Early-stage visual perception impairment in schizophrenia, bottom-up and back again

. 2022 Mar 21 ; 8 (1) : 27. [epub] 20220321

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35314712

Grantová podpora
1070119 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
1070119 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
1070119 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)

Odkazy

PubMed 35314712
PubMed Central PMC8938488
DOI 10.1038/s41537-022-00237-9
PII: 10.1038/s41537-022-00237-9
Knihovny.cz E-zdroje

Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.

Zobrazit více v PubMed

Kalkstein S, Hurford I, Gur RC. Neurocognition in schizophrenia. Behavioral Neurobiology of Schizophrenia and its Treatment. 2010;4:373–390. PubMed

Kar SK, Garg K, Tripathi A. Olfactory hallucinations in schizophrenia: Does it carry any meaning? Int. J. Nutr., Pharmacol., Neurol. Dis. 2016;6:136.

Chieffi S. Dysfunction of magnocellular/dorsal processing stream in schizophrenia. Curr. Psychiatry Res. Rev. Formerly: Curr. Psychiatry Rev. 2019;15:26–36.

Dondé C, Avissar M, Weber MM, Javitt DC. A century of sensory processing dysfunction in schizophrenia. Eur. Psychiatry. 2019;59:77–79. PubMed

Javitt DC, Freedman R. Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am. J. Psychiatry. 2015;172:17–31. PubMed PMC

Butler PD, Silverstein SM, Dakin SC. Visual perception and its impairment in schizophrenia. Biol. Psychiatry. 2008;64:40–47. PubMed PMC

Butler PD, et al. Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch. Gen. Psychiatry. 2005;62:495–504. PubMed PMC

Kéri S, Kiss I, Kelemen O, Benedek G, Janka Z. Anomalous visual experiences, negative symptoms, perceptual organization and the magnocellular pathway in schizophrenia: A shared construct? Psychol. Med. 2005;35:1445. PubMed

Damilou A, Apostolakis S, Thrapsanioti E, Theleritis C, Smyrnis N. Shared and distinct oculomotor function deficits in schizophrenia and obsessive compulsive disorder. Psychophysiology. 2016;53:796–805. PubMed

Mather JA. Saccadic eye movements to seen and unseen targets: Oculomotor errors in normal subjects resembling those of schizophrenics. J. Psychiatric Res. 1986;20:1–8. PubMed

Mather JA, Putchat C. Motor control of schizophrenics—I. Oculomotor control of schizophrenics: A deficit in sensory processing, not strictly in motor control. J. Psychiatric Res. 1982;17:343–360. PubMed

Paštrnák M, Dorazilová A, Rodriguez M. Vizuální Percepce a Její Narušení U Schizofrenního Onemocnění-Přehledová Studie. Ceskoslovenska Psychologie. 2017;61:593–604.

Butler PD, et al. Dysfunction of early-stage visual processing in schizophrenia. Am. J. Psychiatry. 2001;158:1126–1133. PubMed

Chen Y, Levy DL, Sheremata S, Holzman PS. Compromised late-stage motion processing in schizophrenia. Biol. Psychiatry. 2004;55:834–841. PubMed

Kogata T, Iidaka T. A review of impaired visual processing and the daily visual world in patients with schizophrenia. Nagoya J. Med. Sci. 2018;80:317. PubMed PMC

Cutting J, Dunne F. The nature of the abnormal perceptual experiences at the onset of schizophrenia. Psychopathology. 1986;19:347–352. PubMed

Hébert M, et al. Retinal response to light in young nonaffected offspring at high genetic risk of neuropsychiatric brain disorders. Biol. Psychiatry. 2010;67:270–274. PubMed

Holzman PS, et al. Eye-tracking dysfunctions in schizophrenic patients and their relatives. Arch. Gen. Psychiatry. 1974;31:143–151. PubMed

Loughland CM, Williams LM, Harris AW. Visual scanpath dysfunction in first-degree relatives of schizophrenia probands: Evidence for a vulnerability marker? Schizophr. Res. 2004;67:11–21. PubMed

Schiffman J, et al. Premorbid childhood ocular alignment abnormalities and adult schizophrenia-spectrum disorder. Schizophr. Res. 2006;81:253–260. PubMed

