Early-stage visual perception impairment in schizophrenia, bottom-up and back again
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
1070119
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
1070119
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
1070119
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
PubMed
35314712
PubMed Central
PMC8938488
DOI
10.1038/s41537-022-00237-9
PII: 10.1038/s41537-022-00237-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.
Zobrazit více v PubMed
Kalkstein S, Hurford I, Gur RC. Neurocognition in schizophrenia. Behavioral Neurobiology of Schizophrenia and its Treatment. 2010;4:373–390. PubMed
Kar SK, Garg K, Tripathi A. Olfactory hallucinations in schizophrenia: Does it carry any meaning? Int. J. Nutr., Pharmacol., Neurol. Dis. 2016;6:136.
Chieffi S. Dysfunction of magnocellular/dorsal processing stream in schizophrenia. Curr. Psychiatry Res. Rev. Formerly: Curr. Psychiatry Rev. 2019;15:26–36.
Dondé C, Avissar M, Weber MM, Javitt DC. A century of sensory processing dysfunction in schizophrenia. Eur. Psychiatry. 2019;59:77–79. PubMed
Javitt DC, Freedman R. Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am. J. Psychiatry. 2015;172:17–31. PubMed PMC
Butler PD, Silverstein SM, Dakin SC. Visual perception and its impairment in schizophrenia. Biol. Psychiatry. 2008;64:40–47. PubMed PMC
Butler PD, et al. Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch. Gen. Psychiatry. 2005;62:495–504. PubMed PMC
Kéri S, Kiss I, Kelemen O, Benedek G, Janka Z. Anomalous visual experiences, negative symptoms, perceptual organization and the magnocellular pathway in schizophrenia: A shared construct? Psychol. Med. 2005;35:1445. PubMed
Damilou A, Apostolakis S, Thrapsanioti E, Theleritis C, Smyrnis N. Shared and distinct oculomotor function deficits in schizophrenia and obsessive compulsive disorder. Psychophysiology. 2016;53:796–805. PubMed
Mather JA. Saccadic eye movements to seen and unseen targets: Oculomotor errors in normal subjects resembling those of schizophrenics. J. Psychiatric Res. 1986;20:1–8. PubMed
Mather JA, Putchat C. Motor control of schizophrenics—I. Oculomotor control of schizophrenics: A deficit in sensory processing, not strictly in motor control. J. Psychiatric Res. 1982;17:343–360. PubMed
Paštrnák M, Dorazilová A, Rodriguez M. Vizuální Percepce a Její Narušení U Schizofrenního Onemocnění-Přehledová Studie. Ceskoslovenska Psychologie. 2017;61:593–604.
Butler PD, et al. Dysfunction of early-stage visual processing in schizophrenia. Am. J. Psychiatry. 2001;158:1126–1133. PubMed
Chen Y, Levy DL, Sheremata S, Holzman PS. Compromised late-stage motion processing in schizophrenia. Biol. Psychiatry. 2004;55:834–841. PubMed
Kogata T, Iidaka T. A review of impaired visual processing and the daily visual world in patients with schizophrenia. Nagoya J. Med. Sci. 2018;80:317. PubMed PMC
Cutting J, Dunne F. The nature of the abnormal perceptual experiences at the onset of schizophrenia. Psychopathology. 1986;19:347–352. PubMed
Hébert M, et al. Retinal response to light in young nonaffected offspring at high genetic risk of neuropsychiatric brain disorders. Biol. Psychiatry. 2010;67:270–274. PubMed
Holzman PS, et al. Eye-tracking dysfunctions in schizophrenic patients and their relatives. Arch. Gen. Psychiatry. 1974;31:143–151. PubMed
Loughland CM, Williams LM, Harris AW. Visual scanpath dysfunction in first-degree relatives of schizophrenia probands: Evidence for a vulnerability marker? Schizophr. Res. 2004;67:11–21. PubMed
Schiffman J, et al. Premorbid childhood ocular alignment abnormalities and adult schizophrenia-spectrum disorder. Schizophr. Res. 2006;81:253–260. PubMed
Schubert E, Henriksson K, McNeil T. A prospective study of offspring of women with psychosis: Visual dysfunction in early childhood predicts schizophrenia‐spectrum disorders in adulthood. Acta Psychiatr. Scand. 2005;112:385–393. PubMed
Gottesman II, Gould TD. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am. J. Psychiatry. 2003;160:636–645. PubMed
Chen Y, Nakayama K, Levy DL, Matthysse S, Holzman PS. Psychophysical isolation of a motion-processing deficit in schizophrenics and their relatives and its association with impaired smooth pursuit. Proc. Natl Acad. Sci. USA. 1999;96:4724–4729. PubMed PMC
Phillipson O, Harris J. Perceptual changes in schizophrenia: A questionnaire survey. Psychol. Med. 1985;15:859–866. PubMed
Klosterkötter J, Hellmich M, Steinmeyer EM, Schultze-Lutter F. Diagnosing schizophrenia in the initial prodromal phase. Arch. Gen. Psychiatry. 2001;58:158–164. PubMed
Silverstein SM. Visual perception disturbances in schizophrenia: a unified model. The Neuropsychopathology of Schizophrenia. 2016;63:77–132. PubMed
Bar M, et al. Top-down facilitation of visual recognition. Proc. Natl Acad. Sci. USA. 2006;103:449–454. PubMed PMC
Panichello MF, Cheung OS, Bar M. Predictive feedback and conscious visual experience. Front. Psychol. 2013;3:620. PubMed PMC
Gordon N, Tsuchiya N, Koenig-Robert R, Hohwy J. Expectation and attention increase the integration of top-down and bottom-up signals in perception through different pathways. PLoS Biol. 2019;17:e3000233. PubMed PMC
Kauffmann L, Ramanoël S, Peyrin C. The neural bases of spatial frequency processing during scene perception. Front. Integr. Neurosci. 2014;8:37. PubMed PMC
Born RT, Bencomo GM. Illusions, delusions, and your backwards bayesian brain: A biased visual perspective. Brain, Behav. Evol. 2020;95:272–285. PubMed PMC
Skottun BC, Skoyles JR. Contrast sensitivity and magnocellular functioning in schizophrenia. Vision Res. 2007;47:2923–2933. PubMed
Parr T, Friston KJ. Attention or salience? Curr. Opin. Psychol. 2019;29:1–5. PubMed
Roiser J, et al. Do patients with schizophrenia exhibit aberrant salience? Psychol. Med. 2009;39:199–209. PubMed PMC
Silverstein S, et al. Increased fusiform area activation in schizophrenia during processing of spatial frequency-degraded faces, as revealed by fMRI. Psychol. Med. 2010;40:1159. PubMed
Butler PD, et al. An event-related potential examination of contour integration deficits in schizophrenia. Front. Psychol. 2013;4:132. PubMed PMC
Silverstein SM, et al. An fMRI examination of visual integration in schizophrenia. J. Integr. Neurosci. 2009;8:175–202. PubMed
Dima D, et al. Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling. Neuroimage. 2009;46:1180–1186. PubMed
Silverstein SM, et al. Perceptual organization and visual search processes during target detection task performance in schizophrenia, as revealed by fMRI. Neuropsychologia. 2010;48:2886–2893. PubMed
Martínez A, et al. Magnocellular pathway impairment in schizophrenia: Evidence from functional magnetic resonance imaging. J. Neurosci. 2008;28:7492–7500. PubMed PMC
Clark CM, Gosselin F, Goghari VM. Aberrant patterns of visual facial information usage in schizophrenia. J. Abnorm. Psychol. 2013;122:513. PubMed
Sehatpour P, et al. Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia: An integrated neuroimaging study. Arch. Gen. Psychiatry. 2010;67:772–782. PubMed PMC
Silverstein S, et al. Reduced top-down influences in contour detection in schizophrenia. Cogn. Neuropsychiatry. 2006;11:112–132. PubMed
Uhlhaas PJ, Phillips WA, Mitchell G, Silverstein SM. Perceptual grouping in disorganized schizophrenia. Psychiatry Res. 2006;145:105–117. PubMed
Butler PD, et al. Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain. 2007;130:417–430. PubMed PMC
Silverstein S, et al. Vision in schizophrenia: Why it matters. Front. Psychol. 2015;6:41. PubMed PMC
de Lecea L, Carter ME, Adamantidis A. Shining light on wakefulness and arousal. Biol. Psychiatry. 2012;71:1046–1052. PubMed PMC
Shoshina I, et al. The internal noise of the visual system and cognitive functions in schizophrenia. Proc. Comput. Sci. 2020;169:813–820.
Silverstein SM, Fradkin SI, Demmin DL. Schizophrenia and the retina: Towards a 2020 perspective. Schizophr. Res. 2020;219:84–94. PubMed PMC
Roy S, Field GD. Dopaminergic modulation of retinal processing from starlight to sunlight. J. Pharmacol. Sci. 2019;140:86–93. PubMed
Herzog MH, Roinishvili M, Chkonia E, Brand A. Schizophrenia and visual backward masking: A general deficit of target enhancement. Front. Psychol. 2013;4:254. PubMed PMC
Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 2019;73:204–215. PubMed
Gazzaley A, et al. Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cerebral Cortex. 2007;17:i125–i135. PubMed PMC
Griesmayr B, et al. EEG theta phase coupling during executive control of visual working memory investigated in individuals with schizophrenia and in healthy controls. Cogn., Affect., Behav. Neurosci. 2014;14:1340–1355. PubMed
Kane MJ, et al. Individual differences in the executive control of attention, memory, and thought, and their associations with schizotypy. J. Exp. Psychol.: Gen. 2016;145:1017. PubMed PMC
Jiang Y, et al. Progressive reduction in gray matter in patients with schizophrenia assessed with MR imaging by using causal network analysis. Radiology. 2018;287:633–642. PubMed
Takayanagi Y, et al. Reduced cortical thickness in schizophrenia and schizotypal disorder. Schizophr. Bull. 2020;46:387–394. PubMed PMC
Vita A, De Peri L, Deste G, Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: A meta-analysis and meta-regression of longitudinal MRI studies. Transl. Psychiatry. 2012;2:e190–e190. PubMed PMC
Benes FM. Amygdalocortical circuitry in schizophrenia: From circuits to molecules. Neuropsychopharmacology. 2010;35:239–257. PubMed PMC
Daenen EW, Wolterink G, Van Der Heyden JA, Kruse CG, Van Ree JM. Neonatal lesions in the amygdala or ventral hippocampus disrupt prepulse inhibition of the acoustic startle response; implications for an animal model of neurodevelopmental disorders like schizophrenia. Eur. Neuropsychopharmacol. 2003;13:187–197. PubMed
Kalus P, Muller TJ, Zuschratter W, Senitz D. The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. Neuroreport. 2000;11:3621–3625. PubMed
Melicher T, et al. White matter changes in first episode psychosis and their relation to the size of sample studied: A DTI study. Schizophr. Res. 2015;162:22–28. PubMed
Venkatasubramanian G, Jayakumar P, Gangadhar B, Keshavan M. Automated MRI parcellation study of regional volume and thickness of prefrontal cortex (PFC) in antipsychotic‐naïve schizophrenia. Acta Psychiatr. Scand. 2008;117:420–431. PubMed
Roska, B. & Meister, M. The Retina Dissects the Visual Scene. The New Visual Neurosciences, 163–182 (2014).
Demmin DL, Davis Q, Roché M, Silverstein SM. Electroretinographic anomalies in schizophrenia. J. Abnorm. Psychol. 2018;127:417. PubMed
Lee WW, Tajunisah I, Sharmilla K, Peyman M, Subrayan V. Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: evidence from optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2013;54:7785–7792. PubMed
Silverstein SM, Rosen R. Schizophrenia and the eye. Schizophr. Res.: Cogn. 2015;2:46–55. PubMed PMC
Harris J, Calvert J, Leendertz J, Phillipson O. The influence of dopamine on spatial vision. Eye. 1990;4:806–812. PubMed
Koizumi A, et al. Atypical spatial frequency dependence of visual metacognition among schizophrenia patients. NeuroImage: Clin. 2020;27:102296. PubMed PMC
Samani NN, et al. Retinal layer abnormalities as biomarkers of schizophrenia. Schizophr. Bull. 2018;44:876–885. PubMed PMC
Archibald NK, Clarke MP, Mosimann UP, Burn DJ. Visual symptoms in Parkinson’s disease and Parkinson’s disease dementia. Mov. Disord. 2011;26:2387–2395. PubMed
Urwyler P, et al. Visual complaints and visual hallucinations in Parkinson’s disease. Parkinsonism Relat. Disord. 2014;20:318–322. PubMed
Brandies R, Yehuda S. The possible role of retinal dopaminergic system in visual performance. Neurosci. Biobehav. Rev. 2008;32:611–656. PubMed
ffytche DH. Visual hallucinations in eye disease. Curr. Opin. Neurol. 2009;22:28–35. PubMed
Silverstein SM, Kovács I, Corry R, Valone C. Perceptual organization, the disorganization syndrome, and context processing in chronic schizophrenia. Schizophr. Res. 2000;43:11–20. PubMed
Clark M, Waters F, Vatskalis T, Jablensky A. On the interconnectedness and prognostic value of visual and auditory hallucinations in first-episode psychosis. Eur. Psychiatry. 2017;41:122–128. PubMed
Zhuo C, et al. Antipsychotic agents deteriorate brain and retinal function in schizophrenia patients with combined auditory and visual hallucinations: A pilot study and secondary follow‐up study. Brain Behav. 2020;10:e01611. PubMed PMC
Zhuo C, et al. Patients with first-episode untreated schizophrenia who experience concomitant visual disturbances and auditory hallucinations exhibit co-impairment of the brain and retinas-a pilot study. Brain Imaging Behav. 2020;15:1–9. PubMed
Fallon SJ, Zokaei N, Husain M. Causes and consequences of limitations in visual working memory. Ann. N. Y. Acad. Sci. 2016;1369:40. PubMed PMC
Ascaso FJ, et al. Retinal nerve fiber layer thickness measured by optical coherence tomography in patients with schizophrenia: A short report. Eur. J. Psychiatry. 2010;24:227–235.
Jerotić S, Marić NP. Structural retinal abnormalities as potential markers for psychosis spectrum disorders. Medicinski Podmladak. 2018;69:41–47.
Wannan CM, et al. Evidence for network-based cortical thickness reductions in schizophrenia. Am. J. Psychiatry. 2019;176:552–563. PubMed
Adams SA, Nasrallah HA. Multiple retinal anomalies in schizophrenia. Schizophr. Res. 2018;195:3–12. PubMed
Hosak L, Sery O, Sadykov E, Studnicka J. Retinal abnormatilites as a diagnostic or prognostic marker of schizophrenia. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc. 2018;162:159–164. PubMed
Bringmann A, Grosche A, Pannicke T, Reichenbach A. GABA and glutamate uptake and metabolism in retinal glial (Müller) cells. Front. Endocrinol. 2013;4:48. PubMed PMC
Gracitelli CP, et al. Ophthalmology issues in schizophrenia. Curr. Psychiatry Rep. 2015;17:28. PubMed PMC
Hartwick AT, Hamilton CM, Baldridge WH. Glutamatergic calcium dynamics and deregulation of rat retinal ganglion cells. J. Physiol. 2008;586:3425–3446. PubMed PMC
Reif A, et al. A functional promoter polymorphism of neuronal nitric oxide synthase moderates prefrontal functioning in schizophrenia. Int. J. Neuropsychopharmacol. 2011;14:887–897. PubMed
Silverstein SM, et al. Retinal microvasculature in schizophrenia. Eye Brain. 2021;13:205. PubMed PMC
De Jong FJ, et al. Arteriolar oxygen saturation, cerebral blood flow, and retinal vessel diameters: The Rotterdam Study. Ophthalmology. 2008;115:887–892. PubMed
Meier MH, et al. Microvascular abnormality in schizophrenia as shown by retinal imaging. Am. J. Psychiatry. 2013;170:1451–1459. PubMed PMC
Sun C, Wang JJ, Mackey DA, Wong TY. Retinal vascular caliber: Systemic, environmental, and genetic associations. Surv. Ophthalmol. 2009;54:74–95. PubMed
Huemer K-H, et al. Effects of dopamine on retinal and choroidal blood flow parameters in humans. Br. J. Ophthalmol. 2007;91:1194–1198. PubMed PMC
Lavoie J, et al. The electroretinogram as a biomarker of central dopamine and serotonin: Potential relevance to psychiatric disorders. Biol. Psychiatry. 2014;75:479–486. PubMed
Hébert M, et al. The electroretinogram may differentiate schizophrenia from bipolar disorder. Biol. Psychiatry. 2020;87:263–270. PubMed
Balogh Z, Benedek G, Kéri S. Retinal dysfunctions in schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2008;32:297–300. PubMed
Gründer, G. & Cumming, P. The Neurobiology of Schizophrenia 109–124 (Elsevier, 2016).
Korshunov KS, Blakemore LJ, Trombley PQ. Dopamine: a modulator of circadian rhythms in the central nervous system. Front. Cell. Neurosci. 2017;11:91. PubMed PMC
Frazao R, et al. Histamine elevates free intracellular calcium in mouse retinal dopaminergic cells via H1-receptors. Invest. Ophthalmol. Vis. Sci. 2011;52:3083–3088. PubMed PMC
Ortiz G, Odom JV, Passaglia CL, Tzekov RT. Efferent influences on the bioelectrical activity of the retina in primates. Documenta Ophthalmol. 2017;134:57–73. PubMed
Nasser JA, et al. Electroretinographic detection of human brain dopamine response to oral food stimulation. Obesity. 2013;21:976–980. PubMed PMC
Balasubramanian R, Gan L. Development of retinal amacrine cells and their dendritic stratification. Curr. Ophthalmol. Rep. 2014;2:100–106. PubMed PMC
Veruki ML, Wässle H. Immunohistochemical localization of dopamine D receptors in rat retina. Eur. J. Neurosci. 1996;8:2286–2297. PubMed
Biedermann B, Fröhlich E, Grosche J, Wagner H-J, Reichenbach A. Mammalian Müller (glial) cells express functional D2 dopamine receptors. Neuroreport. 1995;6:609–612. PubMed
Veruki ML. Dopaminergic neurons in the rat retina express dopamine D2/3 receptors. Eur. J. Neurosci. 1997;9:1096–1100. PubMed
Witkovsky P. Dopamine and retinal function. Documenta Ophthalmol. 2004;108:17–39. PubMed
Piccolino M, Neyton J, Gerschenfeld H. Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3’: 5’-monophosphate in horizontal cells of turtle retina. J. Neurosci. 1984;4:2477–2488. PubMed PMC
Bloomfield SA, Dacheux RF. Rod vision: Pathways and processing in the mammalian retina. Prog. Retinal Eye Res. 2001;20:351–384. PubMed
Demb JB, Singer JH. Intrinsic properties and functional circuitry of the AII amacrine cell. Vis. Neurosci. 2012;29:51. PubMed PMC
Daw, N. W., Brunken, W. J. & Jensen, R. J. Neurobiology of the Inner Retina 363–374 (Springer, 1989).
Li H, et al. Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J. Neurosci. 2013;33:3135–3150. PubMed PMC
Jurišić D, et al. New insights into schizophrenia: A look at the eye and related structures. Psychiatr. Danub. 2020;32:60–69. PubMed
Qian H, Ripps H. The GABAC receptors of retinal neurons. Prog. Brain Res. 2001;131:295–308. PubMed
Copenhagen DR, Jahr CE. Release of endogenous excitatory amino acids from turtle photoreceptors. Nature. 1989;341:536–539. PubMed
Javitt DC. Glutamate and schizophrenia: Phencyclidine, N‐methyl‐d‐aspartate receptors, and dopamine–glutamate interactions. Int. Rev. Neurobiol. 2007;78:69–108. PubMed
Phillips WA, Silverstein SM. Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 2003;26:65–82. PubMed
Uhlhaas PJ, Millard I, Muetzelfeldt L, Curran HV, Morgan CJ. Perceptual organization in ketamine users: Preliminary evidence of deficits on night of drug use but not 3 days later. J. Psychopharmacol. 2007;21:347–352. PubMed
Barnett NL, Pow DV. Antisense knockdown of GLAST, a glial glutamate transporter, compromises retinal function. Invest. Ophthalmol. Vis. Sci. 2000;41:585–591. PubMed
Bulens C, Meerwaldt J, Van Der Wildt G, Keemink C. Visual contrast sensitivity in drug-induced Parkinsonism. J. Neurol., Neurosurg. Psychiatry. 1989;52:341–345. PubMed PMC
Chen Y, et al. Effects of typical, atypical, and no antipsychotic drugs on visual contrast detection in schizophrenia. Am. J. Psychiatry. 2003;160:1795–1801. PubMed
Domenici L, Trimarchi C, Piccolino M, Fiorentini A, Maffei L. Dopaminergic drugs improve human visual contrast sensitivity. Hum. Neurobiol. 1985;4:195–197. PubMed
Kéri S, Benedek G. Visual contrast sensitivity alterations in inferred magnocellular pathways and anomalous perceptual experiences in people at high-risk for psychosis. Vis. Neurosci. 2007;24:183. PubMed
Zhang AJ, Jacoby R, Wu SM. Light‐and dopamine‐regulated receptive field plasticity in primate horizontal cells. J. Comp. Neurol. 2011;519:2125–2134. PubMed PMC
Dowling, J. E. The Retina: An Approachable Part of the Brain (Harvard University Press, 1987).
Demmin DL, Mote J, Beaudette DM, Thompson JL, Silverstein SM. Retinal functioning and reward processing in schizophrenia. Schizophr. Res. 2020;219:25–33. PubMed
Pelino CJ, Pizzimenti JJ. The miniature multitasker: What makes the hypothalamus so important to the eye and visual system? Rev. Optometry. 2014;151:76–78.
Cao D, et al. Functional loss in the magnocellular and parvocellular pathways in patients with optic neuritis. Invest. Ophthalmol. Vis. Sci. 2011;52:8900–8907. PubMed PMC
Casagrande, V. & Ichida, J. Processing in the lateral geniculate nucleus (LGN). Adler’s Physiology of the Eye 574–585 (2011).
Casagrande, V.A. & Xu, X. Parallel visual pathways: a comparative perspective. The Visual Neurosciences, 494–506 (MIT Press, 2004).
Sherman, S. M. & Guillery, R. W. Exploring the Thalamus and its Role in Cortical Function (MIT Press, 2006).
Krueger J, Disney AA. Structure and function of dual‐source cholinergic modulation in early vision. J. Comp. Neurol. 2019;527:738–750. PubMed PMC
Casagrande, V. A., Royal, D. W. & Sáry, G. Extraretinal inputs and feedbackmechanisms to the lateral geniculate nucleus (LGN). The Primate Visual System: A Comparative Approach, 191–211 (2005).
García-Cabezas MÁ, Martínez-Sánchez P, Sánchez-González MÁ, Garzón M, Cavada C. Dopamine innervation in the thalamus: Monkey versus rat. Cerebral Cortex. 2009;19:424–434. PubMed PMC
Zhao Y, Kerscher N, Eysel U, Funke K. D1 and D2 receptor‐mediated dopaminergic modulation of visual responses in cat dorsal lateral geniculate nucleus. J. Physiol. 2002;539:223–238. PubMed PMC
Godwin DW, Vaughan JW, Sherman SM. Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. J. Neurophysiol. 1996;76:1800–1816. PubMed
Nakajima M, Schmitt LI, Halassa MM. Prefrontal cortex regulates sensory filtering through a basal ganglia-to-thalamus pathway. Neuron. 2019;103:445–458. e410. PubMed PMC
Varela C. Thalamic neuromodulation and its implications for executive networks. Front. Neural Circuits. 2014;8:69. PubMed PMC
Stidwill, D. & Fletcher, R. Normal Binocular Vision: Theory, Investigation and Practical Aspects (John Wiley & Sons, 2017).
Poltoratski S, Maier A, Newton AT, Tong F. Figure-ground modulation in the human lateral geniculate nucleus is distinguishable from top-down attention. Curr. Biol. 2019;29:2051–2057. e2053. PubMed PMC
Xu X, et al. A comparison of koniocellular, magnocellular, and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) J. Physiol. 2001;531:203–218. PubMed PMC
Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. Retinal ganglion cells-diversity of cell types and clinical relevance. Front. Neurol. 2021;12:661938. PubMed PMC
Yan W, et al. Cell atlas of the human fovea and peripheral retina. Sci. Rep. 2020;10:1–17. PubMed PMC
Cao D, Lee BB, Sun H. Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway. J. Vis. 2010;10:4–4. PubMed PMC
Marosi C, Fodor Z, Csukly G. From basic perception deficits to facial affect recognition impairments in schizophrenia. Sci. Rep. 2019;9:1–13. PubMed PMC
Shoshina I, Mukhitova YV, Tregubenko I, Pronin S, Isaeva E. Contrast sensitivity of the visual system and cognitive functions in schizophrenia and depression. Human Physiol. 2021;47:516–527.
Vaziri-Pashkam M, Taylor J, Xu Y. Spatial frequency tolerant visual object representations in the human ventral and dorsal visual processing pathways. J. Cogn. Neurosci. 2019;31:49–63. PubMed
Skottun BC. On the use of spatial frequency to isolate contributions from the magnocellular and parvocellular systems and the dorsal and ventral cortical streams. Neurosci. Biobehav. Rev. 2015;56:266–275. PubMed
Dacey D. The mosaic of midget ganglion cells in the human retina. J. Neurosci. 1993;13:5334–5355. PubMed PMC
Kling A, Field G, Brainard D, Chichilnisky E. Probing computation in the primate visual system at single-cone resolution. Annu. Rev. Neurosci. 2019;42:169–186. PubMed PMC
Patterson SS, et al. Another blue-ON ganglion cell in the primate retina. Curr. Biol. 2020;30:R1409–R1410. PubMed PMC
Hall N, Colby C. Psychophysical definition of S-cone stimuli in the macaque. J. Vis. 2013;13:20–20. PubMed PMC
Hall N, Colby C. S-cone visual stimuli activate superior colliculus neurons in old world monkeys: Implications for understanding blindsight. J. Cogn. Neurosci. 2014;26:1234–1256. PubMed
Hall NJ, Colby CL. Express saccades and superior colliculus responses are sensitive to short-wavelength cone contrast. Proc. Natl Acad. Sci. USA. 2016;113:6743–6748. PubMed PMC
Kveraga K, Im HY, Ward N, Adams RB. Fast saccadic and manual responses to faces presented to the koniocellular visual pathway. J. Vis. 2020;20:9–9. PubMed PMC
Enroth-Cugell C, Robson JG. Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. Invest. Ophthalmol. Vis. Sci. 1984;25:250–267. PubMed
Welbourne LE, Morland AB, Wade AR. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI. NeuroImage. 2018;167:84–94. PubMed PMC
Marc, Robert E. Synaptic organization of the retina. Adler’s Physiology of the Eye. 443-458, (Philadelphia: Saunders Elsevier, 2011).
Yang CR, Seamans JK. Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J. Neurosci. 1996;16:1922–1935. PubMed PMC
Bennett C, et al. Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron. 2019;102:477–492. e475. PubMed PMC
Parnaudeau S, Bolkan SS, Kellendonk C. The mediodorsal thalamus: An essential partner of the prefrontal cortex for cognition. Biol. Psychiatry. 2018;83:648–656. PubMed PMC
Maith O, Schwarz A, Hamker FH. Optimal attention tuning in a neuro-computational model of the visual cortex–basal ganglia–prefrontal cortex loop. Neural Netw. 2021;142:534–547. PubMed
Vuilleumier P. Affective and motivational control of vision. Curr. Opin. Neurol. 2015;28:29–35. PubMed
Hirata A, Aguilar J, Castro-Alamancos MA. Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus. J. Neurosci. 2006;26:4426–4436. PubMed PMC
Bar M. A cortical mechanism for triggering top-down facilitation in visual object recognition. J. Cogn. Neurosci. 2003;15:600–609. PubMed
Tapia E, Breitmeyer BG. Visual consciousness revisited: Magnocellular and parvocellular contributions to conscious and nonconscious vision. Psychol. Sci. 2011;22:934–942. PubMed
Lee TS. Computations in the early visual cortex. J. Physiol.-Paris. 2003;97:121–139. PubMed
Kwon H, et al. Early cortical signals in visual stimulus detection. Neuroimage. 2021;244:118608. PubMed
Wunderlich K, Beierholm UR, Bossaerts P, O’Doherty JP. The human prefrontal cortex mediates integration of potential causes behind observed outcomes. J. Neurophysiol. 2011;106:1558–1569. PubMed PMC
Hamker FH. The reentry hypothesis: The putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cerebral Cortex. 2005;15:431–447. PubMed
Noudoost B, Moore T. Control of visual cortical signals by prefrontal dopamine. Nature. 2011;474:372–375. PubMed PMC
Zhang Y, et al. Object decoding with attention in inferior temporal cortex. Proc. Natl Acad. Sci. USA. 2011;108:8850–8855. PubMed PMC
Dima D, Dietrich DE, Dillo W, Emrich HM. Impaired top-down processes in schizophrenia: A DCM study of ERPs. NeuroImage. 2010;52:824–832. PubMed
Yang E, et al. Visual context processing in schizophrenia. Clin. Psychol. Sci. 2013;1:5–15. PubMed PMC
Forbes N, Carrick L, McIntosh A, Lawrie S. Working memory in schizophrenia: A meta-analysis. Psychol. Med. 2009;39:889–905. PubMed
Guo J, Ragland JD, Carter CS. Memory and cognition in schizophrenia. Mol. Psychiatry. 2019;24:633–642. PubMed PMC
Calderone DJ, et al. Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia. Cerebral Cortex. 2013;23:1849–1858. PubMed PMC
Marwick K, Hall J. Social cognition in schizophrenia: A review of face processing. Br. Med. Bull. 2008;88:43–58. PubMed
Anticevic A, Repovs G, Corlett PR, Barch DM. Negative and nonemotional interference with visual working memory in schizophrenia. Biol. Psychiatry. 2011;70:1159–1168. PubMed
Stäblein M, et al. Visual working memory encoding in schizophrenia and first-degree relatives: Neurofunctional abnormalities and impaired consolidation. Psychol. Med. 2019;49:75–83. PubMed
Jahshan C, Wolf M, Karbi Y, Shamir E, Rassovsky Y. Probing the magnocellular and parvocellular visual pathways in facial emotion perception in schizophrenia. Psychiatry Res. 2017;253:38–42. PubMed
O’Callaghan C, Kveraga K, Shine JM, Adams RB, Jr., Bar M. Predictions penetrate perception: Converging insights from brain, behaviour, and disorder. Consciousness Cogn. 2017;47:63–74. PubMed PMC
Corlett PR, Honey GD, Fletcher PC. Prediction error, ketamine, and psychosis: An updated model. J. Psychopharmacol. 2016;30:1145–1155. PubMed PMC
Alexander WH, Brown JW. Frontal cortex function as derived from hierarchical predictive coding. Sci. Rep. 2018;8:1–11. PubMed PMC
Inan M, Petros TJ, Anderson SA. Losing your inhibition: Linking cortical GABAergic interneurons to schizophrenia. Neurobiol. Dis. 2013;53:36–48. PubMed PMC
Shaw AD, et al. Oscillatory, computational, and behavioral evidence for impaired GABAergic inhibition in schizophrenia. Schizophr. Bull. 2020;46:345–353. PubMed PMC
Leivada E. Vision, language and a protective mechanism towards psychosis. Neurosci. Lett. 2016;617:178–181. PubMed
Morgan VA, et al. Congenital blindness is protective for schizophrenia and other psychotic illness. A whole-population study. Schizophr. Res. 2018;202:414–416. PubMed
Silverstein SM, et al. Effects of short-term inpatient treatment on sensitivity to a size contrast illusion in first-episode psychosis and multiple-episode schizophrenia. Front. Psychol. 2013;4:466. PubMed PMC
Landgraf S, Osterheider M. “To see or not to see: that is the question”. The “Protection-Against-Schizophrenia” (PaSZ) model: Evidence from congenital blindness and visuo-cognitive aberrations. Front. Psychol. 2013;4:352. PubMed PMC
The Gaze of Schizophrenia Patients Captured by Bottom-up Saliency