Oligomeric Architecture of Mouse Activating Nkrp1 Receptors on Living Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-24309S
Grantová Agentura České Republiky
LH15010
Ministry of Education of the Czech Republic
LD15089
Ministry of Education of the Czech Republic
LQ1604
Ministry of Education of the Czech Republic
RVO61388971
Akademie Věd České Republiky
L200201801
Akademie Věd České Republiky
260443
Univerzita Karlova v Praze
CZ.1.05/1.1.00/02.0109 BIOCEV
European Regional Development Fund
LM2015043 CIISB for CMS BIOCEV
Ministry of Education of the Czech Republic
PubMed
30995786
PubMed Central
PMC6515139
DOI
10.3390/ijms20081884
PII: ijms20081884
Knihovny.cz E-zdroje
- Klíčová slova
- Förster resonance energy transfer, Nkrp1, cysteine, dimerization, disulfide bond arrangement,
- MeSH
- antigeny Ly analýza MeSH
- Cercopithecus aethiops MeSH
- COS buňky MeSH
- Jurkat buňky MeSH
- lektinové receptory NK-buněk - podrodina B analýza chemie MeSH
- lidé MeSH
- multimerizace proteinu MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- receptory imunologické analýza MeSH
- refolding proteinů MeSH
- rezonanční přenos fluorescenční energie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny Ly MeSH
- Klrb1a protein, mouse MeSH Prohlížeč
- Klrb1c protein, mouse MeSH Prohlížeč
- lektinové receptory NK-buněk - podrodina B MeSH
- Nkrp1f protein, mouse MeSH Prohlížeč
- receptory imunologické MeSH
Mouse activating Nkrp1 proteins are commonly described as type II transmembrane receptors with disulfide-linked homodimeric structure. Their function and the manner in which Nkrp1 proteins of mouse strain (C57BL/6) oligomerize are still poorly understood. To assess the oligomerization state of Nkrp1 proteins, mouse activating EGFP-Nkrp1s were expressed in mammalian lymphoid cells and their oligomerization evaluated by Förster resonance energy transfer (FRET). Alternatively, Nkrp1s oligomers were detected by Western blotting to specify the ratio between monomeric and dimeric forms. We also performed structural characterization of recombinant ectodomains of activating Nkrp1 receptors. Nkrp1 isoforms c1, c2 and f were expressed prevalently as homodimers, whereas the Nkrp1a displays larger proportion of monomers on the cell surface. Cysteine-to-serine mutants revealed the importance of all stalk cysteines for protein dimerization in living cells with a major influence of cysteine at position 74 in two Nkrp1 protein isoforms. Our results represent a new insight into the oligomerization of Nkrp1 receptors on lymphoid cells, which will help to determine their function.
Zobrazit více v PubMed
Vivier E., Tomasello E., Baratin M., Walzer T., Ugolini S. Functions of natural killer cells. Nat. Immunol. 2008;9:503–510. doi: 10.1038/ni1582. PubMed DOI
Vivier E., Raulet D.H., Moretta A., Caligiuri M.A., Zitvogel L., Lanier L.L., Yokoyama W.M., Ugolini S. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–49. doi: 10.1126/science.1198687. PubMed DOI PMC
Lanier L.L. NK cell receptors. Annu. Rev. Immunol. 1998;16:359–393. doi: 10.1146/annurev.immunol.16.1.359. PubMed DOI
Giorda R., Trucco M. Mouse NKR-P1. A family of genes selectively coexpressed in adherent lymphokine-activated killer cells. J. Immunol. 1991;147:1701–1708. PubMed
Giorda R., Rudert W.A., Vavassori C., Chambers W.H., Hiserodt J.C., Trucco M. NKR-P1, a signal transduction molecule on natural killer cells. Science. 1990;249:1298–1300. doi: 10.1126/science.2399464. PubMed DOI