Schubert E, Henriksson K, McNeil T. A prospective study of offspring of women with psychosis: Visual dysfunction in early childhood predicts schizophrenia‐spectrum disorders in adulthood. Acta Psychiatr. Scand. 2005;112:385–393. PubMed

Gottesman II, Gould TD. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am. J. Psychiatry. 2003;160:636–645. PubMed

Chen Y, Nakayama K, Levy DL, Matthysse S, Holzman PS. Psychophysical isolation of a motion-processing deficit in schizophrenics and their relatives and its association with impaired smooth pursuit. Proc. Natl Acad. Sci. USA. 1999;96:4724–4729. PubMed PMC

Phillipson O, Harris J. Perceptual changes in schizophrenia: A questionnaire survey. Psychol. Med. 1985;15:859–866. PubMed

Klosterkötter J, Hellmich M, Steinmeyer EM, Schultze-Lutter F. Diagnosing schizophrenia in the initial prodromal phase. Arch. Gen. Psychiatry. 2001;58:158–164. PubMed

Silverstein SM. Visual perception disturbances in schizophrenia: a unified model. The Neuropsychopathology of Schizophrenia. 2016;63:77–132. PubMed

Bar M, et al. Top-down facilitation of visual recognition. Proc. Natl Acad. Sci. USA. 2006;103:449–454. PubMed PMC

Panichello MF, Cheung OS, Bar M. Predictive feedback and conscious visual experience. Front. Psychol. 2013;3:620. PubMed PMC

Gordon N, Tsuchiya N, Koenig-Robert R, Hohwy J. Expectation and attention increase the integration of top-down and bottom-up signals in perception through different pathways. PLoS Biol. 2019;17:e3000233. PubMed PMC

Kauffmann L, Ramanoël S, Peyrin C. The neural bases of spatial frequency processing during scene perception. Front. Integr. Neurosci. 2014;8:37. PubMed PMC

Born RT, Bencomo GM. Illusions, delusions, and your backwards bayesian brain: A biased visual perspective. Brain, Behav. Evol. 2020;95:272–285. PubMed PMC

Skottun BC, Skoyles JR. Contrast sensitivity and magnocellular functioning in schizophrenia. Vision Res. 2007;47:2923–2933. PubMed

Parr T, Friston KJ. Attention or salience? Curr. Opin. Psychol. 2019;29:1–5. PubMed

Roiser J, et al. Do patients with schizophrenia exhibit aberrant salience? Psychol. Med. 2009;39:199–209. PubMed PMC

Silverstein S, et al. Increased fusiform area activation in schizophrenia during processing of spatial frequency-degraded faces, as revealed by fMRI. Psychol. Med. 2010;40:1159. PubMed

Butler PD, et al. An event-related potential examination of contour integration deficits in schizophrenia. Front. Psychol. 2013;4:132. PubMed PMC

Silverstein SM, et al. An fMRI examination of visual integration in schizophrenia. J. Integr. Neurosci. 2009;8:175–202. PubMed

Dima D, et al. Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling. Neuroimage. 2009;46:1180–1186. PubMed

Silverstein SM, et al. Perceptual organization and visual search processes during target detection task performance in schizophrenia, as revealed by fMRI. Neuropsychologia. 2010;48:2886–2893. PubMed

Martínez A, et al. Magnocellular pathway impairment in schizophrenia: Evidence from functional magnetic resonance imaging. J. Neurosci. 2008;28:7492–7500. PubMed PMC

Clark CM, Gosselin F, Goghari VM. Aberrant patterns of visual facial information usage in schizophrenia. J. Abnorm. Psychol. 2013;122:513. PubMed

Sehatpour P, et al. Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia: An integrated neuroimaging study. Arch. Gen. Psychiatry. 2010;67:772–782. PubMed PMC

Silverstein S, et al. Reduced top-down influences in contour detection in schizophrenia. Cogn. Neuropsychiatry. 2006;11:112–132. PubMed

Uhlhaas PJ, Phillips WA, Mitchell G, Silverstein SM. Perceptual grouping in disorganized schizophrenia. Psychiatry Res. 2006;145:105–117. PubMed

Butler PD, et al. Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain. 2007;130:417–430. PubMed PMC

Silverstein S, et al. Vision in schizophrenia: Why it matters. Front. Psychol. 2015;6:41. PubMed PMC

de Lecea L, Carter ME, Adamantidis A. Shining light on wakefulness and arousal. Biol. Psychiatry. 2012;71:1046–1052. PubMed PMC

Shoshina I, et al. The internal noise of the visual system and cognitive functions in schizophrenia. Proc. Comput. Sci. 2020;169:813–820.

