Smelly interactions: host-borne volatile organic compounds triggering behavioural responses in mosquitoes, sand flies, and ticks

. 2024 May 16 ; 17 (1) : 227. [epub] 20240516

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38755646

Grantová podpora
PE00000007, INF-ACT MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases
PE00000007, INF-ACT MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases

Odkazy

PubMed 38755646
PubMed Central PMC11100076
DOI 10.1186/s13071-024-06299-1
PII: 10.1186/s13071-024-06299-1
Knihovny.cz E-zdroje

Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physiological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposition site selection for gravid females. Furthermore, deadly vector-borne pathogens such as Plasmodium falciparum and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks toward their vertebrate hosts, as well as potential tools for diagnosis of vector-borne diseases (VBDs). Herein, we provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.

Zobrazit více v PubMed

Otranto D, Dantas-Torres F. Canine and feline vector-borne diseases in Italy: current situation and perspectives. Parasit Vectors. 2010;3:2. doi: 10.1186/1756-3305-3-2. PubMed DOI PMC

Di Giovanni F, Wilke ABB, Beier JC, Pombi M, Mendoza-Roldan JA, Desneux N, et al. Parasitic strategies of arthropods of medical and veterinary importance. Entomol Generalis. 2021;41:511–522. doi: 10.1127/entomologia/2021/1155. DOI

Bezerra-Santos MA, Dantas-Torres F, Benelli G, Otranto D. Emerging parasites and vectors in a rapidly changing world: from ecology to management. Acta Trop. 2023;238:106746. doi: 10.1016/j.actatropica.2022.106746. PubMed DOI

Anderson JF, Magnarelli LA. Biology of ticks. Infect Dis Clin North Am. 2008;22:195–215. doi: 10.1016/j.idc.2007.12.006. PubMed DOI

Benelli G, Romano D, Rocchigiani G, Caselli A, Mancianti F, Canale A, et al. Behavioral asymmetries in ticks–lateralized questing of Ixodes ricinus to a mechatronic apparatus delivering host-borne cues. Acta Trop. 2018;178:176–181. doi: 10.1016/j.actatropica.2017.11.024. PubMed DOI

Leal B, Zamora E, Fuentes A, Thomas DB, Dearth RK. Questing by tick larvae (Acari: Ixodidae): a review of the influences that affect off-host survival. Ann Entomol Soc Am. 2020;113:425–438. doi: 10.1093/aesa/saaa013. PubMed DOI PMC

Bray DP, Hamilton JG. Host odor synergizes attraction of virgin female Lutzomyia longipalpis (Diptera: Psychodidae) J Med Entomol. 2007;44:779–787. doi: 10.1603/0022-2585(2007)44[779:hosaov]2.0.co;2. PubMed DOI

Nigam Y, Ward RD. The effect of male sandfly pheromone and host factors as attractants for female Lutzomyia longipalpis (Diptera: Psychodidae) Physiol Entomol. 1991;16:305–312. doi: 10.1111/j.1365-3032.1991.tb00569.x. DOI

Kelly DW, Dye C. Pheromones, kairomones and the aggregation dynamics of the sandfly Lutzomyia longipalpis. Anim Behav. 1997;53:721–731. doi: 10.1006/anbe.1996.0309. DOI

Spiegel CN, Dias DB, Araki AS, Hamilton JG, Brazil RP, Jones TM. The Lutzomyia longipalpis complex: a brief natural history of aggregation-sex pheromone communication. Parasit Vectors. 2016;9:580. doi: 10.1186/s13071-016-1866-x. PubMed DOI PMC

Poldy J. Volatile cues influence host-choice in arthropod pests. Animals. 2020;10:1984. doi: 10.3390/ani10111984. PubMed DOI PMC

Alavez-Rosas D, Vargas-Abasolo R, Albores-Flores CI, Meneses-Arias MG, Gutiérrez-Cabrera AE, Benelli G, et al. Chemical ecology of triatomines: current knowledge and implications for Chagas disease vector management. J Pest Sci. 2024;97:507–520. doi: 10.1007/s10340-023-01678-6. DOI

Carapito Â, Roque ACA, Carvalho F, Pinto J, de Guedes Pinho P. Exploiting volatile fingerprints for bladder cancer diagnosis: a scoping review of metabolomics and sensor-based approaches. Talanta. 2024;268:125296. doi: 10.1016/j.talanta.2023.125296. PubMed DOI

de Oliveira Filho JG, Sarria ALF, Ferreira LL, Caulfield JC, Powers SJ, Pickett JA, et al. Quantification of brown dog tick repellents, 2-hexanone and benzaldehyde, and release from tick-resistant beagles, Canis lupus familiaris. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1022:64–69. doi: 10.1016/j.jchromb.2016.03.014. PubMed DOI

Hassaballa IB, Matoke-Muhia D, Masiga DK, Sole CL, Torto B, Tchouassi DP. Behavioural responses of Phlebotomus duboscqi to plant-derived volatile organic compounds. Med Vet Entomol. 2021;35:625–632. doi: 10.1111/mve.12541. PubMed DOI

Wooding M, Rohwer ER, Naudé Y. Chemical profiling of the human skin surface for malaria vector control via a non-invasive sorptive sampler with GC×GC-TOFMS. Anal Bioanal Chem. 2020;412:5759–5777. doi: 10.1007/s00216-020-02799-y. PubMed DOI

Zhang MZ, Wang J, Du LF, He PJ, Jia N. The impact of volatiles on tick-host interaction and vector competence. Curr Opin Insect Sci. 2024;62:101162. doi: 10.1016/j.cois.2024.101162. PubMed DOI

Hassaballa IB, Torto B, Sole CL, Tchouassi DP. Exploring the influence of different habitats and their volatile chemistry in modulating sand fly population structure in a leishmaniasis endemic foci Kenya. PLoS Negl Trop Dis. 2021;15:e0009062. doi: 10.1371/journal.pntd.0009062. PubMed DOI PMC

Khan Z, Bohman B, Ignell R, Hill SR. Odour-mediated oviposition site selection in Aedes aegypti depends on aquatic stage and density. Parasit Vectors. 2023;16:264. doi: 10.1186/s13071-023-05867-1. PubMed DOI PMC

Dormont L, Mulatier M, Carrasco D, Cohuet A. Mosquito attractants. J Chem Ecol. 2021;47:351–393. doi: 10.1007/s10886-021-01261-2. PubMed DOI

Michalet S, Minard G, Chevalier W, Meiffren G, Saucereau Y, Van Tran V, et al. Identification of human skin bacteria attractive to the Asian tiger mosquito. Environ Microbiol. 2019;21:4662–4674. doi: 10.1111/1462-2920.14793. PubMed DOI

Isberg E, Ignell R. Cattle-derived unsaturated aldehydes repel biting midges and mosquitoes. J Chem Ecol. 2022;48:359–369. doi: 10.1007/s10886-021-01347-x. PubMed DOI PMC

Takabayashi J, Shiojiri K. Multifunctionality of herbivory-induced plant volatiles in chemical communication in tritrophic interactions. Curr Opin Insect Sci. 2019;32:110–117. doi: 10.1016/j.cois.2019.01.003. PubMed DOI

Razo-Belman R, Ozuna C. Volatile organic compounds: a review of their current applications as pest biocontrol and disease management. Horticulturae. 2023;9:441. doi: 10.3390/horticulturae9040441. DOI

Busula AO, Takken W, de Boer JG, Mukabana WR, Verhulst NO. Variation in host preferences of malaria mosquitoes is mediated by skin bacterial volatiles. Med Vet Entomol. 2017;31:320–326. doi: 10.1111/mve.12242. PubMed DOI

Sethi S, Nanda R, Chakraborty T. Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin Microbiol Rev. 2013;26:462–475. doi: 10.1128/CMR.00020-13. PubMed DOI PMC

Rodríguez-Hernández P, Rodríguez-Estévez V, Arce L, Gómez-Laguna J. Application of volatilome analysis to the diagnosis of Mycobacteria infection in livestock. Front Vet Sci. 2021;8:635155. doi: 10.3389/fvets.2021.635155. PubMed DOI PMC

Oxner M, Trang A, Mehta J, Forsyth C, Swanson B, Keshavarzian A, et al. The versatility and diagnostic potential of VOC profiling for non infectious diseases. BME Front. 2023;4:0002. doi: 10.34133/bmef.0002. PubMed DOI PMC

Kaplan I. Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? Biol Control. 2012;60:77–89. doi: 10.1016/j.biocontrol.2011.10.017. DOI

Giunti G, Benelli G, Palmeri V, Canale A. Bactrocera oleae-induced olive VOCs routing mate searching in Psyttalia concolor males: impact of associative learning. Bull Entomol Res. 2018;108:40–47. doi: 10.1017/S0007485317000451. PubMed DOI

Svobodová M, Sádlová J, Chang KP, Volf P. Short report: distribution and feeding preference of the sand flies Phlebotomus sergenti and P. papatasi in a cutaneous leishmaniasis focus in Sanliurfa Turkey. Am J Trop Med Hyg. 2003;68:6–9. doi: 10.4269/ajtmh.2003.68.6. PubMed DOI

Allan BF, Goessling LS, Storch GA, Thach RE. Blood meal analysis to identify reservoir hosts for Amblyomma americanum ticks. Emerg Infect Dis. 2010;16:433–440. doi: 10.3201/eid1603.090911. PubMed DOI PMC

Wodecka B, Rymaszewska A, Skotarczak B. Host and pathogen DNA identification in blood meals of nymphal Ixodes ricinus ticks from forest parks and rural forests of Poland. Exp Appl Acarol. 2014;62:543–555. doi: 10.1007/s10493-013-9763-x. PubMed DOI PMC

Kang DS, Martinez R, Hosein A, Shui Feng R, James L, Lovin DD, et al. Identification of host blood meals of mosquitoes (Diptera: Culicidae) collected at the Aripo savannas scientific reserve in Trinidad West Indies. J Med Entomol. 2019;56:1734–1738. doi: 10.1093/jme/tjz113. PubMed DOI PMC

Hlavackova K, Dvorak V, Chaskopoulou A, Volf P, Halada P. A novel MALDI-TOF MS-based method for blood meal identification in insect vectors: a proof of concept study on phlebotomine sand flies. PLoS Negl Trop Dis. 2019;13:e0007669. doi: 10.1371/journal.pntd.0007669. PubMed DOI PMC

Messahel NE, Benallal KE, Halada P, Lafri I, Manseur H, Hakem A, et al. Identification of blood source preferences and Leishmania infection in sand flies (Diptera: Psychodidae) in north-eastern Algeria. Vet Parasitol Reg Stud Reports. 2022;31:100729. doi: 10.1016/j.vprsr.2022.100729. PubMed DOI

Katusi GC, Hermy MRG, Makayula SM, Ignell R, Govella NJ, Hill SR, et al. Seasonal variation in abundance and blood meal sources of primary and secondary malaria vectors within Kilombero Valley Southern Tanzania. Parasit Vectors. 2022;15:479. doi: 10.1186/s13071-022-05586-z. PubMed DOI PMC

Remadi L, Farjallah D, Chargui N, Belgacem S, Baba H, Zrieq R, et al. Blood meal analysis and molecular detection of mammalian Leishmania DNA in wild-caught Sergentomyia spp. from Tunisia and Saudi Arabia. Parasitol Res. 2023;122:2181–2191. doi: 10.1007/s00436-023-07919-y. PubMed DOI

Pittman W, Pollock NB, Taylor EN. Effect of host lizard anemia on host choice and feeding rate of larval western black-legged ticks (Ixodes pacificus) Exp Appl Acarol. 2013;61:471–479. doi: 10.1007/s10493-013-9709-3. PubMed DOI

Sadlova J, Vojtkova B, Becvar T, Lestinova T, Spitzova T, Bates P, et al. Host competence of the African rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis for Leishmania donovani from Ethiopia and L. (Mundinia) sp. from Ghana. Int J Parasitol Par Wildlf. 2020;11:40–45. doi: 10.1016/j.ijppaw.2019.12.002. PubMed DOI PMC

Mendoza-Roldan JA, Zatelli A, Latrofa MS, Iatta R, Bezerra-Santos MA, Annoscia G, et al. Leishmania (Sauroleishmania) tarentolae isolation and sympatric occurrence with Leishmania (Leishmania) infantum in geckoes, dogs and sand flies. PLoS Negl Trop Dis. 2022;16:e0010650. doi: 10.1371/journal.pntd.0010650. PubMed DOI PMC

Giraldo D, McMeniman CJ. Quantification of Anopheles gambiae olfactory preferences under semi-field conditions. Cold Spring Harb Protoc. 2023 doi: 10.1101/pdb.prot108304. PubMed DOI

Barbosa-Cornelio R, Cantor F, Coy-Barrera E, Rodríguez D. Tools in the investigation of volatile semiochemicals on insects: from sampling to statistical analysis. Insects. 2019;10:241. doi: 10.3390/insects10080241. PubMed DOI PMC

Takken W, Knols BG. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999;44:131–157. doi: 10.1146/annurev.ento.44.1.131. PubMed DOI

Smallegange RC, Qiu YT, van Loon JJ, Takken W. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae) Chemic Senses. 2005;30:145–152. doi: 10.1093/chemse/bji010. PubMed DOI

Ríos-Delgado SM, Rodríguez-Ramírez AD, Cruz-López L, Escobar-Pérez LA, Aburto-Juárez Mde L, Torres-Estrada JL. Respuesta de Anopheles albimanus a compuestos volátiles de casas del sur de Chiapas, México [Behavioral response of Anopheles albimanus to volatile compounds collected inside houses from the south of Chiapas, Mexico] Salud Publica Mex. 2008;50:367–374. doi: 10.1590/s0036-36342008000500009. PubMed DOI

Smallegange RC, Qiu YT, Bukovinszkine-Kiss G, Van Loon JJA, Takken W. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto. J Chem Ecol. 2009;35:933–943. doi: 10.1007/s10886-009-9668-7. PubMed DOI PMC

Verhulst NO, Beijleveld H, Knols BG, Takken W, Schraa G, Bouwmeester HJ, et al. Cultured skin microbiota attracts malaria mosquitoes. Malar J. 2009;8:302. doi: 10.1186/1475-2875-8-302. PubMed DOI PMC