Chambers W.H., Vujanovic N.L., DeLeo A.B., Olszowy M.W., Herberman R.B., Hiserodt J.C. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J. Exp. Med. 1989;169:1373–1389. doi: 10.1084/jem.169.4.1373. PubMed DOI PMC
Ryan J.C., Niemi E.C., Goldfien R.D., Hiserodt J.C., Seaman W.E. NKR-P1, an activating molecule on rat natural killer cells, stimulates phosphoinositide turnover and a rise in intracellular calcium. J. Immunol. 1991;147:3244–3250. PubMed
Yokoyama W.M., Ryan J.C., Hunter J.J., Smith H.R., Stark M., Seaman W.E. cDNA cloning of mouse NKR-P1 and genetic linkage with LY-49. Identification of a natural killer cell gene complex on mouse chromosome 6. J. Immunol. 1991;147:3229–3236. PubMed
Kveberg L., Dai K.-Z., Inngjerdingen M., Brooks C.G., Fossum S., Vaage J.T. Phylogenetic and functional conservation of the NKR-P1F and NKR-P1G receptors in rat and mouse. Immunogenetics. 2011;63:429–436. doi: 10.1007/s00251-011-0520-1. PubMed DOI PMC
Kveberg L., Dai K.-Z., Westgaard I.H., Daws M.R., Fossum S., Naper C., Vaage J.T. Two major groups of rat NKR-P1 receptors can be distinguished based on chromosomal localization, phylogenetic analysis and Clr ligand binding. Eur. J. Immunol. 2009;39:541–551. doi: 10.1002/eji.200838891. PubMed DOI
Plougastel B., Matsumoto K., Dubbelde C., Yokoyama W.M. Analysis of a 1-Mb BAC contig overlapping the mouse Nkrp1 cluster of genes: Cloning of three new Nkrp1 members, Nkrp1d, Nkrp1e, and Nkrp1f. Immunogenetics. 2001;53:592–598. doi: 10.1007/s002510100367. PubMed DOI
Kung S.K., Su R.C., Shannon J., Miller R.G. The NKR-P1B gene product is an inhibitory receptor on SJL/J NK cells. J. Immunol. 1999;162:5876–5887. PubMed
Glimcher L., Shen F.W., Cantor H. Identification of a cell-surface antigen selectively expressed on the natural killer cell. J. Exp. Med. 1977;145:1–9. doi: 10.1084/jem.145.1.1. PubMed DOI PMC
Sentman C.L., Hacjett J., Moore T.A., Tutt M.M., Bennett M., Kumar V. Pan Natural Killer Cell Monoclonal Antibodies and Their Relationship to the NK1.1 Antigen. Hybridoma. 1989;8:605–614. doi: 10.1089/hyb.1989.8.605. PubMed DOI
Karlhofer F.M., Yokoyama W.M. Stimulation of murine natural killer (NK) cells by a monoclonal antibody specific for the NK1.1 antigen. IL-2-activated NK cells possess additional specific stimulation pathways. J. Immunol. 1991;146:3662–3673. PubMed
Burton R.C., Smart Y.C., Koo G.C., Winn H.J. Studies on murine natural killer (NK) cells. V. Genetic analysis of NK cell markers. Cell. Immunol. 1991;135:445–453. doi: 10.1016/0008-8749(91)90289-N. PubMed DOI
Ryan J.C., Turck J., Niemi E.C., Yokoyama W.M., Seaman W.E. Molecular cloning of the NK1.1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules. J. Immunol. 1992;149:1631–1635. PubMed
Iizuka K., Naidenko O.V., Plougastel B.F.M., Fremont D.H., Yokoyama W.M. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat. Immunol. 2003;4:801–807. doi: 10.1038/ni954. PubMed DOI
Carlyle J.R., Jamieson A.M., Gasser S., Clingan C.S., Arase H., Raulet D.H. Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc. Natl. Acad. Sci. USA. 2004;101:3527–3532. doi: 10.1073/pnas.0308304101. PubMed DOI PMC
Plougastel B., Dubbelde C., Yokoyama W.M. Cloning of Clr, a new family of lectin-like genes localized between mouse Nkrp1a and Cd69. Immunogenetics. 2001;53:209–214. doi: 10.1007/s002510100319. PubMed DOI
