Phosphorylation of multiple proteins involved in ciliogenesis by Tau Tubulin kinase 2
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32129703
PubMed Central
PMC7346730
DOI
10.1091/mbc.e19-06-0334
Knihovny.cz E-zdroje
- MeSH
- aminokyselinové motivy MeSH
- cilie metabolismus MeSH
- fosforylace MeSH
- fosfoserin metabolismus MeSH
- fosfothreonin metabolismus MeSH
- HEK293 buňky MeSH
- kasein kinasa I metabolismus MeSH
- lidé MeSH
- multiproteinové komplexy metabolismus MeSH
- organogeneze * MeSH
- protein-serin-threoninkinasy chemie metabolismus MeSH
- substrátová specifita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfoserin MeSH
- fosfothreonin MeSH
- kasein kinasa I MeSH
- multiproteinové komplexy MeSH
- protein-serin-threoninkinasy MeSH
- tau-tubulin kinase MeSH Prohlížeč
Primary cilia are organelles necessary for proper implementation of developmental and homeostasis processes. To initiate their assembly, coordinated actions of multiple proteins are needed. Tau tubulin kinase 2 (TTBK2) is a key player in the cilium assembly pathway, controlling the final step of cilia initiation. The function of TTBK2 in ciliogenesis is critically dependent on its kinase activity; however, the precise mechanism of TTBK2 action has so far not been fully understood due to the very limited information about its relevant substrates. In this study, we demonstrate that CEP83, CEP89, CCDC92, Rabin8, and DVL3 are substrates of TTBK2 kinase activity. Further, we characterize a set of phosphosites of those substrates and CEP164 induced by TTBK2 in vitro and in vivo. Intriguingly, we further show that identified TTBK2 phosphosites and consensus sequence delineated from those are distinct from motifs previously assigned to TTBK2. Finally, we show that TTBK2 is also required for efficient phosphorylation of many S/T sites in CEP164 and provide evidence that TTBK2-induced phosphorylations of CEP164 modulate its function, which in turn seems relevant for the process of cilia formation. In summary, our work provides important insight into the substrates-TTBK2 kinase relationship and suggests that phosphorylation of substrates on multiple sites by TTBK2 is probably involved in the control of ciliogenesis in human cells.
Zobrazit více v PubMed
Bah A, Forman-Kay JD. (2016). Modulation of intrinsically disordered protein function by post-translational modifications. J Biol Chem , 6696–6705. PubMed PMC
Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD. (2015). Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature , 106–109. PubMed
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. (2009). MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res , 10.1093/nar/gkp335. PubMed DOI PMC
Bauer P, Stevanin G, Beetz C, Synofzik M, Schmitz-Hübsch T, Wüllner U, Berthier E, Ollagnon-Roman E, Riess O, Forlani S, et al (2010). Spinocerebellar ataxia type 11 (SCA11) is an uncommon cause of dominant ataxia among French and German kindreds. J Neurol Neurosurg Psychiatry , 1229–1232. PubMed
Bernatík O, Šedová K, Schille C, Ganji RS, Cˇervenka I, Trantírek L, Schambony A, Zdráhal Z, Bryja V. (2014). Functional analysis of dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1ε and Frizzled5. J Biol Chem , 23520–23533. PubMed PMC
Borgal L, Rinschen MM, Dafinger C, Hoff S, Reinert MJ, Lamkemeyer T, Lienkamp SS, Benzing T, Schermer B. (2014). Casein kinase 1 α phosphorylates the Wnt regulator Jade-1 and modulates its activity. J Biol Chem , 26344–26356. PubMed PMC
Bouskila M, Esoof N, Gay L, Fang EH, Deak M, Begley MJ, Cantley LC, Prescott A, Storey KG, Alessi DR. (2011). TTBK2 kinase substrate specificity and the impact of spinocerebellar- ataxia-causing mutations on expression, activity, localization and development. Biochem J , 157–167. PubMed PMC