Carey AF, Wang G, Su CY, Zwiebel LJ, Carlson JR. Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 2010;464:66–71. doi: 10.1038/nature08834. PubMed DOI PMC

Verhulst NO, Mbadi PA, Kiss GB, Mukabana WR, van Loon JJ, Takken W, et al. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota. Malar J. 2011;10:28. doi: 10.1186/1475-2875-10-28. PubMed DOI PMC

Smallegange RC, Bukovinszkine-Kiss G, Otieno B, Mbadi PA, Takken W, Mukabana WR, et al. Identification of candidate volatiles that affect the behavioural response of the malaria mosquito Anopheles gambiae sensu stricto to an active kairomone blend: laboratory and semi-field assays. Physiol Entomol. 2012;37:60–71. doi: 10.1111/j.1365-3032.2011.00827.x. DOI

Tchouassi DP, Sang R, Sole CL, Bastos AD, Mithoefer K, Torto B. Sheep skin odor improves trap captures of mosquito vectors of Rift Valley fever. PLoS Negl Trop Dis. 2012;6:e1879. doi: 10.1371/journal.pntd.0001879. PubMed DOI PMC

Torres Estrada JL, Ríos Delgado SM, Takken W. Indoor volatiles of primary school classrooms in Tapachula, Chiapas, Mexico, are attractants to Aedes aegypti females. J Am Mosq Control Assoc. 2013;29:297–300. doi: 10.2987/12-6278.1. PubMed DOI

Verhulst NO, Beijleveld H, Qiu YT, Maliepaard C, Verduyn W, Haasnoot GW, et al. Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes. Infect Genet Evol. 2013;18:87–93. doi: 10.1016/j.meegid.2013.05.009. PubMed DOI

Jaleta KT, Hill SR, Birgersson G, Tekie H, Ignell R. Chicken volatiles repel host-seeking malaria mosquitoes. Malar J. 2016;15:354. doi: 10.1186/s12936-016-1386-3. PubMed DOI PMC

Verhulst NO, Weldegergis BT, Menger D, Takken W. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds. Sci Rep. 2016;6:27141. doi: 10.1038/srep27141. PubMed DOI PMC

Kemibala EE, Mafra-Neto A, Saroli J, Silva R, Philbert A, Ng'habi K, et al. Is Anopheles gambiae attraction to floral and human skin-based odours and their combination modulated by previous blood meal experience? Malar J. 2020;19:318. doi: 10.1186/s12936-020-03395-2. PubMed DOI PMC

Kythreoti G, Sdralia N, Tsitoura P, Papachristos DP, Michaelakis A, Karras V, et al. Volatile allosteric antagonists of mosquito odorant receptors inhibit human-host attraction. J Biol Chem. 2021;296:100172. doi: 10.1074/jbc.RA120.016557. PubMed DOI PMC

Omolo MO, Ndiege IO, Hassanali A. Semiochemical signatures associated with differential attraction of Anopheles gambiae to human feet. PLoS ONE. 2021;16:e0260149. doi: 10.1371/journal.pone.0260149. PubMed DOI PMC

Giraldo D, Rankin-Turner S, Corver A, Tauxe GM, Gao AL, Jackson DM, et al. Human scent guides mosquito thermotaxis and host selection under naturalistic conditions. Curr Biol. 2023;33:2367–2382.e7. doi: 10.1016/j.cub.2023.04.050. PubMed DOI PMC

Osterkamp J, Wahl U, Schmalfuss G, Haas W. Host-odour recognition in two tick species is coded in a blend of vertebrate volatiles. J Comp Physiol A. 1999;185:59–67. doi: 10.1007/s003590050366. PubMed DOI

Bunnell T, Hanisch K, Hardege JD, Breithaupt T. The fecal odor of sick hedgehogs (Erinaceus europaeus) mediates olfactory attraction of the tick Ixodes hexagonus. J Chem Ecol. 2011;37:340–347. doi: 10.1007/s10886-011-9936-1. PubMed DOI

Borges LM, de Oliveira Filho JG, Ferreira LL, Louly CC, Pickett JA, Birkett MA. Identification of non-host semiochemicals for the brown dog tick, Rhipicephalus sanguineus sensu lato (Acari: Ixodidae), from tick-resistant beagles, Canis lupus familiaris. Ticks Tick Borne Dis. 2015;6:676–682. doi: 10.1016/j.ttbdis.2015.05.014. PubMed DOI

Kariuki MW, Hassanali A, Ng'ang'a MM. Characterisation of cattle anal odour constituents associated with the repellency of Rhipicephalus appendiculatus. Exp Appl Acarol. 2018;76:221–227. doi: 10.1007/s10493-018-0304-5. PubMed DOI

Faraone N, Light M, Scott C, MacPherson S, Hillier NK. Chemosensory and behavioural responses of Ixodes scapularis to natural products: role of chemosensory organs in volatile detection. Insects. 2020;11:502. doi: 10.3390/insects11080502. PubMed DOI PMC

Zeringóta V, Pereira-Junior RA, Sarria ALF, Henrique ACC, Birkett MA, Borges LMF. Identification of a non-host semiochemical from miniature pinscher, Canis lupus familiaris, that repels Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) Ticks Tick Borne Dis. 2021;12:101582. doi: 10.1016/j.ttbdis.2020.101582. PubMed DOI

López-López N, Rojas JC, Cruz-López L, Ulloa-García A, Malo EA. Dog hair volatiles attract Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) females. J Med Entomol. 2023;60:432–442. doi: 10.1093/jme/tjad019. PubMed DOI

Rebollar-Tellez EA, Hamilton JGC, Ward RD. Response of female Lutzomyia longipalpis to host odour kairomones from human skin. Physiol Entomol. 1999;24:220–226. doi: 10.1046/j.1365-3032.1999.00133.x. DOI

Andrade AJ, Andrade MR, Dias ES, Pinto MC, Eiras ÁE. Are light traps baited with kairomones effective in the capture of Lutzomyia longipalpis and Lutzomyia intermedia? An evaluation of synthetic human odor as an attractant for phlebotomine sand flies (Diptera: Psychodidae: Phlebotominae) Mem Instit Oswaldo Cruz. 2008;103:337–343. doi: 10.1590/S0074-02762008000400004. PubMed DOI

Pinto MC, Bray DP, Eiras AE, Carvalheira HP, Puertas CP. Attraction of the cutaneous leishmaniasis vector Nyssomyia neivai (Diptera: Psychodidae) to host odour components in a wind tunnel. Parasit Vectors. 2012;5:210. doi: 10.1186/1756-3305-5-210. PubMed DOI PMC

Machado VE, Corrêa AG, Goulart TM, Silva FB, Ortiz DG, Pinto MC. Attraction of the sand fly Nyssomyia neivai (Diptera: Psychodidae) to chemical compounds in a wind tunnel. Parasit Vectors. 2015;8:147. doi: 10.1186/s13071-015-0748-y. PubMed DOI PMC

Tavares DDS, Salgado VR, Miranda JC, Mesquita PRR, Rodrigues FM, Barral-Netto M, et al. Attraction of phlebotomine sandflies to volatiles from skin odors of individuals residing in an endemic area of tegumentary leishmaniasis. PLoS ONE. 2018;13:e0203989. doi: 10.1371/journal.pone.0203989. PubMed DOI PMC

Magalhães-Junior JT, Barrouin-Melo SM, Corrêa AG, da Rocha Silva FB, Machado VE, Govone JS, et al. A laboratory evaluation of alcohols as attractants for the sandfly Lutzomyia longipalpis (Diptera:Psychodidae) Parasit Vectors. 2014;7:60. doi: 10.1186/1756-3305-7-60. PubMed DOI PMC

Magalhães-Junior JT, Oliva-Filho AA, Novais HO, Mesquita PRR, Rodrigues FM, Pinto MC, et al. Attraction of the sandfly Lutzomyia longipalpis to possible biomarker compounds from dogs infected with Leishmania infantum. Med Vet Entomol. 2019;33:322–325. doi: 10.1111/mve.12357. PubMed DOI

Staniek ME, Hamilton JGC. Odour of domestic dogs infected with Leishmania infantum is attractive to female but not male sand flies: evidence for parasite manipulation. PLoS Pathog. 2021;17:e1009354. doi: 10.1371/journal.ppat.1009354. PubMed DOI PMC

Chelbi I, Maghraoui K, Zhioua S, Cherni S, Labidi I, Satoskar A, et al. Enhanced attraction of sand fly vectors of Leishmania infantum to dogs infected with zoonotic visceral leishmaniasis. PLoS Negl Trop Dis. 2021;15:e0009647. doi: 10.1371/journal.pntd.0009647. PubMed DOI PMC

Wachira BM, Kabaka JM, Mireji PO, Okoth SO, Nganga MM, Changasi R, et al. Characterization of a composite with enhanced attraction to savannah tsetse flies from constituents or analogues of tsetse refractory waterbuck (Kobus defassa) body odor. PLoS Negl Trop Dis. 2021;15:e0009474. doi: 10.1371/journal.pntd.0009474. PubMed DOI PMC

Mireji PO, Mang'era CM, Bwana BK, Hassanali A. Perspectives on odor-based control of tsetse flies in Africa. Front Physiol. 2022;13:831618. doi: 10.3389/fphys.2022.831618. PubMed DOI PMC

Franklinos LHV, Jones KE, Redding DW, Abubakar I. The effect of global change on mosquito-borne disease. Lancet Infect Dis. 2019;19:e302–e312. doi: 10.1016/S1473-3099(19)30161-6. PubMed DOI

Benelli G. Pathogens manipulating tick behaviour—through a glass, darkly. Pathogens. 2020;9:664. doi: 10.3390/pathogens9080664. PubMed DOI PMC

Giunti G, Becker N, Benelli G. Invasive mosquito vectors in Europe: from bioecology to surveillance and management. Acta Trop. 2023;239:106832. doi: 10.1016/j.actatropica.2023.106832. PubMed DOI

Braks MAH, Meijerink J, Takken W. The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and l-lactic acid, in an olfactometer. Physiol Entomol. 2001;26:142–148. doi: 10.1046/j.1365-3032.2001.00227.x. DOI

Dekker T, Steib B, Cardé RT, Geier M. L-lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med Vet Entomol. 2002;16:91–98. doi: 10.1046/j.0269-283x.2002.00345.x. PubMed DOI

Smallegange RC, Knols BG, Takken W. Effectiveness of synthetic versus natural human volatiles as attractants for Anopheles gambiae (Diptera: Culicidae) sensu stricto. J Med Entomol. 2010;47:338–344. doi: 10.1603/me09015. PubMed DOI

Logan JG, Birkett MA, Clark SJ, Powers S, Seal NJ, Wadhams LJ, et al. Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes. J Chem Ecol. 2008;34:308–322. doi: 10.1007/s10886-008-9436-0. PubMed DOI

Syed Z, Leal WS. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc Natl Acad Sci U S A. 2009;106:18803–18808. doi: 10.1073/pnas.0906932106. PubMed DOI PMC

de Boer JG, Robinson A, Powers SJ, Burgers SLGE, Caulfield JC, Birkett MA, et al. Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions. Sci Rep. 2017;7:9283. doi: 10.1038/s41598-017-08978-9. PubMed DOI PMC

Wynne NE, Lorenzo MG, Vinauger C. Mechanism and plasticity of vectors' host-seeking behavior. Curr Opin Insect Sci. 2020;40:1–5. doi: 10.1016/j.cois.2020.02.001. PubMed DOI

Allan SA, Bernier UR, Kline DL. Attraction of mosquitoes to volatiles associated with blood. J Vector Ecol. 2006;31:71–78. doi: 10.3376/1081-1710(2006)31[71:AOMTVA]2.0.CO;2. PubMed DOI

Geier M, Boeckh J. A new Y-tube olfactometer for mosquitoes to measure the attractiveness of host odours. Entomol Exp Appl. 1999;1999:9–19. doi: 10.1046/j.1570-7458.1999.00519.x. DOI

Healy TP, Copland MJ. Human sweat and 2-oxopentanoic acid elicit a landing response from Anopheles gambiae. Med Vet Entomol. 2000;14:195–200. doi: 10.1046/j.1365-2915.2000.00238.x. PubMed DOI

van Loon JJ, Smallegange RC, Bukovinszkiné-Kiss G, Jacobs F, De Rijk M, Mukabana WR, et al. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chem Ecol. 2015;41:567–573. doi: 10.1007/s10886-015-0587-5. PubMed DOI PMC

Eneh LK, Fillinger U, Borg Karlson AK, Kuttuva Rajarao G, Lindh J. Anopheles arabiensis oviposition site selection in response to habitat persistence and associated physicochemical parameters, bacteria and volatile profiles. Med Vet Entomol. 2019;33:56–67. doi: 10.1111/mve.12336. PubMed DOI PMC

Schoelitsz B, Mwingira V, Mboera LEG, Beijleveld H, Koenraadt CJM, Spitzen J, et al. Chemical mediation of oviposition by Anopheles mosquitoes: a push-pull system driven by volatiles associated with larval stages. J Chem Ecol. 2020;46:397–409. doi: 10.1007/s10886-020-01175-5. PubMed DOI PMC

Elliott RM, Brennan B. Emerging phleboviruses. Curr Opin Virol. 2014;5:50–57. doi: 10.1016/j.coviro.2014.01.011. PubMed DOI PMC

Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI

Cecílio P, Cordeiro-da-Silva A, Oliveira F. Sand flies: basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun Biol. 2022;5:305. doi: 10.1038/s42003-022-03240-z. PubMed DOI PMC

Maia C, Dantas-Torres F, Campino L. Parasite biology: the reservoir hosts. In: Bruschi F, Gradoni L, editors. The leishmaniases: old neglected tropical diseases. Cham: Springer; 2018.

González E, Molina R, Iriso A, Ruiz S, Aldea I, Tello A, et al. Opportunistic feeding behaviour and Leishmania infantum detection in Phlebotomus perniciosus females collected in the human leishmaniasis focus of Madrid, Spain (2012–2018) PLoS Negl Trop Dis. 2021;15:e0009240. doi: 10.1371/journal.pntd.0009240. PubMed DOI PMC

Lozano-Sardaneta YN, Jiménez-Girón EI, Rodríguez-Rojas JJ, Sánchez-Montes S, Álvarez-Castillo L, Sánchez-Cordero V, et al. Species diversity and blood meal sources of phlebotomine sand flies (Diptera: Psychodidae) from Los Tuxtlas, Veracruz. Mexico Acta Trop. 2021;216:105831. doi: 10.1016/j.actatropica.2021.105831. PubMed DOI

Calzolari M, Romeo G, Bergamini F, Dottori M, Rugna G, Carra E. Host preference and Leishmania infantum natural infection of the sand fly Phlebotomus perfiliewi in northern Italy. Acta Trop. 2022;226:106246. doi: 10.1016/j.actatropica.2021.106246. PubMed DOI

Hamilton JG, Ramsoondar TM. Attraction of Lutzomyia longipalpis to human skin odours. Med Vet Entomol. 1994;8:375–380. doi: 10.1111/j.1365-2915.1994.tb00101.x. PubMed DOI

Dougherty MJ, Guerin PM, Ward RD, Hamilton JGC. Behavioural and electrophysiological responses of the phlebotomine sandfly Lutzomyia longipalpis (Diptera: Psychodidae) when exposed to canid host odour kairomones. Physiol Entomol. 1999;24:251–262. doi: 10.1046/j.1365-3032.1999.00139.x. DOI

Kakumanu ML, Marayati BF, Schal C, Apperson CS, Wasserberg G, Ponnusamy L. Oviposition-site selection of Phlebotomus papatasi (Diptera: Psychodidae) sand flies: attraction to bacterial isolates from an attractive rearing medium. J Med Entomol. 2021;58:518–527. doi: 10.1093/jme/tjaa198. PubMed DOI PMC

Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a one health perspective. Trends Parasitol. 2012;28:437–446. doi: 10.1016/j.pt.2012.07.003. PubMed DOI

Jongejan F, Uilenberg G. The global importance of ticks. Parasitol. 2004;129:S3–14. doi: 10.1017/s0031182004005967. PubMed DOI

Otranto D. Arthropod-borne pathogens of dogs and cats: from pathways and times of transmission to disease control. Vet Parasitol. 2018;251:68–77. doi: 10.1016/j.vetpar.2017.12.021. PubMed DOI

Ferreira LL, de Oliveira Filho JG, de Oliveira SF, Lacerda Ferraz AL, Mascarin GM. Attract or repel Amblyomma sculptum ticks: screening of semiochemicals. Vet Parasitol. 2020;278:109036. doi: 10.1016/j.vetpar.2020.109036. PubMed DOI

Ferreira LL, Sarria ALF, de Oliveira Filho JG, de Silva FO, Powers SJ, Caulfield JC, et al. Identification of a non-host semiochemical from tick-resistant donkeys (Equus asinus) against Amblyomma sculptum ticks. Ticks Tick Borne Dis. 2019;10:621–627. doi: 10.1016/j.ttbdis.2019.02.006. PubMed DOI PMC

Louly CC, Soares SF, Silveira DN, Neto OJ, Silva AC, Borges LM. Differences in the susceptibility of two breeds of dogs, English cocker spaniel and beagle, to Rhipicephalus sanguineus (Acari: Ixodidae) Int J Acarol. 2009;35:25–32. doi: 10.1080/01647950802655251. DOI

Louly CC, Soares SF, da Nóbrega SD, Guimarães MS, Borges LM. Differences in the behavior of Rhipicephalus sanguineus tested against resistant and susceptible dogs. Exp Appl Acarol. 2010;51:353–362. doi: 10.1007/s10493-009-9334-3. PubMed DOI

Kelly M, Su CY, Schaber C, Crowley JR, Hsu FF, Carlson JR, et al. Malaria parasites produce volatile mosquito attractants. MBio. 2015;6:e00235–e315. doi: 10.1128/mBio.00235-15. PubMed DOI PMC

Correa R, Coronado LM, Garrido AC, Durant-Archibold AA, Spadafora C. Volatile organic compounds associated with Plasmodium falciparum infection in vitro. Parasit Vectors. 2017;10:215. doi: 10.1186/s13071-017-2157-x. PubMed DOI PMC

Debebe Y, Hill SR, Birgersson G, Tekie H, Ignell R. Plasmodium falciparum gametocyte-induced volatiles enhance attraction of Anopheles mosquitoes in the field. Malar J. 2020;19:327. doi: 10.1186/s12936-020-03378-3. PubMed DOI PMC

Sanford T, Shutler D. Manipulation by Plasmodium parasites of Anopheles mosquito behavior and human odors. Acta Parasitol. 2022;67:1463–1470. doi: 10.1007/s11686-022-00621-6. PubMed DOI

Magalhães-Junior JT, Mesquita PR, Oliveira WF, Oliveira FS, Franke CR, Rodrigues FM, et al. Identification of biomarkers in the hair of dogs: new diagnostic possibilities in the study and control of visceral leishmaniasis. Anal Bioanal Chem. 2014;406:6691–6700. doi: 10.1007/s00216-014-8103-2. PubMed DOI

Nevatte TM, Ward RD, Sedda L, Hamilton JGC. After infection with Leishmania infantum, Golden Hamsters (Mesocricetus auratus) become more attractive to female sand flies (Lutzomyia longipalpis) Sci Rep. 2017;7:6104. doi: 10.1038/s41598-017-06313-w. PubMed DOI PMC

Cator LJ, Lynch PA, Read AF, Thomas MB. Do malaria parasites manipulate mosquitoes? Trends Parasitol. 2012;28:466–470. doi: 10.1016/j.pt.2012.08.004. PubMed DOI PMC

Cator L. Malaria altering host attractiveness and mosquito feeding. Trends Parasitol. 2017;33:338–339. doi: 10.1016/j.pt.2017.03.003. PubMed DOI

Busula AO, Verhulst NO, Bousema T, Takken W, de Boer JG. Mechanisms of Plasmodium-enhanced attraction of mosquito vectors. Trends Parasitol. 2017;33:961–973. doi: 10.1016/j.pt.2017.08.010. PubMed DOI

Emami SN, Lindberg BG, Hua S, Hill SR, Mozuraitis R, Lehmann P, et al. A key malaria metabolite modulates vector blood seeking, feeding, and susceptibility to infection. Science. 2017;355:1076–1080. doi: 10.1126/science.aah4563. PubMed DOI

Emami SN, Hajkazemian M, Mozūraitis R. Can Plasmodium's tricks for enhancing its transmission be turned against the parasite? New hopes for vector control. Pathog Glob Health. 2019;113:325–335. doi: 10.1080/20477724.2019.1703398. PubMed DOI PMC

Schaber CL, Katta N, Bollinger LB, Mwale M, Mlotha-Mitole R, Trehan I, et al. Breathprinting reveals malaria-associated biomarkers and mosquito attractants. J Infect Dis. 2018;217:1553–1560. doi: 10.1093/infdis/jiy072. PubMed DOI PMC

Miller JJ, Odom John AR. The malaria metabolite HMBPP does not trigger erythrocyte terpene release. ACS Infect Dis. 2020;6:2567–2572. doi: 10.1021/acsinfecdis.0c00548. PubMed DOI PMC

Robinson A, Busula AO, Voets MA, Beshir KB, Caulfield JC, Powers SJ, et al. Plasmodium-associated changes in human odor attract mosquitoes. Proc Natl Acad Sci U S A. 2018;115:E4209–E4218. doi: 10.1073/pnas.1721610115. PubMed DOI PMC

De Moraes CM, Stanczyk NM, Betz HS, Pulido H, Sim DG, Read AF, et al. Malaria-induced changes in host odors enhance mosquito attraction. Proc Natl Acad Sci U S A. 2014;111:11079–11084. doi: 10.1073/pnas.1405617111. PubMed DOI PMC

De Moraes CM, Wanjiku C, Stanczyk NM, Pulido H, Sims JW, Betz HS, et al. Volatile biomarkers of symptomatic and asymptomatic malaria infection in humans. Proc Natl Acad Sci U S A. 2018;115:5780–5785. doi: 10.1073/pnas.1801512115. PubMed DOI PMC

Smallegange RC, Verhulst NO, Takken W. Sweaty skin: an invitation to bite? Trends Parasitol. 2011;27:143–148. doi: 10.1016/j.pt.2010.12.009. PubMed DOI

Ellwanger JH, Cardoso JDC, Chies JAB. Variability in human attractiveness to mosquitoes. Curr Res Parasitol Vector Borne Dis. 2021;1:100058. doi: 10.1016/j.crpvbd.2021.100058. PubMed DOI PMC

Wilke ABB, Benelli G, Beier JC. Anthropogenic changes and associated impacts on vector-borne diseases. Trends Parasitol. 2021;37:1027–1030. doi: 10.1016/j.pt.2021.09.013. PubMed DOI

Zhang H, Zhu Y, Liu Z, Peng Y, Peng W, Tong L, et al. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. Cell. 2022;185:2510–2522.e16. doi: 10.1016/j.cell.2022.05.016. PubMed DOI

Kim D, Crippen TL, Dhungel L, Delclos PJ, Tomberlin JK, Jordan HR. Behavioral interplay between mosquito and mycolactone produced by Mycobacterium ulcerans and bacterial gene expression induced by mosquito proximity. PLoS ONE. 2023;18:e0289768. doi: 10.1371/journal.pone.0289768. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phlebotomus perniciosus response to volatile organic compounds of dogs and humans

. 2024 Dec ; 18 (12) : e0012787. [epub] 20241230

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...