Phosphorylation of multiple proteins involved in ciliogenesis by Tau Tubulin kinase 2

. 2020 May 01 ; 31 (10) : 1032-1046. [epub] 20200304

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32129703

Primary cilia are organelles necessary for proper implementation of developmental and homeostasis processes. To initiate their assembly, coordinated actions of multiple proteins are needed. Tau tubulin kinase 2 (TTBK2) is a key player in the cilium assembly pathway, controlling the final step of cilia initiation. The function of TTBK2 in ciliogenesis is critically dependent on its kinase activity; however, the precise mechanism of TTBK2 action has so far not been fully understood due to the very limited information about its relevant substrates. In this study, we demonstrate that CEP83, CEP89, CCDC92, Rabin8, and DVL3 are substrates of TTBK2 kinase activity. Further, we characterize a set of phosphosites of those substrates and CEP164 induced by TTBK2 in vitro and in vivo. Intriguingly, we further show that identified TTBK2 phosphosites and consensus sequence delineated from those are distinct from motifs previously assigned to TTBK2. Finally, we show that TTBK2 is also required for efficient phosphorylation of many S/T sites in CEP164 and provide evidence that TTBK2-induced phosphorylations of CEP164 modulate its function, which in turn seems relevant for the process of cilia formation. In summary, our work provides important insight into the substrates-TTBK2 kinase relationship and suggests that phosphorylation of substrates on multiple sites by TTBK2 is probably involved in the control of ciliogenesis in human cells.

Zobrazit více v PubMed

Bah A, Forman-Kay JD. (2016). Modulation of intrinsically disordered protein function by post-translational modifications. PubMed PMC

Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD. (2015). Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. PubMed

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. (2009). MEME Suite: Tools for motif discovery and searching. PubMed DOI PMC

Bauer P, Stevanin G, Beetz C, Synofzik M, Schmitz-Hübsch T, Wüllner U, Berthier E, Ollagnon-Roman E, Riess O, Forlani S, PubMed

Bernatík O, Šedová K, Schille C, Ganji RS, Cˇervenka I, Trantírek L, Schambony A, Zdráhal Z, Bryja V. (2014). Functional analysis of dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1ε and Frizzled5. PubMed PMC

Borgal L, Rinschen MM, Dafinger C, Hoff S, Reinert MJ, Lamkemeyer T, Lienkamp SS, Benzing T, Schermer B. (2014). Casein kinase 1 α phosphorylates the Wnt regulator Jade-1 and modulates its activity. PubMed PMC

Bouskila M, Esoof N, Gay L, Fang EH, Deak M, Begley MJ, Cantley LC, Prescott A, Storey KG, Alessi DR. (2011). TTBK2 kinase substrate specificity and the impact of spinocerebellar- ataxia-causing mutations on expression, activity, localization and development. PubMed PMC

Bowie E, Norris R, Anderson KV, Goetz SC. (2018). Spinocerebellar ataxia type 11-associated alleles of Ttbk2 dominantly interfere with ciliogenesis and cilium stability. PubMed DOI PMC

Bowler M, Kong D, Sun S, Nanjundappa R, Evans L, Farmer V, Holland A, Mahjoub MR, Sui H, Loncarek J. (2019). High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. PubMed PMC

Bryja V, Cˇervenka I, Cˇajánek L. (2017). The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? PubMed PMC

Cˇajánek L, Nigg EA. (2014). Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. PubMed PMC

Cegielska A, Gietzen KF, Rivers A, Virshup DM. (1998). Autoinhibition of casein kinase I ε (CKIε) is relieved by protein phosphatases and limited proteolysis. PubMed

Cervenka I, Valnohova J, Bernatik O, Harnos J, Radsetoulal M, Sedova K, Hanakova K, Potesil D, Sedlackova M, Salasova A, PubMed PMC

Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, Wang H, Hurd TW, Zhou W, Cluckey A, PubMed PMC

Chang J, Seo SG, Lee KH, Nagashima K, Bang JK, Kim BY, Erikson RL, Lee KW, Lee HJ, Park JE, PubMed PMC

Cheng A, Grant C, Bailey TL, Noble W. (2017). MoMo: Discovery of post-translational modification motifs. PubMed PMC

Cheong JK, Virshup DM. (2011). Casein kinase 1: Complexity in the family. PubMed

Chou MF, Schwartz D. (2011). Biological sequence motif discovery sing motif-x. PubMed DOI

Cohen P. (2000). The regulation of protein function by multisite phosphorylation - A 25 year update. PubMed

Dyson HJ, Wright PE. (2005). Intrinsically unstructured proteins and their functions. PubMed

Ferrarese A, Marin O, Bustos VH, Venerando A, Antonelli M, Allende JE, Pinna LA. (2007). Chemical dissection of the APC repeat 3 multistep phosphorylation by the concerted action of protein kinases CK1 and GSK3. PubMed