Silverstein SM, Fradkin SI, Demmin DL. Schizophrenia and the retina: Towards a 2020 perspective. Schizophr. Res. 2020;219:84–94. PubMed PMC

Roy S, Field GD. Dopaminergic modulation of retinal processing from starlight to sunlight. J. Pharmacol. Sci. 2019;140:86–93. PubMed

Herzog MH, Roinishvili M, Chkonia E, Brand A. Schizophrenia and visual backward masking: A general deficit of target enhancement. Front. Psychol. 2013;4:254. PubMed PMC

Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 2019;73:204–215. PubMed

Gazzaley A, et al. Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cerebral Cortex. 2007;17:i125–i135. PubMed PMC

Griesmayr B, et al. EEG theta phase coupling during executive control of visual working memory investigated in individuals with schizophrenia and in healthy controls. Cogn., Affect., Behav. Neurosci. 2014;14:1340–1355. PubMed

Kane MJ, et al. Individual differences in the executive control of attention, memory, and thought, and their associations with schizotypy. J. Exp. Psychol.: Gen. 2016;145:1017. PubMed PMC

Jiang Y, et al. Progressive reduction in gray matter in patients with schizophrenia assessed with MR imaging by using causal network analysis. Radiology. 2018;287:633–642. PubMed

Takayanagi Y, et al. Reduced cortical thickness in schizophrenia and schizotypal disorder. Schizophr. Bull. 2020;46:387–394. PubMed PMC

Vita A, De Peri L, Deste G, Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: A meta-analysis and meta-regression of longitudinal MRI studies. Transl. Psychiatry. 2012;2:e190–e190. PubMed PMC

Benes FM. Amygdalocortical circuitry in schizophrenia: From circuits to molecules. Neuropsychopharmacology. 2010;35:239–257. PubMed PMC

Daenen EW, Wolterink G, Van Der Heyden JA, Kruse CG, Van Ree JM. Neonatal lesions in the amygdala or ventral hippocampus disrupt prepulse inhibition of the acoustic startle response; implications for an animal model of neurodevelopmental disorders like schizophrenia. Eur. Neuropsychopharmacol. 2003;13:187–197. PubMed

Kalus P, Muller TJ, Zuschratter W, Senitz D. The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. Neuroreport. 2000;11:3621–3625. PubMed

Melicher T, et al. White matter changes in first episode psychosis and their relation to the size of sample studied: A DTI study. Schizophr. Res. 2015;162:22–28. PubMed

Venkatasubramanian G, Jayakumar P, Gangadhar B, Keshavan M. Automated MRI parcellation study of regional volume and thickness of prefrontal cortex (PFC) in antipsychotic‐naïve schizophrenia. Acta Psychiatr. Scand. 2008;117:420–431. PubMed

Roska, B. & Meister, M. The Retina Dissects the Visual Scene. The New Visual Neurosciences, 163–182 (2014).

Demmin DL, Davis Q, Roché M, Silverstein SM. Electroretinographic anomalies in schizophrenia. J. Abnorm. Psychol. 2018;127:417. PubMed

Lee WW, Tajunisah I, Sharmilla K, Peyman M, Subrayan V. Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: evidence from optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2013;54:7785–7792. PubMed

Silverstein SM, Rosen R. Schizophrenia and the eye. Schizophr. Res.: Cogn. 2015;2:46–55. PubMed PMC

Harris J, Calvert J, Leendertz J, Phillipson O. The influence of dopamine on spatial vision. Eye. 1990;4:806–812. PubMed

Koizumi A, et al. Atypical spatial frequency dependence of visual metacognition among schizophrenia patients. NeuroImage: Clin. 2020;27:102296. PubMed PMC

Samani NN, et al. Retinal layer abnormalities as biomarkers of schizophrenia. Schizophr. Bull. 2018;44:876–885. PubMed PMC

Archibald NK, Clarke MP, Mosimann UP, Burn DJ. Visual symptoms in Parkinson’s disease and Parkinson’s disease dementia. Mov. Disord. 2011;26:2387–2395. PubMed

Urwyler P, et al. Visual complaints and visual hallucinations in Parkinson’s disease. Parkinsonism Relat. Disord. 2014;20:318–322. PubMed

Brandies R, Yehuda S. The possible role of retinal dopaminergic system in visual performance. Neurosci. Biobehav. Rev. 2008;32:611–656. PubMed

ffytche DH. Visual hallucinations in eye disease. Curr. Opin. Neurol. 2009;22:28–35. PubMed

Silverstein SM, Kovács I, Corry R, Valone C. Perceptual organization, the disorganization syndrome, and context processing in chronic schizophrenia. Schizophr. Res. 2000;43:11–20. PubMed

Clark M, Waters F, Vatskalis T, Jablensky A. On the interconnectedness and prognostic value of visual and auditory hallucinations in first-episode psychosis. Eur. Psychiatry. 2017;41:122–128. PubMed

Zhuo C, et al. Antipsychotic agents deteriorate brain and retinal function in schizophrenia patients with combined auditory and visual hallucinations: A pilot study and secondary follow‐up study. Brain Behav. 2020;10:e01611. PubMed PMC

Zhuo C, et al. Patients with first-episode untreated schizophrenia who experience concomitant visual disturbances and auditory hallucinations exhibit co-impairment of the brain and retinas-a pilot study. Brain Imaging Behav. 2020;15:1–9. PubMed

Fallon SJ, Zokaei N, Husain M. Causes and consequences of limitations in visual working memory. Ann. N. Y. Acad. Sci. 2016;1369:40. PubMed PMC

Ascaso FJ, et al. Retinal nerve fiber layer thickness measured by optical coherence tomography in patients with schizophrenia: A short report. Eur. J. Psychiatry. 2010;24:227–235.

Jerotić S, Marić NP. Structural retinal abnormalities as potential markers for psychosis spectrum disorders. Medicinski Podmladak. 2018;69:41–47.

Wannan CM, et al. Evidence for network-based cortical thickness reductions in schizophrenia. Am. J. Psychiatry. 2019;176:552–563. PubMed

Adams SA, Nasrallah HA. Multiple retinal anomalies in schizophrenia. Schizophr. Res. 2018;195:3–12. PubMed

Hosak L, Sery O, Sadykov E, Studnicka J. Retinal abnormatilites as a diagnostic or prognostic marker of schizophrenia. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc. 2018;162:159–164. PubMed

Bringmann A, Grosche A, Pannicke T, Reichenbach A. GABA and glutamate uptake and metabolism in retinal glial (Müller) cells. Front. Endocrinol. 2013;4:48. PubMed PMC

Gracitelli CP, et al. Ophthalmology issues in schizophrenia. Curr. Psychiatry Rep. 2015;17:28. PubMed PMC

Hartwick AT, Hamilton CM, Baldridge WH. Glutamatergic calcium dynamics and deregulation of rat retinal ganglion cells. J. Physiol. 2008;586:3425–3446. PubMed PMC

Reif A, et al. A functional promoter polymorphism of neuronal nitric oxide synthase moderates prefrontal functioning in schizophrenia. Int. J. Neuropsychopharmacol. 2011;14:887–897. PubMed

Silverstein SM, et al. Retinal microvasculature in schizophrenia. Eye Brain. 2021;13:205. PubMed PMC

De Jong FJ, et al. Arteriolar oxygen saturation, cerebral blood flow, and retinal vessel diameters: The Rotterdam Study. Ophthalmology. 2008;115:887–892. PubMed

Meier MH, et al. Microvascular abnormality in schizophrenia as shown by retinal imaging. Am. J. Psychiatry. 2013;170:1451–1459. PubMed PMC

Sun C, Wang JJ, Mackey DA, Wong TY. Retinal vascular caliber: Systemic, environmental, and genetic associations. Surv. Ophthalmol. 2009;54:74–95. PubMed

Huemer K-H, et al. Effects of dopamine on retinal and choroidal blood flow parameters in humans. Br. J. Ophthalmol. 2007;91:1194–1198. PubMed PMC

Lavoie J, et al. The electroretinogram as a biomarker of central dopamine and serotonin: Potential relevance to psychiatric disorders. Biol. Psychiatry. 2014;75:479–486. PubMed

Hébert M, et al. The electroretinogram may differentiate schizophrenia from bipolar disorder. Biol. Psychiatry. 2020;87:263–270. PubMed

Balogh Z, Benedek G, Kéri S. Retinal dysfunctions in schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2008;32:297–300. PubMed

Gründer, G. & Cumming, P. The Neurobiology of Schizophrenia 109–124 (Elsevier, 2016).

Korshunov KS, Blakemore LJ, Trombley PQ. Dopamine: a modulator of circadian rhythms in the central nervous system. Front. Cell. Neurosci. 2017;11:91. PubMed PMC

Frazao R, et al. Histamine elevates free intracellular calcium in mouse retinal dopaminergic cells via H1-receptors. Invest. Ophthalmol. Vis. Sci. 2011;52:3083–3088. PubMed PMC

Ortiz G, Odom JV, Passaglia CL, Tzekov RT. Efferent influences on the bioelectrical activity of the retina in primates. Documenta Ophthalmol. 2017;134:57–73. PubMed

Nasser JA, et al. Electroretinographic detection of human brain dopamine response to oral food stimulation. Obesity. 2013;21:976–980. PubMed PMC

Balasubramanian R, Gan L. Development of retinal amacrine cells and their dendritic stratification. Curr. Ophthalmol. Rep. 2014;2:100–106. PubMed PMC

Veruki ML, Wässle H. Immunohistochemical localization of dopamine D receptors in rat retina. Eur. J. Neurosci. 1996;8:2286–2297. PubMed

Biedermann B, Fröhlich E, Grosche J, Wagner H-J, Reichenbach A. Mammalian Müller (glial) cells express functional D2 dopamine receptors. Neuroreport. 1995;6:609–612. PubMed

Veruki ML. Dopaminergic neurons in the rat retina express dopamine D2/3 receptors. Eur. J. Neurosci. 1997;9:1096–1100. PubMed

Witkovsky P. Dopamine and retinal function. Documenta Ophthalmol. 2004;108:17–39. PubMed

Piccolino M, Neyton J, Gerschenfeld H. Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3’: 5’-monophosphate in horizontal cells of turtle retina. J. Neurosci. 1984;4:2477–2488. PubMed PMC

Bloomfield SA, Dacheux RF. Rod vision: Pathways and processing in the mammalian retina. Prog. Retinal Eye Res. 2001;20:351–384. PubMed

Demb JB, Singer JH. Intrinsic properties and functional circuitry of the AII amacrine cell. Vis. Neurosci. 2012;29:51. PubMed PMC

Daw, N. W., Brunken, W. J. & Jensen, R. J. Neurobiology of the Inner Retina 363–374 (Springer, 1989).

Li H, et al. Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J. Neurosci. 2013;33:3135–3150. PubMed PMC

Jurišić D, et al. New insights into schizophrenia: A look at the eye and related structures. Psychiatr. Danub. 2020;32:60–69. PubMed

Qian H, Ripps H. The GABAC receptors of retinal neurons. Prog. Brain Res. 2001;131:295–308. PubMed

Copenhagen DR, Jahr CE. Release of endogenous excitatory amino acids from turtle photoreceptors. Nature. 1989;341:536–539. PubMed

Javitt DC. Glutamate and schizophrenia: Phencyclidine, N‐methyl‐d‐aspartate receptors, and dopamine–glutamate interactions. Int. Rev. Neurobiol. 2007;78:69–108. PubMed

Phillips WA, Silverstein SM. Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 2003;26:65–82. PubMed

Uhlhaas PJ, Millard I, Muetzelfeldt L, Curran HV, Morgan CJ. Perceptual organization in ketamine users: Preliminary evidence of deficits on night of drug use but not 3 days later. J. Psychopharmacol. 2007;21:347–352. PubMed

Barnett NL, Pow DV. Antisense knockdown of GLAST, a glial glutamate transporter, compromises retinal function. Invest. Ophthalmol. Vis. Sci. 2000;41:585–591. PubMed

Bulens C, Meerwaldt J, Van Der Wildt G, Keemink C. Visual contrast sensitivity in drug-induced Parkinsonism. J. Neurol., Neurosurg. Psychiatry. 1989;52:341–345. PubMed PMC

Chen Y, et al. Effects of typical, atypical, and no antipsychotic drugs on visual contrast detection in schizophrenia. Am. J. Psychiatry. 2003;160:1795–1801. PubMed

Domenici L, Trimarchi C, Piccolino M, Fiorentini A, Maffei L. Dopaminergic drugs improve human visual contrast sensitivity. Hum. Neurobiol. 1985;4:195–197. PubMed

Kéri S, Benedek G. Visual contrast sensitivity alterations in inferred magnocellular pathways and anomalous perceptual experiences in people at high-risk for psychosis. Vis. Neurosci. 2007;24:183. PubMed

Zhang AJ, Jacoby R, Wu SM. Light‐and dopamine‐regulated receptive field plasticity in primate horizontal cells. J. Comp. Neurol. 2011;519:2125–2134. PubMed PMC

Dowling, J. E. The Retina: An Approachable Part of the Brain (Harvard University Press, 1987).

Demmin DL, Mote J, Beaudette DM, Thompson JL, Silverstein SM. Retinal functioning and reward processing in schizophrenia. Schizophr. Res. 2020;219:25–33. PubMed

Pelino CJ, Pizzimenti JJ. The miniature multitasker: What makes the hypothalamus so important to the eye and visual system? Rev. Optometry. 2014;151:76–78.

Cao D, et al. Functional loss in the magnocellular and parvocellular pathways in patients with optic neuritis. Invest. Ophthalmol. Vis. Sci. 2011;52:8900–8907. PubMed PMC

Casagrande, V. & Ichida, J. Processing in the lateral geniculate nucleus (LGN). Adler’s Physiology of the Eye 574–585 (2011).

Casagrande, V.A. & Xu, X. Parallel visual pathways: a comparative perspective. The Visual Neurosciences, 494–506 (MIT Press, 2004).

Sherman, S. M. & Guillery, R. W. Exploring the Thalamus and its Role in Cortical Function (MIT Press, 2006).

Krueger J, Disney AA. Structure and function of dual‐source cholinergic modulation in early vision. J. Comp. Neurol. 2019;527:738–750. PubMed PMC

Casagrande, V. A., Royal, D. W. & Sáry, G. Extraretinal inputs and feedbackmechanisms to the lateral geniculate nucleus (LGN). The Primate Visual System: A Comparative Approach, 191–211 (2005).

García-Cabezas MÁ, Martínez-Sánchez P, Sánchez-González MÁ, Garzón M, Cavada C. Dopamine innervation in the thalamus: Monkey versus rat. Cerebral Cortex. 2009;19:424–434. PubMed PMC

Zhao Y, Kerscher N, Eysel U, Funke K. D1 and D2 receptor‐mediated dopaminergic modulation of visual responses in cat dorsal lateral geniculate nucleus. J. Physiol. 2002;539:223–238. PubMed PMC

Godwin DW, Vaughan JW, Sherman SM. Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. J. Neurophysiol. 1996;76:1800–1816. PubMed

Nakajima M, Schmitt LI, Halassa MM. Prefrontal cortex regulates sensory filtering through a basal ganglia-to-thalamus pathway. Neuron. 2019;103:445–458. e410. PubMed PMC

Varela C. Thalamic neuromodulation and its implications for executive networks. Front. Neural Circuits. 2014;8:69. PubMed PMC

Stidwill, D. & Fletcher, R. Normal Binocular Vision: Theory, Investigation and Practical Aspects (John Wiley & Sons, 2017).

Poltoratski S, Maier A, Newton AT, Tong F. Figure-ground modulation in the human lateral geniculate nucleus is distinguishable from top-down attention. Curr. Biol. 2019;29:2051–2057. e2053. PubMed PMC

Xu X, et al. A comparison of koniocellular, magnocellular, and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) J. Physiol. 2001;531:203–218. PubMed PMC

Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. Retinal ganglion cells-diversity of cell types and clinical relevance. Front. Neurol. 2021;12:661938. PubMed PMC

Yan W, et al. Cell atlas of the human fovea and peripheral retina. Sci. Rep. 2020;10:1–17. PubMed PMC

Cao D, Lee BB, Sun H. Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway. J. Vis. 2010;10:4–4. PubMed PMC

Marosi C, Fodor Z, Csukly G. From basic perception deficits to facial affect recognition impairments in schizophrenia. Sci. Rep. 2019;9:1–13. PubMed PMC

Shoshina I, Mukhitova YV, Tregubenko I, Pronin S, Isaeva E. Contrast sensitivity of the visual system and cognitive functions in schizophrenia and depression. Human Physiol. 2021;47:516–527.

Vaziri-Pashkam M, Taylor J, Xu Y. Spatial frequency tolerant visual object representations in the human ventral and dorsal visual processing pathways. J. Cogn. Neurosci. 2019;31:49–63. PubMed

Skottun BC. On the use of spatial frequency to isolate contributions from the magnocellular and parvocellular systems and the dorsal and ventral cortical streams. Neurosci. Biobehav. Rev. 2015;56:266–275. PubMed

Dacey D. The mosaic of midget ganglion cells in the human retina. J. Neurosci. 1993;13:5334–5355. PubMed PMC

Kling A, Field G, Brainard D, Chichilnisky E. Probing computation in the primate visual system at single-cone resolution. Annu. Rev. Neurosci. 2019;42:169–186. PubMed PMC

Patterson SS, et al. Another blue-ON ganglion cell in the primate retina. Curr. Biol. 2020;30:R1409–R1410. PubMed PMC

Hall N, Colby C. Psychophysical definition of S-cone stimuli in the macaque. J. Vis. 2013;13:20–20. PubMed PMC

Hall N, Colby C. S-cone visual stimuli activate superior colliculus neurons in old world monkeys: Implications for understanding blindsight. J. Cogn. Neurosci. 2014;26:1234–1256. PubMed

Hall NJ, Colby CL. Express saccades and superior colliculus responses are sensitive to short-wavelength cone contrast. Proc. Natl Acad. Sci. USA. 2016;113:6743–6748. PubMed PMC

Kveraga K, Im HY, Ward N, Adams RB. Fast saccadic and manual responses to faces presented to the koniocellular visual pathway. J. Vis. 2020;20:9–9. PubMed PMC

Enroth-Cugell C, Robson JG. Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. Invest. Ophthalmol. Vis. Sci. 1984;25:250–267. PubMed

Welbourne LE, Morland AB, Wade AR. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI. NeuroImage. 2018;167:84–94. PubMed PMC

Marc, Robert E. Synaptic organization of the retina. Adler’s Physiology of the Eye. 443-458, (Philadelphia: Saunders Elsevier, 2011).

Yang CR, Seamans JK. Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J. Neurosci. 1996;16:1922–1935. PubMed PMC

Bennett C, et al. Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron. 2019;102:477–492. e475. PubMed PMC

Parnaudeau S, Bolkan SS, Kellendonk C. The mediodorsal thalamus: An essential partner of the prefrontal cortex for cognition. Biol. Psychiatry. 2018;83:648–656. PubMed PMC

Maith O, Schwarz A, Hamker FH. Optimal attention tuning in a neuro-computational model of the visual cortex–basal ganglia–prefrontal cortex loop. Neural Netw. 2021;142:534–547. PubMed

Vuilleumier P. Affective and motivational control of vision. Curr. Opin. Neurol. 2015;28:29–35. PubMed

Hirata A, Aguilar J, Castro-Alamancos MA. Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus. J. Neurosci. 2006;26:4426–4436. PubMed PMC

Bar M. A cortical mechanism for triggering top-down facilitation in visual object recognition. J. Cogn. Neurosci. 2003;15:600–609. PubMed

Tapia E, Breitmeyer BG. Visual consciousness revisited: Magnocellular and parvocellular contributions to conscious and nonconscious vision. Psychol. Sci. 2011;22:934–942. PubMed

Lee TS. Computations in the early visual cortex. J. Physiol.-Paris. 2003;97:121–139. PubMed

Kwon H, et al. Early cortical signals in visual stimulus detection. Neuroimage. 2021;244:118608. PubMed

Wunderlich K, Beierholm UR, Bossaerts P, O’Doherty JP. The human prefrontal cortex mediates integration of potential causes behind observed outcomes. J. Neurophysiol. 2011;106:1558–1569. PubMed PMC

Hamker FH. The reentry hypothesis: The putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cerebral Cortex. 2005;15:431–447. PubMed

Noudoost B, Moore T. Control of visual cortical signals by prefrontal dopamine. Nature. 2011;474:372–375. PubMed PMC

Zhang Y, et al. Object decoding with attention in inferior temporal cortex. Proc. Natl Acad. Sci. USA. 2011;108:8850–8855. PubMed PMC

Dima D, Dietrich DE, Dillo W, Emrich HM. Impaired top-down processes in schizophrenia: A DCM study of ERPs. NeuroImage. 2010;52:824–832. PubMed

Yang E, et al. Visual context processing in schizophrenia. Clin. Psychol. Sci. 2013;1:5–15. PubMed PMC

Forbes N, Carrick L, McIntosh A, Lawrie S. Working memory in schizophrenia: A meta-analysis. Psychol. Med. 2009;39:889–905. PubMed

Guo J, Ragland JD, Carter CS. Memory and cognition in schizophrenia. Mol. Psychiatry. 2019;24:633–642. PubMed PMC

Calderone DJ, et al. Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia. Cerebral Cortex. 2013;23:1849–1858. PubMed PMC

Marwick K, Hall J. Social cognition in schizophrenia: A review of face processing. Br. Med. Bull. 2008;88:43–58. PubMed

Anticevic A, Repovs G, Corlett PR, Barch DM. Negative and nonemotional interference with visual working memory in schizophrenia. Biol. Psychiatry. 2011;70:1159–1168. PubMed

Stäblein M, et al. Visual working memory encoding in schizophrenia and first-degree relatives: Neurofunctional abnormalities and impaired consolidation. Psychol. Med. 2019;49:75–83. PubMed

Jahshan C, Wolf M, Karbi Y, Shamir E, Rassovsky Y. Probing the magnocellular and parvocellular visual pathways in facial emotion perception in schizophrenia. Psychiatry Res. 2017;253:38–42. PubMed

O’Callaghan C, Kveraga K, Shine JM, Adams RB, Jr., Bar M. Predictions penetrate perception: Converging insights from brain, behaviour, and disorder. Consciousness Cogn. 2017;47:63–74. PubMed PMC

Corlett PR, Honey GD, Fletcher PC. Prediction error, ketamine, and psychosis: An updated model. J. Psychopharmacol. 2016;30:1145–1155. PubMed PMC

Alexander WH, Brown JW. Frontal cortex function as derived from hierarchical predictive coding. Sci. Rep. 2018;8:1–11. PubMed PMC

Inan M, Petros TJ, Anderson SA. Losing your inhibition: Linking cortical GABAergic interneurons to schizophrenia. Neurobiol. Dis. 2013;53:36–48. PubMed PMC

Shaw AD, et al. Oscillatory, computational, and behavioral evidence for impaired GABAergic inhibition in schizophrenia. Schizophr. Bull. 2020;46:345–353. PubMed PMC

Leivada E. Vision, language and a protective mechanism towards psychosis. Neurosci. Lett. 2016;617:178–181. PubMed

Morgan VA, et al. Congenital blindness is protective for schizophrenia and other psychotic illness. A whole-population study. Schizophr. Res. 2018;202:414–416. PubMed

Silverstein SM, et al. Effects of short-term inpatient treatment on sensitivity to a size contrast illusion in first-episode psychosis and multiple-episode schizophrenia. Front. Psychol. 2013;4:466. PubMed PMC

Landgraf S, Osterheider M. “To see or not to see: that is the question”. The “Protection-Against-Schizophrenia” (PaSZ) model: Evidence from congenital blindness and visuo-cognitive aberrations. Front. Psychol. 2013;4:352. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Gaze of Schizophrenia Patients Captured by Bottom-up Saliency

. 2024 Feb 20 ; 10 (1) : 21. [epub] 20240220

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...