Phlebotomus perniciosus response to volatile organic compounds of dogs and humans

. 2024 Dec ; 18 (12) : e0012787. [epub] 20241230

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39774440

The olfactory response of insect vectors such as phlebotomine sand flies is a key facet for investigating their interactions with vertebrate hosts and associated vector-borne pathogens. Such studies are mainly performed by assessing the electrophysiological response and the olfactory behaviour of these arthropods towards volatile organic compounds (VOCs) produced by hosts. Nonetheless, few studies are available for species of the subgenera Lutzomyia and Nyssomyia in South America, leaving a void for Old World sand fly species of the genus Phlebotomus. In this study, we evaluated the olfactory responses of Phlebotomus perniciosus, one of the most important vectors of Leishmania infantum in the Old World. To test the P. perniciosus behavioural response to VOCs, 28 compounds isolated from humans and dogs were assessed using electrophysiological (i.e., electroantennogram, EAG) and behavioural assays (i.e., Y-tube olfactometer). In the EAG trials, 14 compounds (i.e., acetic acid, nonanoic acid, 2-propanol, 2-butanol, pentanal, hexanal, nonanal, trans-2-nonenal, decanal, myrcene, p-cymene, verbenone, 2-ethyl-1-hexanol, and acetonitrile) elicited high antennal responses (i.e., ≥ 0.30 mV) in female sand flies, being those VOCs selected for the behavioural assays. From the 14 compounds tested in the Y-tube olfactometer, nonanal was significantly attractive for P. perniciosus females, whereas myrcene and p-cymene were significantly repellents (p < 0.05). The attraction indexes varied from 0.53 for nonanal (i.e., most attractive) to -0.47 to p-cymene (i.e., most repellent). Overall, our results shed light on the role of olfactory cues routing host seeking behaviour in P. perniciosus, with implications to develop sustainable sand fly monitoring as well as control in leishmaniasis endemic areas.

Zobrazit více v PubMed

Dantas-Torres F, Solano-Gallego L, Baneth G, Ribeiro VM, de Paiva-Cavalcanti M, Otranto D. Canine leishmaniosis in the Old and New Worlds: unveiled similarities and differences. Trends Parasitol. 2012;28: 531–538. doi: 10.1016/j.pt.2012.08.007 PubMed DOI

Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al.. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7: e35671. doi: 10.1371/journal.pone.0035671 PubMed DOI PMC

Dantas-Torres F. The role of dogs as reservoirs of Leishmania parasites, with emphasis on Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis. Vet Parasitol. 2007;149: 139–146. doi: 10.1016/j.vetpar.2007.07.007 PubMed DOI

Otranto D, Dantas-Torres F, Mihalca AD, Traub RJ, Lappin M, Baneth G. Zoonotic Parasites of Sheltered and Stray Dogs in the Era of the Global Economic and Political Crisis. Trends Parasitol. 2017;33: 813–825. doi: 10.1016/j.pt.2017.05.013 PubMed DOI

Svobodová M, Sádlová J, Chang KP, Volf P. Short report: distribution and feeding preference of the sand flies Phlebotomus sergenti and P. papatasi in a cutaneous leishmaniasis focus in Sanliurfa, Turkey. Am J Trop Med Hyg. 2003;68: 6–9. PubMed

Hlavackova K, Dvorak V, Chaskopoulou A, Volf P, Halada P. A novel MALDI-TOF MS-based method for blood meal identification in insect vectors: A proof of concept study on phlebotomine sand flies. PLoS Negl Trop Dis. 2019;13: e0007669. doi: 10.1371/journal.pntd.0007669 PubMed DOI PMC

Messahel NE, Benallal KE, Halada P, Lafri I, Manseur H, Hakem A, et al.. Identification of blood source preferences and Leishmania infection in sand flies (Diptera: Psychodidae) in north-eastern Algeria. Vet Parasitol Reg Stud Reports. 2022;31: 100729. doi: 10.1016/j.vprsr.2022.100729 PubMed DOI

Remadi L, Farjallah D, Chargui N, Belgacem S, Baba H, Zrieq R, et al.. Blood meal analysis and molecular detection of mammalian Leishmania DNA in wild-caught Sergentomyia spp. from Tunisia and Saudi Arabia. Parasitol Res. 2023;122: 2181–2191. doi: 10.1007/s00436-023-07919-y PubMed DOI

Sadlova J, Vojtkova B, Becvar T, Lestinova T, Spitzova T, Bates P, et al.. Host competence of the African rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis for Leishmania donovani from Ethiopia and L. (Mundinia) sp. from Ghana. Int J Parasitol Parasites Wildl. 2020;11: 40–45. doi: 10.1016/j.ijppaw.2019.12.002 PubMed DOI PMC

Mendoza-Roldan JA, Zatelli A, Latrofa MS, Iatta R, Bezerra-Santos MA, Annoscia G, et al.. Leishmania (Sauroleishmania) tarentolae isolation and sympatric occurrence with Leishmania (Leishmania) infantum in geckoes, dogs and sand flies. PLoS Negl Trop Dis. 2022;16: e0010650. doi: 10.1371/journal.pntd.0010650 PubMed DOI PMC

Bezerra-Santos MA, Benelli G, Germinara GS, Volf P, Otranto D. Smelly interactions: host-borne volatile organic compounds triggering behavioural responses in mosquitoes, sand flies, and ticks. Parasit Vectors. 2024;17: 227. doi: 10.1186/s13071-024-06299-1 PubMed DOI PMC

Vargas-Abasolo R, Gutiérrez-Cabrera AE, Cruz-López L, Alavez-Rosas D, Benelli G, Córdoba-Aguilar A. Chagas disease vector control strategies: where we are and where we should go from here. Entomol Generalis. 2023;43: 771–788. doi: 10.1127/entomologia/2023/1882 DOI

Alavez-Rosas D, Vargas-Abasolo R, Albores-Flores CI, Meneses-Arias MG, Gutiérrez-Cabrera AE, Benelli G, et al.. Chemical ecology of triatomines: current knowledge and implications for Chagas disease vector management. J Pest Sci. 2024;97: 507–520. doi: 10.1007/s10340-023-01678-6 DOI

Rebollar-Tellez EA, Hamilton JGC, Ward RD. Response of female Lutzomyia longipalpis to host odour kairomones from human skin. Physiol Entomol. 1999;24: 220–226. doi: 10.1046/j.1365-3032.1999.00133.x DOI

Andrade AJ, Andrade MR, Dias ES, Pinto MC, Eiras ÁE. Are light traps baited with kairomones effective in the capture of Lutzomyia longipalpis and Lutzomyia intermedia? An evaluation of synthetic human odor as an attractant for phlebotomine sand flies (Diptera: Psychodidae: Phlebotominae). Mem Instit Oswaldo Cruz. 2008;103: 337–343. doi: 10.1590/S0074-02762008000400004 PubMed DOI

Pinto MC, Bray DP, Eiras AE, Carvalheira HP, Puertas CP. Attraction of the cutaneous leishmaniasis vector Nyssomyia neivai (Diptera: Psychodidae) to host odour components in a wind tunnel. Parasit Vectors. 2012;5: 210. doi: 10.1186/1756-3305-5-210 PubMed DOI PMC

Machado VE, Corrêa AG, Goulart TM, Silva FB, Ortiz DG, Pinto MC. Attraction of the sand fly Nyssomyia neivai (Diptera: Psychodidae) to chemical compounds in a wind tunnel. Parasit Vectors. 2015;8: 147. doi: 10.1186/s13071-015-0748-y PubMed DOI PMC

Tavares DDS, Salgado VR, Miranda JC, Mesquita PRR, Rodrigues FM, Barral-Netto M, et al.. Attraction of phlebotomine sandflies to volatiles from skin odors of individuals residing in an endemic area of tegumentary leishmaniasis. PLoS One. 2018;13: e0203989. doi: 10.1371/journal.pone.0203989 PubMed DOI PMC

Magalhães-Junior JT, Barrouin-Melo SM, Corrêa AG, da Rocha Silva FB, Machado VE, Govone JS, et al.. A laboratory evaluation of alcohols as attractants for the sandfly Lutzomyia longipalpis (Diptera:Psychodidae). Parasit Vectors. 2014;7: 60. doi: 10.1186/1756-3305-7-60 PubMed DOI PMC

Magalhães-Junior JT, Oliva-Filho AA, Novais HO, Mesquita PRR, M Rodrigues F, Pinto MC, et al.. Attraction of the sandfly Lutzomyia longipalpis to possible biomarker compounds from dogs infected with Leishmania infantum. Med Vet Entomol. 2019;33: 322–325. doi: 10.1111/mve.12357 PubMed DOI

Staniek ME, Hamilton JGC. Odour of domestic dogs infected with Leishmania infantum is attractive to female but not male sand flies: Evidence for parasite manipulation. PLoS Pathog. 2021;17:e1009354. doi: 10.1371/journal.ppat.1009354 PubMed DOI PMC

Chelbi I, Maghraoui K, Zhioua S, Cherni S, Labidi I, Satoskar A, et al.. Enhanced attraction of sand fly vectors of Leishmania infantum to dogs infected with zoonotic visceral leishmaniasis. PLoS Negl Trop Dis. 2021;15: e0009647. Erratum in: PLoS Negl Trop Dis. 2021;15: e0009947. doi: 10.1371/journal.pntd.0009647 PubMed DOI PMC

Schneider D. Electrophysiological investigations on the olfactory specificity of sexual attracting substances in different species of moth. J Insect Physiol. 1962;8: 15–30. doi: 10.1016/0022-1910(62)90051-3 DOI

Van Der Pers JNC. Comparison of electroantennogram response spectra to plant volatiles in seven species of Yponomeuta and in the torticid Adoxophyes orana. Entomol. Exp. Appl. 1981;30: 181–192. doi: 10.1111/j.1570-7458.1981.tb03094.x DOI

Barbosa-Cornelio R, Cantor F, Coy-Barrera E, Rodríguez D. Tools in the investigation of volatile semiochemicals on insects: from sampling to statistical analysis. Insects. 2019;10: 241. doi: 10.3390/insects10080241 PubMed DOI PMC

Lawyer P, Killick-Kendrick M, Rowland T, Rowton E, Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite. 2017;24: 42. doi: 10.1051/parasite/2017041 PubMed DOI PMC

Dormont L, Bessière JM, Cohuet A. Human skin volatiles: a review. J Chem Ecol. 2013;39: 569–578. doi: 10.1007/s10886-013-0286-z PubMed DOI

Magalhães-Junior JT, Mesquita PR, Oliveira WF, Oliveira FS, Franke CR, Rodrigues FM, et al.. Identification of biomarkers in the hair of dogs: new diagnostic possibilities in the study and control of visceral leishmaniasis. Anal Bioanal Chem. 2014;406: 6691–6700. doi: 10.1007/s00216-014-8103-2 PubMed DOI

Holderman CJ, Kaufman PE, Booth MM, Bernier UR. Novel collection method for volatile organic compounds (VOCs) from dogs. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1061–1062: 1–4. doi: 10.1016/j.jchromb.2017.06.044 PubMed DOI

Germinara GS, Ganassi S, Pistillo MO, Di Domenico C, De Cristofaro A, Di Palma AM. Antennal olfactory responses of adult meadow spittlebug, Philaenus spumarius, to volatile organic compounds (VOCs). PLoS One. 2017;12: e0190454. doi: 10.1371/journal.pone.0190454 PubMed DOI PMC

Pistillo OM, D’Isita I, Germinara GS. Olfactory response of the spotted asparagus beetle, Crioceris duodecimpunctata (L.) to host plant volatiles. J Chem Ecol. 2022;48: 41–50. doi: 10.1007/s10886-021-01323-5 PubMed DOI

Kaissling KE, Thorson J. Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organisation. In Sattelle DB, Hall LM, Hildebrand JG, editors. Receptors for neurotransmitters, hormones and pheromones in insects. Amsterdam: Elsevier/North-Holland Biomedical Press; pp. 261–282.