Aguilar O.A., Berry R., Rahim M.M.A., Reichel J.J., Popović B., Tanaka M., Fu Z., Balaji G.R., Lau T.N.H., Tu M.M., et al. A Viral Immunoevasin Controls Innate Immunity by Targeting the Prototypical Natural Killer Cell Receptor Family. Cell. 2017;169:58–71.e14. doi: 10.1016/j.cell.2017.03.002. PubMed DOI
Zelensky A.N., Gready J.E. The C-type lectin-like domain superfamily. FEBS J. 2005;272:6179–6217. doi: 10.1111/j.1742-4658.2005.05031.x. PubMed DOI
Lu K., Guidotti G. Identification of the cysteine residues involved in the class I disulfide bonds of the human insulin receptor: properties of insulin receptor monomers. Mol. Biol. Cell. 1996;7:679–691. doi: 10.1091/mbc.7.5.679. PubMed DOI PMC
Zal T., Gascoigne N.R. Using live FRET imaging to reveal early protein–protein interactions during T cell activation. Curr. Opin. Immunol. 2004;16:418–427. doi: 10.1016/j.coi.2004.05.019. PubMed DOI
Bader A.N., Hofman E.G., Voortman J., van Bergen en Henegouwen P.M.P., Gerritsen H.C. Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys. J. 2009;97:2613–2622. doi: 10.1016/j.bpj.2009.07.059. PubMed DOI PMC
Pompach P., Man P., Kavan D., Hofbauerová K., Kumar V., Bezouška K., Havlíček V., Novák P. Modified electrophoretic and digestion conditions allow a simplified mass spectrometric evaluation of disulfide bonds. J. Mass Spectrom. 2009;44:1571–1578. doi: 10.1002/jms.1609. PubMed DOI
Angers S., Salahpour A., Bouvier M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 2002;42:409–435. doi: 10.1146/annurev.pharmtox.42.091701.082314. PubMed DOI
Gomes I., Jordan B.A., Gupta A., Rios C., Trapaidze N., Devi L.A. G protein coupled receptor dimerization: implications in modulating receptor function. J. Mol. Med. 2001;79:226–242. doi: 10.1007/s001090100219. PubMed DOI
Middleton R.E., Pheasant D.J., Miller C. Homodimeric architecture of a CIC-type chloride ion channel. Nature. 1996;383:337–340. doi: 10.1038/383337a0. PubMed DOI
Ward C.W., Menting J.G., Lawrence M.C. The insulin receptor changes conformation in unforeseen ways on ligand binding: Sharpening the picture of insulin receptor activation. BioEssays. 2013;35:945–954. doi: 10.1002/bies.201300065. PubMed DOI
Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases. Cell. 2000;103:211–225. doi: 10.1016/S0092-8674(00)00114-8. PubMed DOI
Postel-Vinay M.C., Finidori J. Growth hormone receptor: Structure and signal transduction. Eur. J. Endocrinol. 1995;133:654–659. doi: 10.1530/eje.0.1330654. PubMed DOI
Ward L.D., Hammacher A., Howlett G.J., Matthews J.M., Fabri L., Moritz R.L., Nice E.C., Weinstock J., Simpson R.J. Influence of interleukin-6 (IL-6) dimerization on formation of the high affinity hexameric IL-6.receptor complex. J. Biol. Chem. 1996;271:20138–20144. doi: 10.1074/jbc.271.33.20138. PubMed DOI
Bochtler M., Ditzel L., Groll M., Hartmann C., Huber R. The proteasome. Annu. Rev. Biophys. Biomol. Struct. 1999;28:295–317. doi: 10.1146/annurev.biophys.28.1.295. PubMed DOI
Bentley G.A., Lewit-Bentley A., Finch J.T., Podjarny A.D., Roth M. Crystal structure of the nucleosome core particle at 16 Å resolution. J. Mol. Biol. 1984;176:55–75. doi: 10.1016/0022-2836(84)90382-6. PubMed DOI
Matadeen R., Patwardhan A., Gowen B., Orlova E.V., Pape T., Cuff M., Mueller F., Brimacombe R., van Heel M. The Escherichia coli large ribosomal subunit at 7.5 Å resolution. Structure. 1999;7:1575–1583. doi: 10.1016/S0969-2126(00)88348-3. PubMed DOI
Adámková L. (Institute of Microbiology, Prague, Czech Republic). Life cell imaging of Nkrp1 proteins at the surface of COS-7, RAW264.7 and HeLa cells. 2015. Unpublished work.