Flotow H, Graves PR, Wang A, Fiol CJ, Roeske RW, Roach PJ. (1990). Phosphate groups as substrate determinants for casein kinase I action. PubMed

Flotow H, Roach PJ. (1991). Role of acidic residues as substrate determinants for casein kinase I. PubMed

Goetz SC, Liem KF, Anderson KV. (2012). The spinocerebellar ataxia-associated gene tau tubulin kinase 2 controls the initiation of ciliogenesis. PubMed PMC

Graser S, Stierhof YD, Lavoie SB, Gassner OS, Lamla S, Le Clech M, Nigg EA. (2007). Cep164, a novel centriole appendage protein required for primary cilium formation. PubMed PMC

Hanáková K, Bernatík O, Ovesná P, Kravec M, Micka M, Rádsetoulal M, Poteˇšil D, Cˇajánek L, Zdráhal Z, Bryja V. (2019). Comparative phosphorylation map of Dishevelled3 (DVL3). PubMed PMC

Hegyi H, Schad E, Tompa P. (2007). Structural disorder promotes assembly of protein complexes. PubMed DOI PMC

Hehnly H, Chen CT, Powers CM, Liu HL, Doxsey S. (2012). The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole. PubMed PMC

Houlden H, Johnson J, Gardner-Thorpe C, Lashley T, Hernandez D, Wort P, Singleton AB, Hilton DA, Holton J, Revesz T, PubMed

Huang N, Zhang D, Li F, Chai P, Wang S, Teng J, Chen J. (2018). M-Phase Phosphoprotein 9 regulates ciliogenesis by modulating CP110-CEP97 complex localization at the mother centriole. PubMed PMC

Hunter T. (1995). Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. PubMed

Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK. (2004). The importance of intrinsic disorder for protein phosphorylation. PubMed PMC

Ikezu S, Ikezu T. (2014). Tau-tubulin kinase. PubMed DOI PMC

Ishikawa H, Marshall WF. (2011). Ciliogenesis: Building the cell’s antenna. PubMed

Jay J, Hammer A, Nestor-Kalinoski A, Diakonova M. (2015). JAK2 tyrosine kinase phosphorylates and is negatively regulated by centrosomal protein ninein. PubMed PMC

Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, de la Roche M, Michaelis M, PubMed PMC

Joo K, Kim CG, Lee MS, Moon HY, Lee SH, Kim MJ, Kweon HS, Park WY, Kim CH, Gleeson JG, PubMed PMC

Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza-Blanc P, Gleeson JG. (2010). Functional genomic screen for modulators of ciliogenesis and cilium length. PubMed PMC

Kitano-Takahashi M, Morita H, Kondo S, Tomizawa K, Kato R, Tanio M, Shirota Y, Takahashi H, Sugio S, Kohno T. (2007). Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein. PubMed PMC

Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M. (2005). The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes. PubMed

Knödler A, Feng S, Zhang J, Zhang X, Das A, Peränen J, Guo W. (2010). Coordination of Rab8 and Rab11 in primary ciliogenesis. PubMed PMC

Kuhns S, Schmidt KN, Reymann J, Gilbert DF, Neuner A, Hub B, Carvalho R, Wiedemann P, Zentgraf H, Erfle H, PubMed PMC

Kurtulmus B, Yuan C, Schuy J, Neuner A, Hata S, Kalamakis G, Martin-Villalba A, Pereira G. (2018). LRRC45 contributes to early steps of axoneme extension. PubMed DOI

Liao JC, Yang TT, Weng RR, Kuo CTe, Chang CW. (2015). TTBK2: A tau protein kinase beyond tau phosphorylation. PubMed DOI PMC

Lindquist SG, Møller LB, Dali CI, Marner L, Kamsteeg EJ, Nielsen JE, Hjermind LE. (2017). A novel TTBK2 de novo mutation in a danish family with early-onset spinocerebellar ataxia. PubMed

Lo CH, Lin IH, Yang TT, Huang YC, Tanos BE, Chou PC, Chang CW, Tsay YG, Liao JC, Wang WJ. (2019). Phosphorylation of CEP83 by TTBK2 is necessary for cilia initiation. PubMed PMC

Lu Q, Insinna C, Ott C, Stauffer J, Pintado PA, Rahajeng J, Baxa U, Walia V, Cuenca A, Hwang YS, PubMed PMC

Marin O, Bustos VH, Cesaro L, Meggio F, Pagano MA, Antonelli M, Allende CC, Pinna LA, Allende JE. (2003). A noncanonical sequence phosphorylated by casein kinase 1 in β-catenin may play a role in casein kinase 1 targeting of important signaling proteins. PubMed PMC

Mitchison HM, Valente EM. (2017). Motile and non-motile cilia in human pathology: from function to phenotypes. PubMed

Mlodzik M. (2016). The dishevelled protein family: still rather a mystery after over 20 years of molecular studies. PubMed PMC

Nigg EA, Stearns T. (2011). The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. PubMed PMC

Oda T, Chiba S, Nagai T, Mizuno K. (2014). Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis. PubMed

Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z. (2005). Optimizing long intrinsic disorder predictors with protein evolutionary information. PubMed

Peng QY, Zhang QF. (2006). Precise positions of Phoebe determined with CCD image-overlapping calibration.

Perez-Riverol Y, PubMed PMC

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. (2013). Genome engineering using the CRISPR-Cas9 system. PubMed PMC

Reiter JF, Leroux MR. (2017). Genes and molecular pathways underpinning ciliopathies. PubMed PMC

Schindelin J, PubMed PMC

Schmidt KN, Kuhns S, Neuner A, Hub B, Zentgraf H, Pereira G. (2012). Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. PubMed PMC

Schwarz-Romond T, Fiedler M, Shibata N, Butler PJG, Kikuchi A, Higuchi Y, Bienz M. (2007). The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. PubMed

Seeley ES, Nachury MV. (2010). The perennial organelle: Assembly and disassembly of the primary cilium. PubMed PMC

Sieracki NA, Komarova YA. (2013). Studying cell signal transduction with biomimetic point mutations. InTech, 10.5772/35029. DOI

Sillibourne JE, Hurbain I, Grand-Perret T, Goud B, Tran P, Bornens M. (2013). Primary ciliogenesis requires the distal appendage component Cep123. PubMed PMC

Sorokin S. (1962). Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. PubMed PMC

Spektor A, Tsang WY, Khoo D, Dynlacht BD. (2007). Cep97 and CP110 suppress a cilia assembly program. PubMed

Takahashi M, Tomizawa K, Sato K, Ohtake A, Omori A. (1995). A novel tau-tubulin kinase from bovine brain. PubMed

Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, Asara JM, Tsou MFB. (2013). Centriole distal appendages promote membrane docking, leading to cilia initiation. PubMed PMC

Tomizawa K, Omori A, Ohtake A, Sato K, Takahashi M. (2001). Tau-tubulin kinase phosphorylates tau at Ser-208 and Ser-210, sites found in paired helical filament-tau. PubMed

Tsun A, Qureshi I, Stinchcombe JC, Jenkins MR, De La Roche M, Kleczkowska J, Zamoyska R, Griffiths GM. (2011). Centrosome docking at the immunological synapse is controlled by Lck signaling. PubMed PMC

Wang L, Dynlacht BD. (2018). The regulation of cilium assembly and disassembly in development and disease. PubMed PMC

Watanabe T, Kakeno M, Matsui T, Sugiyama I, Arimura N, Matsuzawa K, Shirahige A, Ishidate F, Nishioka T, Taya S, PubMed PMC

Wei Q, Xu Q, Zhang Y, Li Y, Zhang Q, Hu Z, Harris PC, Torres VE, Ling K, Hu J. (2013). Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. PubMed DOI PMC

Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE, Phu L, Chalouni C, Beck JS, Kirkpatrick DS, Slusarski DC, PubMed PMC

Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH, Dlugosz AA, Reiter JF. (2009). Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. PubMed PMC

Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A, Kroll A, Seo CP, Hsia JE, Kim SK, Mitchell JW, PubMed PMC

Wu CT, Chen HY, Tang TK. (2018). Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. PubMed

Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. (2007). Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. PubMed PMC

Xu Q, Zhang Y, Wei Q, Huang Y, Hu J, Ling K. (2016). Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. PubMed PMC

Yang TT, PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phosphorylation at the Helm: Kinase-Mediated Regulation of Primary Cilia Assembly and Disassembly

. 2025 Nov ; 82 (11) : 707-718. [epub] 20250310

Cilia at the crossroad: convergence of regulatory mechanisms to govern cilia dynamics during cell signaling and the cell cycle

. 2025 Jun 07 ; 15 (1) : 81. [epub] 20250607

Tau-tubulin kinase 2 restrains microtubule-depolymerizer KIF2A to support primary cilia growth

. 2025 Feb 10 ; 23 (1) : 73. [epub] 20250210

Tau tubulin kinase 1 and 2 regulate ciliogenesis and human pluripotent stem cells-derived neural rosettes

. 2023 Aug 09 ; 13 (1) : 12884. [epub] 20230809

A protocol for generation and live-cell imaging analysis of primary cilia reporter cell lines

. 2022 Mar 18 ; 3 (1) : 101199. [epub] 20220302

Phosphorylated and Phosphomimicking Variants May Differ-A Case Study of 14-3-3 Protein

. 2022 ; 10 () : 835733. [epub] 20220307

Molecular mechanisms underlying the role of the centriolar CEP164-TTBK2 complex in ciliopathies

. 2022 Jan 06 ; 30 (1) : 114-128.e9. [epub] 20210908

Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling

. 2021 ; 9 () : 623753. [epub] 20210226

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...