Bowie E, Norris R, Anderson KV, Goetz SC. (2018). Spinocerebellar ataxia type 11-associated alleles of Ttbk2 dominantly interfere with ciliogenesis and cilium stability. PLoS Genet , 10.1371/journal.pgen.1007844. PubMed DOI PMC
Bowler M, Kong D, Sun S, Nanjundappa R, Evans L, Farmer V, Holland A, Mahjoub MR, Sui H, Loncarek J. (2019). High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nat Commun , 993. PubMed PMC
Bryja V, Cˇervenka I, Cˇajánek L. (2017). The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit Rev Biochem Mol Biol , 614–637. PubMed PMC
Cˇajánek L, Nigg EA. (2014). Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc Natl Acad Sci USA , E2841–E2850. PubMed PMC
Cegielska A, Gietzen KF, Rivers A, Virshup DM. (1998). Autoinhibition of casein kinase I ε (CKIε) is relieved by protein phosphatases and limited proteolysis. J Biol Chem , 1357–1364. PubMed
Cervenka I, Valnohova J, Bernatik O, Harnos J, Radsetoulal M, Sedova K, Hanakova K, Potesil D, Sedlackova M, Salasova A, et al (2016). Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins. Proc Natl Acad Sci USA , 9304–9309. PubMed PMC
Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, Wang H, Hurd TW, Zhou W, Cluckey A, et al (2012). Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell , 533–548. PubMed PMC
Chang J, Seo SG, Lee KH, Nagashima K, Bang JK, Kim BY, Erikson RL, Lee KW, Lee HJ, Park JE, et al (2013). Essential role of Cenexin1, but not Odf2, in ciliogenesis. Cell Cycle , 655–662. PubMed PMC
Cheng A, Grant C, Bailey TL, Noble W. (2017). MoMo: Discovery of post-translational modification motifs. BioRxiv . PubMed PMC
Cheong JK, Virshup DM. (2011). Casein kinase 1: Complexity in the family. Int J Biochem Cell Biol , 465–469. PubMed
Chou MF, Schwartz D. (2011). Biological sequence motif discovery sing motif-x. Curr Protoc Bioinforma, 10.1002/0471250953.bi1315s35. PubMed DOI
Cohen P. (2000). The regulation of protein function by multisite phosphorylation - A 25 year update. Trends Biochem Sci , 596–601. PubMed
Dyson HJ, Wright PE. (2005). Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol , 197–208. PubMed
Ferrarese A, Marin O, Bustos VH, Venerando A, Antonelli M, Allende JE, Pinna LA. (2007). Chemical dissection of the APC repeat 3 multistep phosphorylation by the concerted action of protein kinases CK1 and GSK3. Biochemistry , 11902–11910. PubMed
Flotow H, Graves PR, Wang A, Fiol CJ, Roeske RW, Roach PJ. (1990). Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem , 14264–14269. PubMed
Flotow H, Roach PJ. (1991). Role of acidic residues as substrate determinants for casein kinase I. J Biol Chem , 3724–3727. PubMed
Goetz SC, Liem KF, Anderson KV. (2012). The spinocerebellar ataxia-associated gene tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell , 847–858. PubMed PMC
Graser S, Stierhof YD, Lavoie SB, Gassner OS, Lamla S, Le Clech M, Nigg EA. (2007). Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol , 321–330. PubMed PMC
Hanáková K, Bernatík O, Ovesná P, Kravec M, Micka M, Rádsetoulal M, Poteˇšil D, Cˇajánek L, Zdráhal Z, Bryja V. (2019). Comparative phosphorylation map of Dishevelled3 (DVL3). BioRxiv . PubMed PMC
Hegyi H, Schad E, Tompa P. (2007). Structural disorder promotes assembly of protein complexes. BMC Struct Biol , 10.1186/1472-6807-7-65. PubMed DOI PMC
Hehnly H, Chen CT, Powers CM, Liu HL, Doxsey S. (2012). The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol , 1944–1950. PubMed PMC
Houlden H, Johnson J, Gardner-Thorpe C, Lashley T, Hernandez D, Wort P, Singleton AB, Hilton DA, Holton J, Revesz T, et al (2007). Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet , 1434–1436. PubMed
Huang N, Zhang D, Li F, Chai P, Wang S, Teng J, Chen J. (2018). M-Phase Phosphoprotein 9 regulates ciliogenesis by modulating CP110-CEP97 complex localization at the mother centriole. Nat Commun , 4511. PubMed PMC
Hunter T. (1995). Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell , 225–236. PubMed
Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK. (2004). The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res , 1037–1049. PubMed PMC
Ikezu S, Ikezu T. (2014). Tau-tubulin kinase. Front Mol Neurosci , 10.3389/fnmol.2014.00033. PubMed DOI PMC
Ishikawa H, Marshall WF. (2011). Ciliogenesis: Building the cell’s antenna. Nat Rev Mol Cell Biol , 222–234. PubMed
Jay J, Hammer A, Nestor-Kalinoski A, Diakonova M. (2015). JAK2 tyrosine kinase phosphorylates and is negatively regulated by centrosomal protein ninein. Mol Cell Biol , 111–131. PubMed PMC
Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, de la Roche M, Michaelis M, et al (2018). Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep , 3042–3055. PubMed PMC
Joo K, Kim CG, Lee MS, Moon HY, Lee SH, Kim MJ, Kweon HS, Park WY, Kim CH, Gleeson JG, et al (2013). CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc Natl Acad Sci USA , 5987–5992. PubMed PMC
Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza-Blanc P, Gleeson JG. (2010). Functional genomic screen for modulators of ciliogenesis and cilium length. Nature , 1048–1051. PubMed PMC
Kitano-Takahashi M, Morita H, Kondo S, Tomizawa K, Kato R, Tanio M, Shirota Y, Takahashi H, Sugio S, Kohno T. (2007). Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein. Acta Crystallogr Sect F Struct Biol Cryst Commun , 602–604. PubMed PMC
Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M. (2005). The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes. Cell Signal , 675–689. PubMed
Knödler A, Feng S, Zhang J, Zhang X, Das A, Peränen J, Guo W. (2010). Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci USA , 6346–6351. PubMed PMC
Kuhns S, Schmidt KN, Reymann J, Gilbert DF, Neuner A, Hub B, Carvalho R, Wiedemann P, Zentgraf H, Erfle H, et al (2013). The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. J Cell Biol , 505–522. PubMed PMC
Kurtulmus B, Yuan C, Schuy J, Neuner A, Hata S, Kalamakis G, Martin-Villalba A, Pereira G. (2018). LRRC45 contributes to early steps of axoneme extension. J Cell Sci , 10.1242/jcs.223594. PubMed DOI
Liao JC, Yang TT, Weng RR, Kuo CTe, Chang CW. (2015). TTBK2: A tau protein kinase beyond tau phosphorylation. Biomed Res Int , 10.1155/2015/575170. PubMed DOI PMC
Lindquist SG, Møller LB, Dali CI, Marner L, Kamsteeg EJ, Nielsen JE, Hjermind LE. (2017). A novel TTBK2 de novo mutation in a danish family with early-onset spinocerebellar ataxia. Cerebellum , 268–271. PubMed
Lo CH, Lin IH, Yang TT, Huang YC, Tanos BE, Chou PC, Chang CW, Tsay YG, Liao JC, Wang WJ. (2019). Phosphorylation of CEP83 by TTBK2 is necessary for cilia initiation. J Cell Biol , 3489–3505. PubMed PMC
Lu Q, Insinna C, Ott C, Stauffer J, Pintado PA, Rahajeng J, Baxa U, Walia V, Cuenca A, Hwang YS, et al (2015). Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol , 228–240. PubMed PMC
Marin O, Bustos VH, Cesaro L, Meggio F, Pagano MA, Antonelli M, Allende CC, Pinna LA, Allende JE. (2003). A noncanonical sequence phosphorylated by casein kinase 1 in β-catenin may play a role in casein kinase 1 targeting of important signaling proteins. Proc Natl Acad Sci USA , 10193–10200. PubMed PMC
Mitchison HM, Valente EM. (2017). Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol , 294–309. PubMed
Mlodzik M. (2016). The dishevelled protein family: still rather a mystery after over 20 years of molecular studies. Curr Top Dev Biol, 75–91. PubMed PMC
Nigg EA, Stearns T. (2011). The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol , 1154–1160. PubMed PMC
Oda T, Chiba S, Nagai T, Mizuno K. (2014). Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis. Genes to Cells , 927–940. PubMed
Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z. (2005). Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol , 35–60. PubMed
Peng QY, Zhang QF. (2006). Precise positions of Phoebe determined with CCD image-overlapping calibration. Mon Not R Astron Soc , 208–212.
