Oligomeric Architecture of Mouse Activating Nkrp1 Receptors on Living Cells

. 2019 Apr 16 ; 20 (8) : . [epub] 20190416

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30995786

Grantová podpora
16-24309S Grantová Agentura České Republiky
LH15010 Ministry of Education of the Czech Republic
LD15089 Ministry of Education of the Czech Republic
LQ1604 Ministry of Education of the Czech Republic
RVO61388971 Akademie Věd České Republiky
L200201801 Akademie Věd České Republiky
260443 Univerzita Karlova v Praze
CZ.1.05/1.1.00/02.0109 BIOCEV European Regional Development Fund
LM2015043 CIISB for CMS BIOCEV Ministry of Education of the Czech Republic

Mouse activating Nkrp1 proteins are commonly described as type II transmembrane receptors with disulfide-linked homodimeric structure. Their function and the manner in which Nkrp1 proteins of mouse strain (C57BL/6) oligomerize are still poorly understood. To assess the oligomerization state of Nkrp1 proteins, mouse activating EGFP-Nkrp1s were expressed in mammalian lymphoid cells and their oligomerization evaluated by Förster resonance energy transfer (FRET). Alternatively, Nkrp1s oligomers were detected by Western blotting to specify the ratio between monomeric and dimeric forms. We also performed structural characterization of recombinant ectodomains of activating Nkrp1 receptors. Nkrp1 isoforms c1, c2 and f were expressed prevalently as homodimers, whereas the Nkrp1a displays larger proportion of monomers on the cell surface. Cysteine-to-serine mutants revealed the importance of all stalk cysteines for protein dimerization in living cells with a major influence of cysteine at position 74 in two Nkrp1 protein isoforms. Our results represent a new insight into the oligomerization of Nkrp1 receptors on lymphoid cells, which will help to determine their function.

Zobrazit více v PubMed

Vivier E., Tomasello E., Baratin M., Walzer T., Ugolini S. Functions of natural killer cells. Nat. Immunol. 2008;9:503–510. doi: 10.1038/ni1582. PubMed DOI

Vivier E., Raulet D.H., Moretta A., Caligiuri M.A., Zitvogel L., Lanier L.L., Yokoyama W.M., Ugolini S. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–49. doi: 10.1126/science.1198687. PubMed DOI PMC

Lanier L.L. NK cell receptors. Annu. Rev. Immunol. 1998;16:359–393. doi: 10.1146/annurev.immunol.16.1.359. PubMed DOI

Giorda R., Trucco M. Mouse NKR-P1. A family of genes selectively coexpressed in adherent lymphokine-activated killer cells. J. Immunol. 1991;147:1701–1708. PubMed

Giorda R., Rudert W.A., Vavassori C., Chambers W.H., Hiserodt J.C., Trucco M. NKR-P1, a signal transduction molecule on natural killer cells. Science. 1990;249:1298–1300. doi: 10.1126/science.2399464. PubMed DOI

Chambers W.H., Vujanovic N.L., DeLeo A.B., Olszowy M.W., Herberman R.B., Hiserodt J.C. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J. Exp. Med. 1989;169:1373–1389. doi: 10.1084/jem.169.4.1373. PubMed DOI PMC

Ryan J.C., Niemi E.C., Goldfien R.D., Hiserodt J.C., Seaman W.E. NKR-P1, an activating molecule on rat natural killer cells, stimulates phosphoinositide turnover and a rise in intracellular calcium. J. Immunol. 1991;147:3244–3250. PubMed

Yokoyama W.M., Ryan J.C., Hunter J.J., Smith H.R., Stark M., Seaman W.E. cDNA cloning of mouse NKR-P1 and genetic linkage with LY-49. Identification of a natural killer cell gene complex on mouse chromosome 6. J. Immunol. 1991;147:3229–3236. PubMed

Kveberg L., Dai K.-Z., Inngjerdingen M., Brooks C.G., Fossum S., Vaage J.T. Phylogenetic and functional conservation of the NKR-P1F and NKR-P1G receptors in rat and mouse. Immunogenetics. 2011;63:429–436. doi: 10.1007/s00251-011-0520-1. PubMed DOI PMC

Kveberg L., Dai K.-Z., Westgaard I.H., Daws M.R., Fossum S., Naper C., Vaage J.T. Two major groups of rat NKR-P1 receptors can be distinguished based on chromosomal localization, phylogenetic analysis and Clr ligand binding. Eur. J. Immunol. 2009;39:541–551. doi: 10.1002/eji.200838891. PubMed DOI

Plougastel B., Matsumoto K., Dubbelde C., Yokoyama W.M. Analysis of a 1-Mb BAC contig overlapping the mouse Nkrp1 cluster of genes: Cloning of three new Nkrp1 members, Nkrp1d, Nkrp1e, and Nkrp1f. Immunogenetics. 2001;53:592–598. doi: 10.1007/s002510100367. PubMed DOI

Kung S.K., Su R.C., Shannon J., Miller R.G. The NKR-P1B gene product is an inhibitory receptor on SJL/J NK cells. J. Immunol. 1999;162:5876–5887. PubMed

Glimcher L., Shen F.W., Cantor H. Identification of a cell-surface antigen selectively expressed on the natural killer cell. J. Exp. Med. 1977;145:1–9. doi: 10.1084/jem.145.1.1. PubMed DOI PMC

Sentman C.L., Hacjett J., Moore T.A., Tutt M.M., Bennett M., Kumar V. Pan Natural Killer Cell Monoclonal Antibodies and Their Relationship to the NK1.1 Antigen. Hybridoma. 1989;8:605–614. doi: 10.1089/hyb.1989.8.605. PubMed DOI

Karlhofer F.M., Yokoyama W.M. Stimulation of murine natural killer (NK) cells by a monoclonal antibody specific for the NK1.1 antigen. IL-2-activated NK cells possess additional specific stimulation pathways. J. Immunol. 1991;146:3662–3673. PubMed

Burton R.C., Smart Y.C., Koo G.C., Winn H.J. Studies on murine natural killer (NK) cells. V. Genetic analysis of NK cell markers. Cell. Immunol. 1991;135:445–453. doi: 10.1016/0008-8749(91)90289-N. PubMed DOI

Ryan J.C., Turck J., Niemi E.C., Yokoyama W.M., Seaman W.E. Molecular cloning of the NK1.1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules. J. Immunol. 1992;149:1631–1635. PubMed

Iizuka K., Naidenko O.V., Plougastel B.F.M., Fremont D.H., Yokoyama W.M. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat. Immunol. 2003;4:801–807. doi: 10.1038/ni954. PubMed DOI

Carlyle J.R., Jamieson A.M., Gasser S., Clingan C.S., Arase H., Raulet D.H. Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc. Natl. Acad. Sci. USA. 2004;101:3527–3532. doi: 10.1073/pnas.0308304101. PubMed DOI PMC

Plougastel B., Dubbelde C., Yokoyama W.M. Cloning of Clr, a new family of lectin-like genes localized between mouse Nkrp1a and Cd69. Immunogenetics. 2001;53:209–214. doi: 10.1007/s002510100319. PubMed DOI

Aguilar O.A., Berry R., Rahim M.M.A., Reichel J.J., Popović B., Tanaka M., Fu Z., Balaji G.R., Lau T.N.H., Tu M.M., et al. A Viral Immunoevasin Controls Innate Immunity by Targeting the Prototypical Natural Killer Cell Receptor Family. Cell. 2017;169:58–71.e14. doi: 10.1016/j.cell.2017.03.002. PubMed DOI

Zelensky A.N., Gready J.E. The C-type lectin-like domain superfamily. FEBS J. 2005;272:6179–6217. doi: 10.1111/j.1742-4658.2005.05031.x. PubMed DOI

Lu K., Guidotti G. Identification of the cysteine residues involved in the class I disulfide bonds of the human insulin receptor: properties of insulin receptor monomers. Mol. Biol. Cell. 1996;7:679–691. doi: 10.1091/mbc.7.5.679. PubMed DOI PMC

Zal T., Gascoigne N.R. Using live FRET imaging to reveal early protein–protein interactions during T cell activation. Curr. Opin. Immunol. 2004;16:418–427. doi: 10.1016/j.coi.2004.05.019. PubMed DOI

Bader A.N., Hofman E.G., Voortman J., van Bergen en Henegouwen P.M.P., Gerritsen H.C. Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys. J. 2009;97:2613–2622. doi: 10.1016/j.bpj.2009.07.059. PubMed DOI PMC

Pompach P., Man P., Kavan D., Hofbauerová K., Kumar V., Bezouška K., Havlíček V., Novák P. Modified electrophoretic and digestion conditions allow a simplified mass spectrometric evaluation of disulfide bonds. J. Mass Spectrom. 2009;44:1571–1578. doi: 10.1002/jms.1609. PubMed DOI

Angers S., Salahpour A., Bouvier M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 2002;42:409–435. doi: 10.1146/annurev.pharmtox.42.091701.082314. PubMed DOI

Gomes I., Jordan B.A., Gupta A., Rios C., Trapaidze N., Devi L.A. G protein coupled receptor dimerization: implications in modulating receptor function. J. Mol. Med. 2001;79:226–242. doi: 10.1007/s001090100219. PubMed DOI

Middleton R.E., Pheasant D.J., Miller C. Homodimeric architecture of a CIC-type chloride ion channel. Nature. 1996;383:337–340. doi: 10.1038/383337a0. PubMed DOI

Ward C.W., Menting J.G., Lawrence M.C. The insulin receptor changes conformation in unforeseen ways on ligand binding: Sharpening the picture of insulin receptor activation. BioEssays. 2013;35:945–954. doi: 10.1002/bies.201300065. PubMed DOI

Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases. Cell. 2000;103:211–225. doi: 10.1016/S0092-8674(00)00114-8. PubMed DOI

Postel-Vinay M.C., Finidori J. Growth hormone receptor: Structure and signal transduction. Eur. J. Endocrinol. 1995;133:654–659. doi: 10.1530/eje.0.1330654. PubMed DOI

Ward L.D., Hammacher A., Howlett G.J., Matthews J.M., Fabri L., Moritz R.L., Nice E.C., Weinstock J., Simpson R.J. Influence of interleukin-6 (IL-6) dimerization on formation of the high affinity hexameric IL-6.receptor complex. J. Biol. Chem. 1996;271:20138–20144. doi: 10.1074/jbc.271.33.20138. PubMed DOI

Bochtler M., Ditzel L., Groll M., Hartmann C., Huber R. The proteasome. Annu. Rev. Biophys. Biomol. Struct. 1999;28:295–317. doi: 10.1146/annurev.biophys.28.1.295. PubMed DOI

Bentley G.A., Lewit-Bentley A., Finch J.T., Podjarny A.D., Roth M. Crystal structure of the nucleosome core particle at 16 Å resolution. J. Mol. Biol. 1984;176:55–75. doi: 10.1016/0022-2836(84)90382-6. PubMed DOI

Matadeen R., Patwardhan A., Gowen B., Orlova E.V., Pape T., Cuff M., Mueller F., Brimacombe R., van Heel M. The Escherichia coli large ribosomal subunit at 7.5 Å resolution. Structure. 1999;7:1575–1583. doi: 10.1016/S0969-2126(00)88348-3. PubMed DOI

Adámková L. (Institute of Microbiology, Prague, Czech Republic). Life cell imaging of Nkrp1 proteins at the surface of COS-7, RAW264.7 and HeLa cells. 2015. Unpublished work.

Rozbesky D., Man P., Kavan D., Chmelik J., Cerny J., Bezouska K., Novak P. Chemical cross-linking and H/D exchange for fast refinement of protein crystal structure. Anal. Chem. 2012;84:867–870. doi: 10.1021/ac202818m. PubMed DOI

Rozbeský D., Adámek D., Pospíšilová E., Novák P., Chmelík J. Solution structure of the lymphocyte receptor Nkrp1a reveals a distinct conformation of the long loop region as compared to in the crystal structure. Proteins. 2016;84:1304–1311. doi: 10.1002/prot.25078. PubMed DOI

Kolenko P., Rozbeský D., Vaněk O., Kopecký V., Hofbauerová K., Novák P., Pompach P., Hašek J., Skálová T., Bezouška K., et al. Molecular architecture of mouse activating NKR-P1 receptors. J. Struct. Biol. 2011;175:434–441. doi: 10.1016/j.jsb.2011.05.001. PubMed DOI

Spreu J., Kuttruff S., Stejfova V., Dennehy K.M., Schittek B., Steinle A. Interaction of C-type lectin-like receptors NKp65 and KACL facilitates dedicated immune recognition of human keratinocytes. Proc. Natl. Acad. Sci. USA. 2010;107:5100–5105. doi: 10.1073/pnas.0913108107. PubMed DOI PMC

Li Y., Mariuzza R.A. Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front. Immunol. 2014;5:1–20. doi: 10.3389/fimmu.2014.00123. PubMed DOI PMC

Luken B.M., Winn L.Y.N., Emsley J., Lane D.A., Crawley J.T.B. The importance of vicinal cysteines, C1669 and C1670, for von Willebrand factor A2 domain function. Blood. 2010;115:4910–4913. doi: 10.1182/blood-2009-12-257949. PubMed DOI PMC

Miller S.M., Moore M.J., Massey V., Williams C.H., Distefano M.D., Ballou D.P., Walsh C.T. Evidence for the participation of Cys558 and Cys559 at the active site of mercuric reductase. Biochemistry. 1989;28:1194–1205. doi: 10.1021/bi00429a037. PubMed DOI

Blake C.C., Ghosh M., Harlos K., Avezoux A., Anthony C. The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues. Nat. Struct. Biol. 1994;1:102–105. doi: 10.1038/nsb0294-102. PubMed DOI

Klco J.M., Lassere T.B., Baranski T.J. C5a receptor oligomerization. I. Disulfide trapping reveals oligomers and potential contact surfaces in a G protein-coupled receptor. J. Biol. Chem. 2003;278:35345–35353. doi: 10.1074/jbc.M305606200. PubMed DOI

Back J., Malchiodi E.L., Cho S., Scarpellino L., Schneider P., Kerzic M.C., Mariuzza R.A., Held W. Distinct conformations of Ly49 natural killer cell receptors mediate MHC class I recognition in trans and cis. Immunity. 2009;31:598–608. doi: 10.1016/j.immuni.2009.07.007. PubMed DOI PMC

Held W., Mariuzza R.A. Cis interactions of immunoreceptors with MHC and non-MHC ligands. Nat. Rev. Immunol. 2008;8:269–278. doi: 10.1038/nri2278. PubMed DOI PMC

Dai Y., Walker S.A., de Vet E., Cook S., Welch H.C.E., Lockyer P.J. Ca2+-dependent monomer and dimer formation switches CAPRI Protein between Ras GTPase-activating protein (GAP) and RapGAP activities. J. Biol. Chem. 2011;286:19905–19916. doi: 10.1074/jbc.M110.201301. PubMed DOI PMC

Carlyle J.R., Martin A., Mehra A., Attisano L., Tsui F.W., Zúñiga-Pflücker J.C. Mouse NKR-P1B, a novel NK1.1 antigen with inhibitory function. J. Immunol. 1999;162:5917–5923. PubMed

Balaji G.R., Aguilar O.A., Tanaka M., Shingu-Vazquez M.A., Fu Z., Gully B.S., Lanier L.L., Carlyle J.R., Rossjohn J., Berry R. Recognition of host Clr-b by the inhibitory NKR-P1B receptor provides a basis for missing-self recognition. Nat. Commun. 2018;9:4623. doi: 10.1038/s41467-018-06989-2. PubMed DOI PMC

Xiao J.H., Davidson I., Matthes H., Garnier J.-M., Chambon P. Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell. 1991;65:551–568. doi: 10.1016/0092-8674(91)90088-G. PubMed DOI

Rozbeský D., Kavan D., Chmelík J., Novák P., Vaněk O., Bezouška K. High-level expression of soluble form of mouse natural killer cell receptor NKR-P1C(B6) in Escherichia coli. Protein Expr. Purif. 2011;77:178–184. doi: 10.1016/j.pep.2011.01.013. PubMed DOI

Chum T., Glatzová D., Kvíčalová Z., Malínský J., Brdička T., Cebecauer M. The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins. J. Cell Sci. 2016;129:95–107. doi: 10.1242/jcs.175190. PubMed DOI

Hernychová L., Mrázek H., Ivanova L., Kukačka Z., Chmelík J., Novák P. Recombinant expression, in vitro refolding and characterizing disulfide bonds of a mouse inhibitory C-type lectin-like receptor Nkrp1b. Physiol. Res. 2015;64(Suppl. 1):S85–S93. PubMed

Koshioka M., Sasaki K., Masuhara H. Time-Dependent Fluorescence Depolarization Analysis in Three-Dimensional Microspectroscopy. Appl. Spectrosc. 1995;49:224–228. doi: 10.1366/0003702953963652. DOI

Digman M.A., Caiolfa V.R., Zamai M., Gratton E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 2008;94:L14–L16. doi: 10.1529/biophysj.107.120154. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...