Rozbesky D., Man P., Kavan D., Chmelik J., Cerny J., Bezouska K., Novak P. Chemical cross-linking and H/D exchange for fast refinement of protein crystal structure. Anal. Chem. 2012;84:867–870. doi: 10.1021/ac202818m. PubMed DOI
Rozbeský D., Adámek D., Pospíšilová E., Novák P., Chmelík J. Solution structure of the lymphocyte receptor Nkrp1a reveals a distinct conformation of the long loop region as compared to in the crystal structure. Proteins. 2016;84:1304–1311. doi: 10.1002/prot.25078. PubMed DOI
Kolenko P., Rozbeský D., Vaněk O., Kopecký V., Hofbauerová K., Novák P., Pompach P., Hašek J., Skálová T., Bezouška K., et al. Molecular architecture of mouse activating NKR-P1 receptors. J. Struct. Biol. 2011;175:434–441. doi: 10.1016/j.jsb.2011.05.001. PubMed DOI
Spreu J., Kuttruff S., Stejfova V., Dennehy K.M., Schittek B., Steinle A. Interaction of C-type lectin-like receptors NKp65 and KACL facilitates dedicated immune recognition of human keratinocytes. Proc. Natl. Acad. Sci. USA. 2010;107:5100–5105. doi: 10.1073/pnas.0913108107. PubMed DOI PMC
Li Y., Mariuzza R.A. Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front. Immunol. 2014;5:1–20. doi: 10.3389/fimmu.2014.00123. PubMed DOI PMC
Luken B.M., Winn L.Y.N., Emsley J., Lane D.A., Crawley J.T.B. The importance of vicinal cysteines, C1669 and C1670, for von Willebrand factor A2 domain function. Blood. 2010;115:4910–4913. doi: 10.1182/blood-2009-12-257949. PubMed DOI PMC
Miller S.M., Moore M.J., Massey V., Williams C.H., Distefano M.D., Ballou D.P., Walsh C.T. Evidence for the participation of Cys558 and Cys559 at the active site of mercuric reductase. Biochemistry. 1989;28:1194–1205. doi: 10.1021/bi00429a037. PubMed DOI
Blake C.C., Ghosh M., Harlos K., Avezoux A., Anthony C. The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues. Nat. Struct. Biol. 1994;1:102–105. doi: 10.1038/nsb0294-102. PubMed DOI
Klco J.M., Lassere T.B., Baranski T.J. C5a receptor oligomerization. I. Disulfide trapping reveals oligomers and potential contact surfaces in a G protein-coupled receptor. J. Biol. Chem. 2003;278:35345–35353. doi: 10.1074/jbc.M305606200. PubMed DOI
Back J., Malchiodi E.L., Cho S., Scarpellino L., Schneider P., Kerzic M.C., Mariuzza R.A., Held W. Distinct conformations of Ly49 natural killer cell receptors mediate MHC class I recognition in trans and cis. Immunity. 2009;31:598–608. doi: 10.1016/j.immuni.2009.07.007. PubMed DOI PMC
Held W., Mariuzza R.A. Cis interactions of immunoreceptors with MHC and non-MHC ligands. Nat. Rev. Immunol. 2008;8:269–278. doi: 10.1038/nri2278. PubMed DOI PMC
Dai Y., Walker S.A., de Vet E., Cook S., Welch H.C.E., Lockyer P.J. Ca2+-dependent monomer and dimer formation switches CAPRI Protein between Ras GTPase-activating protein (GAP) and RapGAP activities. J. Biol. Chem. 2011;286:19905–19916. doi: 10.1074/jbc.M110.201301. PubMed DOI PMC
Carlyle J.R., Martin A., Mehra A., Attisano L., Tsui F.W., Zúñiga-Pflücker J.C. Mouse NKR-P1B, a novel NK1.1 antigen with inhibitory function. J. Immunol. 1999;162:5917–5923. PubMed
Balaji G.R., Aguilar O.A., Tanaka M., Shingu-Vazquez M.A., Fu Z., Gully B.S., Lanier L.L., Carlyle J.R., Rossjohn J., Berry R. Recognition of host Clr-b by the inhibitory NKR-P1B receptor provides a basis for missing-self recognition. Nat. Commun. 2018;9:4623. doi: 10.1038/s41467-018-06989-2. PubMed DOI PMC
Xiao J.H., Davidson I., Matthes H., Garnier J.-M., Chambon P. Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell. 1991;65:551–568. doi: 10.1016/0092-8674(91)90088-G. PubMed DOI
Rozbeský D., Kavan D., Chmelík J., Novák P., Vaněk O., Bezouška K. High-level expression of soluble form of mouse natural killer cell receptor NKR-P1C(B6) in Escherichia coli. Protein Expr. Purif. 2011;77:178–184. doi: 10.1016/j.pep.2011.01.013. PubMed DOI
Chum T., Glatzová D., Kvíčalová Z., Malínský J., Brdička T., Cebecauer M. The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins. J. Cell Sci. 2016;129:95–107. doi: 10.1242/jcs.175190. PubMed DOI
Hernychová L., Mrázek H., Ivanova L., Kukačka Z., Chmelík J., Novák P. Recombinant expression, in vitro refolding and characterizing disulfide bonds of a mouse inhibitory C-type lectin-like receptor Nkrp1b. Physiol. Res. 2015;64(Suppl. 1):S85–S93. PubMed
Koshioka M., Sasaki K., Masuhara H. Time-Dependent Fluorescence Depolarization Analysis in Three-Dimensional Microspectroscopy. Appl. Spectrosc. 1995;49:224–228. doi: 10.1366/0003702953963652. DOI
Digman M.A., Caiolfa V.R., Zamai M., Gratton E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 2008;94:L14–L16. doi: 10.1529/biophysj.107.120154. PubMed DOI PMC