Perez-Riverol Y, et al (2019). The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res , D442–D450. PubMed PMC
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat Protoc , 2281–2308. PubMed PMC
Reiter JF, Leroux MR. (2017). Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol , 533–547. PubMed PMC
Schindelin J, et al (2012). Fiji: An open-source platform for biological-image analysis. Nat Methods , 676–682. PubMed PMC
Schmidt KN, Kuhns S, Neuner A, Hub B, Zentgraf H, Pereira G. (2012). Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol , 1083–1101. PubMed PMC
Schwarz-Romond T, Fiedler M, Shibata N, Butler PJG, Kikuchi A, Higuchi Y, Bienz M. (2007). The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol , 484–492. PubMed
Seeley ES, Nachury MV. (2010). The perennial organelle: Assembly and disassembly of the primary cilium. J Cell Sci , 511–518. PubMed PMC
Sieracki NA, Komarova YA. (2013). Studying cell signal transduction with biomimetic point mutations. InTech, 10.5772/35029. DOI
Sillibourne JE, Hurbain I, Grand-Perret T, Goud B, Tran P, Bornens M. (2013). Primary ciliogenesis requires the distal appendage component Cep123. Biol Open , 535–545. PubMed PMC
Sorokin S. (1962). Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol , 363–377. PubMed PMC
Spektor A, Tsang WY, Khoo D, Dynlacht BD. (2007). Cep97 and CP110 suppress a cilia assembly program. Cell , 678–690. PubMed
Takahashi M, Tomizawa K, Sato K, Ohtake A, Omori A. (1995). A novel tau-tubulin kinase from bovine brain. FEBS Lett , 59–64. PubMed
Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, Asara JM, Tsou MFB. (2013). Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev , 163–168. PubMed PMC
Tomizawa K, Omori A, Ohtake A, Sato K, Takahashi M. (2001). Tau-tubulin kinase phosphorylates tau at Ser-208 and Ser-210, sites found in paired helical filament-tau. FEBS Lett , 221–227. PubMed
Tsun A, Qureshi I, Stinchcombe JC, Jenkins MR, De La Roche M, Kleczkowska J, Zamoyska R, Griffiths GM. (2011). Centrosome docking at the immunological synapse is controlled by Lck signaling. J Cell Biol , 663–674. PubMed PMC
Wang L, Dynlacht BD. (2018). The regulation of cilium assembly and disassembly in development and disease. Dev . PubMed PMC
Watanabe T, Kakeno M, Matsui T, Sugiyama I, Arimura N, Matsuzawa K, Shirahige A, Ishidate F, Nishioka T, Taya S, et al (2015). TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation. J Cell Biol , 737–751. PubMed PMC
Wei Q, Xu Q, Zhang Y, Li Y, Zhang Q, Hu Z, Harris PC, Torres VE, Ling K, Hu J. (2013). Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. Nat Commun , 10.1038/ncomms3750. PubMed DOI PMC
Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE, Phu L, Chalouni C, Beck JS, Kirkpatrick DS, Slusarski DC, et al (2011). Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci USA , 2759–2764. PubMed PMC
Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH, Dlugosz AA, Reiter JF. (2009). Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med , 1055–1061. PubMed PMC
Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A, Kroll A, Seo CP, Hsia JE, Kim SK, Mitchell JW, et al (2015). Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science (80-) , 1155–1160. PubMed PMC
Wu CT, Chen HY, Tang TK. (2018). Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat Cell Biol , 175–185. PubMed
Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. (2007). Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res , 1917–1932. PubMed PMC
Xu Q, Zhang Y, Wei Q, Huang Y, Hu J, Ling K. (2016). Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat Commun , 10777. PubMed PMC
Yang TT, et al (2018). Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat Commun , 10.1038/s41467-018-04469-1. PubMed DOI PMC
Tau-tubulin kinase 2 restrains microtubule-depolymerizer KIF2A to support primary cilia growth
A protocol for generation and live-cell imaging analysis of primary cilia reporter cell lines
Phosphorylated and Phosphomimicking Variants May Differ-A Case Study of 14-3-3 Protein
Molecular mechanisms underlying the role of the centriolar CEP164-TTBK2 complex in ciliopathies
Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling