., Harnett J.D., Hefferton D., Cramer B.C., Green J. The importance of renal impairment in the natural history of bardet-biedl syndrome. Am. J. Kidney Dis. 1996;27:776–783. doi: 10.1016/S0272-6386(96)90513-2. PubMed DOI
Beales P.L., Elcioglu N., Woolf A.S., Parker D., Flinter F.A. New criteria for improved diagnosis of Bardet-Biedl syndrome: Results of a population survey. J. Med. Genet. 1999;36:437–446. doi: 10.1136/jmg.36.6.437. PubMed DOI PMC
Forsythe E., Sparks K., Hoskins B., Bagkeris E., McGowan B., Carroll P., Huda M., Mujahid S., Peters C., Barrett T., et al. Genetic predictors of cardiovascular morbidity in Bardet–Biedl syndrome. Clin. Genet. 2014;87:343–349. doi: 10.1111/cge.12373. Erratum in Clin. Genet. 2016, 89, 636. PubMed DOI PMC
Forsythe E., Beales P.L. Bardet–Biedl syndrome. Eur. J. Hum. Genet. 2012;21:8–13. doi: 10.1038/ejhg.2012.115. PubMed DOI PMC
Putoux A., Attie-Bitach T., Martinovic J., Gubler M.-C. Phenotypic variability of Bardet-Biedl syndrome: Focusing on the kidney. Pediatr. Nephrol. 2012;27:7–15. doi: 10.1007/s00467-010-1751-3. PubMed DOI
Gloeckner C.J., Boldt K., Schumacher A., Roepman R., Ueffing M. A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes. Proteomics. 2007;7:4228–4234. doi: 10.1002/pmic.200700038. PubMed DOI
Gloeckner C.J., Boldt K., Schumacher A., Ueffing M. Tandem affinity purification of protein complexes from mammalian cells by the Strep/FLAG (SF)-TAP tag. Methods Mol. Biol. 2009;564:359–372. doi: 10.1007/978-1-60761-157-8_21. PubMed DOI
Gloeckner C.J., Boldt K., Ueffing M. Strep/FLAG Tandem Affinity Purification (SF-TAP) to Study Protein Interactions. Curr. Protoc. Protein Sci. 2009;57:19.20.1–19.20.19. doi: 10.1002/0471140864.ps1920s57. PubMed DOI
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. feature Counts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC