Assessment of the Diagnostic Efficacy of Low-Field Magnetic Resonance Imaging: A Systematic Review

. 2024 Jul 19 ; 14 (14) : . [epub] 20240719

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39061702

Grantová podpora
SGS23/198/OHK4/3T/17 Czech Technical University in Prague
SGS22/132/OHK4/2T/17 Czech Technical University in Prague

BACKGROUND: In recent years, there has been an increasing effort to take advantage of the potential use of low magnetic induction devices with less than 1 T, referred to as Low-Field MRI (LF MRI). LF MRI systems were used, especially in the early days of magnetic resonance technology. Over time, magnetic induction values of 1.5 and 3 T have become the standard for clinical devices, mainly because LF MRI systems were suffering from significantly lower quality of the images, e.g., signal-noise ratio. In recent years, due to advances in image processing with artificial intelligence, there has been an increasing effort to take advantage of the potential use of LF MRI with induction of less than 1 T. This overview article focuses on the analysis of the evidence concerning the diagnostic efficacy of modern LF MRI systems and the clinical comparison of LF MRI with 1.5 T systems in imaging the nervous system, musculoskeletal system, and organs of the chest, abdomen, and pelvis. METHODOLOGY: A systematic literature review of MEDLINE, PubMed, Scopus, Web of Science, and CENTRAL databases for the period 2018-2023 was performed according to the recommended PRISMA protocol. Data were analysed to identify studies comparing the accuracy, reliability and diagnostic performance of LF MRI technology compared to available 1.5 T MRI. RESULTS: A total of 1275 publications were retrieved from the selected databases. Only two articles meeting all predefined inclusion criteria were selected for detailed assessment. CONCLUSIONS: A limited number of robust studies on the accuracy and diagnostic performance of LF MRI compared with 1.5 T MRI was available. The current evidence is not sufficient to draw any definitive insights. More scientific research is needed to make informed conclusions regarding the effectiveness of LF MRI technology.

Zobrazit více v PubMed

Hori M., Hagiwara A., Goto M., Wada A., Aoki S. Low-Field Magnetic Resonance Imaging: Its History and Renaissance. Investig. Radiol. 2021;56:669–679. doi: 10.1097/RLI.0000000000000810. PubMed DOI PMC

Hong A.S., Levin D., Parker L., Rao V.M., Ross-Degnan D., Wharam J.F. Trends in Diagnostic Imaging Utilization among Medicare and Commercially Insured Adults from 2003 through 2016. Radiology. 2020;294:342–350. doi: 10.1148/radiol.2019191116. PubMed DOI PMC

Marques J.P., Simonis F.F.J., Webb A.G. Low-field MRI: An MR physics perspective. J. Magn. Reson. Imaging. 2019;49:1528–1542. doi: 10.1002/jmri.26637. PubMed DOI PMC

Sheth K.N., Mazurek M.H., Yuen M.M., Cahn B.A., Shah J.T., Ward A., Kim J.A., Gilmore E.J., Falcone G.J., Petersen N., et al. Assessment of Brain Injury Using Portable, Low-Field Magnetic Resonance Imaging at the Bedside of Critically Ill Patients. JAMA Neurol. 2021;78:41–47. doi: 10.1001/jamaneurol.2020.3263. PubMed DOI PMC

Anoardo E., Rodriguez G.G. New challenges and opportunities for low-field MRI. J. Magn. Reson. Open. 2023;14:100086. doi: 10.1016/j.jmro.2022.100086. DOI

Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. PubMed DOI PMC

Cochrane Handbook for Systematic Reviews of Interventions. [(accessed on 29 November 2023)]. Available online: https://training.cochrane.org/handbook.

Arnold T.C., Freeman C.W., Litt B., Stein J.M. Low-field MRI: Clinical promise and challenges. J. Magn. Reson. Imaging JMRI. 2023;57:25–44. doi: 10.1002/jmri.28408. PubMed DOI PMC

Fryback D.G., Thornbury J.R. The Efficacy of Diagnostic Imaging. Med. Decis. Making. 1991;11:88–94. doi: 10.1177/0272989X9101100203. PubMed DOI

Bachmann L.M., Estermann P., Kronenberg C., ter Riet G. Identifying diagnostic accuracy studies in EMBASE. J. Med. Libr. Assoc. 2003;91:341–346. PubMed PMC

Whiting P., Rutjes A.W., Reitsma J.B., Bossuyt P.M., Kleijnen J. The development of QUADAS: A tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med. Res. Methodol. 2003;3:25. doi: 10.1186/1471-2288-3-25. PubMed DOI PMC

Allam M.F., Elian M.M., Rahman A.M., Allam F.A. The utility of chemical shift imaging and related fat suppression as standalone technique in cryptorchidism using low field MRI. Egypt. J. Radiol. Nucl. Med. 2018;49:1140–1144. doi: 10.1016/j.ejrnm.2018.07.008. DOI

Campbell-Washburn A.E. 2019 American Thoracic Society BEAR Cage Winning Proposal: Lung Imaging Using High-Performance Low-Field Magnetic Resonance Imaging. Am. J. Respir. Crit. Care Med. 2020;201:1333–1336. doi: 10.1164/rccm.201912-2505ED. PubMed DOI PMC

Ruiz Montesino M.D., Mendoza Mendoza D. Síndrome del túnel del carpo por tofo: Imagen de resonancia magnética de bajo campo. Reumatol. Clín. 2019;15:e149–e150. doi: 10.1016/j.reuma.2017.07.021. PubMed DOI

Anisimov N.V., Pavlova O.S., Pirogov Y.A., Yarnykh V.L. Three-dimensional fast single-point macromolecular proton fraction mapping of the human brain at 0.5 Tesla. Quant. Imaging Med. Surg. 2020;10:1441–1449. doi: 10.21037/qims-19-1057. PubMed DOI PMC

Schröder F.F., Post C.E., van Raak S.M., Simonis F.F., Wagenaar F.-C., Huis in’t Veld R.M., Verdonschot N. The diagnostic potential of low-field MRI in problematic total knee arthroplasties—A feasibility study. J. Exp. Orthop. 2020;7:59. doi: 10.1186/s40634-020-00274-2. PubMed DOI PMC

Basar B., Sonmez M., Yildirim D.K., Paul R., Herzka D.A., Kocaturk O., Lederman R.J., Campbell-Washburn A.E. Susceptibility artifacts from metallic markers and cardiac catheterization devices on a high-performance 0.55 T MRI system. Magn. Reson. Imaging. 2021;77:14–20. doi: 10.1016/j.mri.2020.12.002. PubMed DOI PMC

Harper J.R., Cherukuri V., O’Reilly T., Yu M., Mbabazi-Kabachelor E., Mulando R., Sheth K.N., Webb A.G., Warf B.C., Kulkarni A.V., et al. Assessing the utility of low resolution brain imaging: Treatment of infant hydrocephalus. NeuroImage Clin. 2021;32:102896. doi: 10.1016/j.nicl.2021.102896. PubMed DOI PMC

Campbell-Washburn A.E., Jiang Y., Körzdörfer G., Nittka M., Griswold M.A. Feasibility of MR fingerprinting using a high-performance 0.55 T MRI system. Magn. Reson. Imaging. 2021;81:88–93. doi: 10.1016/j.mri.2021.06.002. PubMed DOI PMC

Wang Y., van Gelderen P., de Zwart J.A., Campbell-Washburn A.E., Duyn J.H. FMRI based on transition-band balanced SSFP in comparison with EPI on a high-performance 0.55 T scanner. Magn. Reson. Med. 2021;85:3196–3210. doi: 10.1002/mrm.28657. PubMed DOI PMC

Bhattacharya I., Ramasawmy R., Javed A., Chen M.Y., Benkert T., Majeed W., Lederman R.J., Moss J., Balaban R.S., Campbell-Washburn A.E. Oxygen-enhanced functional lung imaging using a contemporary 0.55 T MRI system. NMR Biomed. 2021;34:e4562. doi: 10.1002/nbm.4562. PubMed DOI PMC

Self-Gated 3D Stack-of-Spirals UTE Pulmonary Imaging at 0.55T-Javed-2022-Magnetic Resonance in Medicine-Wiley Online Library. [(accessed on 12 April 2024)]. Available online: https://onlinelibrary.wiley.com/doi/10.1002/mrm.29079. PubMed DOI PMC

T2-Weighted Lung Imaging Using a 0.55-T MRI System|Radiology: Cardiothoracic Imaging. [(accessed on 12 April 2024)]. Available online: https://pubs.rsna.org/doi/full/10.1148/ryct.2021200611. PubMed DOI PMC

Campbell-Washburn A.E., Suffredini A.F., Chen M.Y. High-Performance 0.55-T Lung MRI in Patient with COVID-19 Infection. Radiology. 2021;299:E246–E247. doi: 10.1148/radiol.2021204155. PubMed DOI PMC

Heiss R., Grodzki D.M., Horger W., Uder M., Nagel A.M., Bickelhaupt S. High-performance low field MRI enables visualization of persistent pulmonary damage after COVID-19. Magn. Reson. Imaging. 2021;76:49–51. doi: 10.1016/j.mri.2020.11.004. PubMed DOI PMC

Norris D.G., Webb A. This house proposes that low field and high field MRI are by destiny worst enemies, and can never be the best of friends! Magn. Reson. Mater. Phys. Biol. Med. 2021;34:475–477. doi: 10.1007/s10334-021-00940-1. PubMed DOI

Chiragzada S., Satya P., Macaluso J.N., Jr., Venkataraman S.S., Adams J., Jr., Nacev A.N., Kumar D. Advantageous Detection of Significant Prostate Cancer Using a Low-Field, Office-Based MRI System. Cureus. 2022;14:e32105. doi: 10.7759/cureus.32105. PubMed DOI PMC

Porrelli D., Abrami M., Pelizzo P., Formentin C., Ratti C., Turco G., Grassi M., Canton G., Grassi G., Murena L. Trabecular bone porosity and pore size distribution in osteoporotic patients—A low field nuclear magnetic resonance and microcomputed tomography investigation. J. Mech. Behav. Biomed. Mater. 2022;125:104933. doi: 10.1016/j.jmbbm.2021.104933. PubMed DOI

Qiu Y., Bai H., Chen H., Zhao Y., Luo H., Wu Z., Zhang Z. Susceptibility-weighted imaging at high-performance 0.5T magnetic resonance imaging system: Protocol considerations and experimental results. Front. Neurosci. 2022;16:999240. doi: 10.3389/fnins.2022.999240. PubMed DOI PMC

Stamenkovic B., Stojanovic S., Zivkovic V., Djordjevic D., Bojanovic M., Stankovic A., Rancic N., Damjanov N., Matucci Cerinic M. Low-Frequency Magnetic Resonance Imaging Identifies Hand Joint Subclinical Inflammation in Systemic Sclerosis. Diagnostics. 2022;12:2165. doi: 10.3390/diagnostics12092165. PubMed DOI PMC

Bhattacharya I., Ramasawmy R., Javed A., Lowery M., Henry J., Mancini C., Machado T., Jones A., Julien-Williams P., Lederman R.J., et al. Assessment of Lung Structure and Regional Function Using 0.55 T MRI in Patients With Lymphangioleiomyomatosis. Investig. Radiol. 2022;57:178–186. doi: 10.1097/RLI.0000000000000832. PubMed DOI PMC

Lévy S., Heiss R., Grimm R., Grodzki D., Hadler D., Voskrebenzev A., Vogel-Claussen J., Fuchs F., Strauss R., Achenbach S., et al. Free-Breathing Low-Field MRI of the Lungs Detects Functional Alterations Associated With Persistent Symptoms After COVID-19 Infection. Investig. Radiol. 2022;57:742–751. doi: 10.1097/RLI.0000000000000892. PubMed DOI

Seemann F., Javed A., Chae R., Ramasawmy R., O’Brien K., Baute S., Xue H., Lederman R.J., Campbell-Washburn A.E. Imaging gravity-induced lung water redistribution with automated inline processing at 0.55 T cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2022;24:35. doi: 10.1186/s12968-022-00862-4. PubMed DOI PMC

Azour L., Condos R., Keerthivasan M.B., Bruno M., Pandit Sood T., Landini N., Silverglate Q., Babb J., Chandarana H., Moore W.H. Low-field 0.55 T MRI for assessment of pulmonary groundglass and fibrosis-like opacities: Inter-reader and inter-modality concordance. Eur. J. Radiol. 2022;156:110515. doi: 10.1016/j.ejrad.2022.110515. PubMed DOI PMC

Wujciak D. Modern mid-field magnetic resonance imaging in private practice: Field report. Radiologe. 2022;62:405–409. doi: 10.1007/s00117-022-00988-7. PubMed DOI

Anzai Y., Moy L. Point-of-Care Low-Field-Strength MRI Is Moving Beyond the Hype. Radiology. 2022;305:672–673. doi: 10.1148/radiol.221278. PubMed DOI

Breit H.-C., Bauman G. Morphologic and Functional Assessment of Sarcoidosis Using Low-Field MRI. Radiology. 2022;303:255. doi: 10.1148/radiol.211760. PubMed DOI

Cawley P.A., Nosarti C., Edwards A.D. In-unit neonatal magnetic resonance imaging—New possibilities offered by low-field technology. J. Perinatol. 2022;42:843–844. doi: 10.1038/s41372-022-01401-w. PubMed DOI

Sekhon M.S., Griesdale D.E. Low field magnetic resonance imaging: A “beds-eye-d” view into hypoxic ischemic brain injury after cardiac arrest. Resuscitation. 2022;176:55–57. doi: 10.1016/j.resuscitation.2022.05.010. PubMed DOI

Arnold T.C., Tu D., Okar S.V., Nair G., By S., Kawatra K.D., Robert-Fitzgerald T.E., Desiderio L.M., Schindler M.K., Shinohara R.T., et al. Sensitivity of portable low-field magnetic resonance imaging for multiple sclerosis lesions. NeuroImage Clin. 2022;35:103101. doi: 10.1016/j.nicl.2022.103101. PubMed DOI PMC

Breit H.-C., Vosshenrich J., Bach M., Merkle E.M. Neue klinische Anwendungsbereiche der Niederfeld-Magnetresonanztomographie. Radiologe. 2022;62:394–399. doi: 10.1007/s00117-022-00967-y. PubMed DOI PMC

New Efforts in Biomedical Imaging|IEEE Journals & Magazine|IEEE Xplore. [(accessed on 12 April 2024)]. Available online: https://ieeexplore.ieee.org/document/9870761.

Rusche T., Vosshenrich J., Winkel D.J., Donners R., Segeroth M., Bach M., Merkle E.M., Breit H.-C. More Space, Less Noise—New-generation Low-Field Magnetic Resonance Imaging Systems Can Improve Patient Comfort: A Prospective 0.55T–1.5T-Scanner Comparison. J. Clin. Med. 2022;11:6705. doi: 10.3390/jcm11226705. PubMed DOI PMC

Klippel E., Moshagen V. Neurologische Manifestation einer zerebrotendinösen Xanthomatose—Klinik und kraniale Bildgebung im Niederfeld-MRT. Nervenarzt. 2023;94:142–144. doi: 10.1007/s00115-022-01402-2. PubMed DOI

Tian Y., Cui S.X., Lim Y., Lee N.G., Zhao Z., Nayak K.S. Contrast-optimal simultaneous multi-slice bSSFP cine cardiac imaging at 0.55 T. Magn. Reson. Med. 2023;89:746–755. doi: 10.1002/mrm.29472. PubMed DOI PMC

Li B., Lee N.G., Cui S.X., Nayak K.S. Lung parenchyma transverse relaxation rates at 0.55 T. Magn. Reson. Med. 2023;89:1522–1530. doi: 10.1002/mrm.29541. PubMed DOI PMC

Heiss R., Tan L., Schmidt S., Regensburger A.P., Ewert F., Mammadova D., Buehler A., Vogel-Claussen J., Voskrebenzev A., Rauh M., et al. Pulmonary Dysfunction after Pediatric COVID-19. Radiology. 2023;306:e221250. doi: 10.1148/radiol.221250. PubMed DOI PMC

Paltiel H.J. Low-Field-Strength MRI and Ventilation-Perfusion Mismatch after Pediatric COVID-19. Radiology. 2023;306:e222360. doi: 10.1148/radiol.222360. PubMed DOI PMC

Osmanodja F., Rösch J., Knott M., Doerfler A., Grodzki D., Uder M., Heiss R. Diagnostic Performance of 0.55 T MRI for Intracranial Aneurysm Detection. Investig. Radiol. 2023;58:121–125. doi: 10.1097/RLI.0000000000000918. PubMed DOI

Rusche T., Breit H.-C., Bach M., Wasserthal J., Gehweiler J., Manneck S., Lieb J.M., De Marchis G.M., Psychogios M.N., Sporns P.B. Potential of Stroke Imaging Using a New Prototype of Low-Field MRI: A Prospective Direct 0.55 T/1.5 T Scanner Comparison. J. Clin. Med. 2022;11:2798. doi: 10.3390/jcm11102798. PubMed DOI PMC

Klein H.-M. Low-Field Magnetic Resonance Imaging. Fortschr Röntgenstr. 2020;192:537–548. doi: 10.1055/a-1123-7944. PubMed DOI

Vosshenrich J., Breit H.-C., Bach M., Merkle E.M. Economic aspects of low-field magnetic resonance imaging: Acquisition, installation, and maintenance costs of 0.55 T systems. Radiology. 2022;62:400–404. doi: 10.1007/s00117-022-00986-9. PubMed DOI PMC

Grist T.M. The Next Chapter in MRI: Back to the Future? Radiology. 2019;293:394–395. doi: 10.1148/radiol.2019192011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...