Nevatte TM, Ward RD, Sedda L, Hamilton JGC. After infection with Leishmania infantum, Golden Hamsters (Mesocricetus auratus) become more attractive to female sand flies (Lutzomyia longipalpis). Sci Rep. 2017;7: 6104. doi: 10.1038/s41598-017-06313-w PubMed DOI PMC

Canale A, Benelli G, Germinara GS, Fusini G, Romano D, Rapalini F, et al.. Behavioural and electrophysiological responses to overlooked female pheromone components in the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Chemoecol. 2015;25: 147–157. doi: 10.1007/s00049-014-0183-0 DOI

Light MD, Kamm JA, Buttery RG. Electroantennogram response of alfalfa seed chalcid, Bruchophagus roddi (Hymenoptera: Eurytomidae) to host- and non host-plant volatiles. J Chem Ecol. 1992;18: 333–352. doi: 10.1007/BF00994235 PubMed DOI

Raguso RA, Light DM. Electroantennogram responses of male Sphinx perelegans hawkmoths to floral and ‘green leaf volatiles’. Entomol Exp Appl. 1998;86: 287–293. doi: 10.1046/j.1570-7458.1998.00291.x DOI

Den Otter CJ, Tchicaya T, Schutte AM. Effects of age, sex and hunger on the antennal olfactory sensitivity of tsetse flies. Physiol Entomol. 1991;16: 173–182. doi: 10.1111/j.1365-3032.1991.tb00554.x DOI

Germinara GS, Pistillo M, Griffo R, Garonna AP, Di Palma A. Electroantennographic responses of Aromia bungii (Faldermann, 1835) (Coleoptera, Cerambycidae) to a range of volatile compounds. Insects. 2019;10: 274. doi: 10.3390/insects10090274 PubMed DOI PMC

Germinara GS, De Cristofaro A, Rotundo G. Antennal olfactory responses to individual cereal volatiles in Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae). J Stored Prod Res. 2009;45: 195–200. doi: 10.1016/j.jspr.2009.02.002 DOI

Jones R, Fountain MT, Günther CS, Eady PE, Goddard MR. Separate and combined Hanseniaspora uvarum and Metschnikowia pulcherrima metabolic volatiles are attractive to Drosophila suzukii in the laboratory and field. Sci Rep. 2021;11: 1201. doi: 10.1038/s41598-020-79691-3 PubMed DOI PMC

Fox J, Weisberg S. An R Companion to Applied Regression (Third). Sage. 2019. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

Lenth RV. Emmeans: Estimated Marginal Means, aka Least-Squares Means. 2022. https://CRAN.R-project.org/package=emmeans.

Syed Z, Leal WS. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc Natl Acad Sci U S A. 2009;106: 18803–18808. doi: 10.1073/pnas.0906932106 PubMed DOI PMC

Robinson A, Busula AO, Voets MA, Beshir KB, Caulfield JC, Powers SJ, et al.. Plasmodium-associated changes in human odor attract mosquitoes. Proc Natl Acad Sci U S A. 2018;115: E4209–E4218. doi: 10.1073/pnas.1721610115 PubMed DOI PMC

De Moraes CM, Wanjiku C, Stanczyk NM, Pulido H, Sims JW, Betz HS, et al.. Volatile biomarkers of symptomatic and asymptomatic malaria infection in humans. Proc Natl Acad Sci U S A. 2018;115: 5780–5785. doi: 10.1073/pnas.1801512115 PubMed DOI PMC

Masyita A, Mustika Sari R, Dwi Astuti A, Yasir B, Rahma Rumata N, Emran TB, et al.. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X. 2022;13: 100217. doi: 10.1016/j.fochx.2022.100217 PubMed DOI PMC

Duarte JL, Di Filippo LD, Ribeiro TC, Silva ACJ, Hage-Melim LIDS, Duchon S, et al.. Effective mosquito repellents: Myrcene- and Cymene-loaded nanohydrogels against Aedes aegypti. Pharmaceutics. 2024;16: 1096. doi: 10.3390/pharmaceutics16081096 PubMed DOI PMC

Borges LM, de Oliveira Filho JG, Ferreira LL, Louly CC, Pickett JA, Birkett MA. Identification of non-host semiochemicals for the brown dog tick, Rhipicephalus sanguineus sensu lato (Acari: Ixodidae), from tick-resistant beagles, Canis lupus familiaris. Ticks Tick Borne Dis. 2015;6: 676–682. doi: 10.1016/j.ttbdis.2015.05.014 PubMed DOI

Zeringóta V, Pereira-Junior RA, Sarria ALF, Henrique ACC, Birkett MA, Borges LMF. Identification of a non-host semiochemical from miniature pinscher, Canis lupus familiaris, that repels Rhipicephalus sanguineus sensu lato (Acari: Ixodidae). Ticks Tick Borne Dis. 2021;12: 101582. doi: 10.1016/j.ttbdis.2020.101582 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...