• This record comes from PubMed

A simplified system for the detection of antennal responses to host-borne volatile organic compounds in sand flies

. 2025 Aug 19 ; 18 (1) : 352. [epub] 20250819

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
PE00000007 EU funding within the NextGeneration EU-MUR PNRR

Links

PubMed 40830491
PubMed Central PMC12363082
DOI 10.1186/s13071-025-06998-3
PII: 10.1186/s13071-025-06998-3
Knihovny.cz E-resources

BACKGROUND: Phlebotomus (Larroussius) perniciosus (Diptera: Psychodidae) is the most common and predominant vector of Leishmania infantum in the Western Mediterranean region. Volatile organic compounds (VOCs) produced by vertebrates are important cues affecting the behaviour of blood-feeding insects. Generally, the identification of putative behaviourally active VOCs involves three distinct phases: extraction, chemical characterization and chemoreceptivity evaluation using electrophysiological techniques. Here, we present a simplified gas chromatography-mass spectrometry-electroantennographic detection (GC-MS-EAD) setup adapted for screening bioactive compounds in sand flies, in which the chemical identification and antennal responses are recorded simultaneously. METHODS: The method integrates: (i) a flow-splitter that balances the flow rate of the two outgoing streams, (ii) GC columns with different lengths and diameters in the two sections splitter-MS and splitter-EAD and (iii) an antennal signal amplifier. The GC-MS-EAD analysis was applied to headspace solid-phase microextraction (HS-SPME) extracts from a healthy dog, and antennal responses were recorded in female P. perniciosus sand flies. RESULTS: The canine VOC profile was predominantly composed of aldehydes, with hexanal and nonanal eliciting the strongest antennal responses in P. perniciosus. CONCLUSIONS: This simplified GC-MS-EAD system shows promise for broader application in the study of host-vector interactions. Its use across different host-vector pairs may enhance our understanding of these relationships and inform the development of strategies for integrated vector monitoring and control.

See more in PubMed

Dantas-Torres F, Solano-Gallego L, Baneth G, Ribeiro VM, de Paiva-Cavalcanti M, Otranto D. Canine leishmaniosis in the old and new worlds: unveiled similarities and differences. Trends Parasitol. 2012;28:531–8. 10.1016/j.pt.2012.08.007. PubMed

Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–47. 10.1111/j.1365-2915.2012.01034.x. PubMed

de Freitas Milagres T, Maia C. PubMed

Scarpini S, Dondi A, Totaro C, Biagi C, Melchionda F, Zama D, et al. Visceral leishmaniasis: epidemiology, diagnosis, and treatment regimens in different geographical areas with a focus on pediatrics. Microorganisms. 2022;10:1887. 10.3390/microorganisms10101887. PubMed PMC

Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392:951–70. 10.1016/S0140-6736(18)31204-2. PubMed

Carbonara M, Iatta R, Miró G, Montoya A, Benelli G, Mendoza-Roldan JA, et al. Affiliation Feline leishmaniosis in the Mediterranean Basin: a multicenter study. Parasit Vectors. 2024;17:346. 10.1186/s13071-024-06419-x. PubMed PMC

Martín-Sánchez J, Torres-Medina N, Morillas-Márquez F, Corpas-López V, Díaz-Sáez V. Role of wild rabbits as reservoirs of leishmaniasis in a non-epidemic Mediterranean hot spot in Spain. Acta Trop. 2021;222:106036. 10.1016/j.actatropica.2021.106036. PubMed

Helhazar M, Leitão J, Duarte A, Tavares L, da Fonseca IP. Natural infection of synanthropic rodent species PubMed PMC

Galán-Puchades MT, Solano J, González G, Osuna A, Pascual J, Bueno-Marí R, et al. Molecular detection of PubMed PMC

Abbate JM, Arfuso F, Napoli E, Gaglio G, Giannetto S, Latrofa MS, et al. PubMed

Dantas-Torres F. Canine leishmaniasis in the Americas: etiology, distribution, and clinical and zoonotic importance. Parasit Vectors. 2024;17:198. 10.1186/s13071-024-06282-w. PubMed PMC

Conn DB, Soares Magalhães RJ. Climate change: A health emergency for humans, animals, and the environment. One Health. 2024;19:100867. 10.1016/j.onehlt.2024.100867. PubMed PMC

Wilke ABB, Farina P, Ajelli M, Canale A, Dantas-Torres F, Otranto D, Benelli G. Human migrations, anthropogenic changes, and insect-borne diseases in Latin America. Parasit Vectors. 2025;18:4. 10.1186/s13071-024-06598-7. PubMed PMC

Tarallo VD, Dantas-Torres F, Lia RP, Otranto D. Phlebotomine sand fly population dynamics in a leishmaniasis endemic peri-urban area in southern Italy. Acta Trop. 2010;116:227–34. 10.1016/j.actatropica.2010.08.013. PubMed

Abbate JM, Maia C, Pereira A, Arfuso F, Gaglio G, Rizzo M, et al. Identification of trypanosomatids and blood feeding preferences of phlebotomine sand fly species common in Sicily, Southern Italy. PLoS ONE. 2020;15:e0229536. 10.1371/journal.pone.0229536. PubMed PMC

Bezerra-Santos MA, Benelli G, Germinara GS, Volf P, Otranto D. Smelly interactions: host-borne volatile organic compounds triggering behavioural responses in mosquitoes, sand flies, and ticks. Parasit Vectors. 2024;16:227. 10.1186/s13071-024-06299-1. PubMed PMC

O’Shea B, Rebollar-Tellez E, Ward RD, Hamilton JG, el Naiem D, Polwart A. Enhanced sandfly attraction to PubMed

Chelbi I, Maghraoui K, Zhioua S, Cherni S, Labidi I, Satoskar A, et al. Enhanced attraction of sand fly vectors of PubMed PMC

de Oliveira LS, Rodrigues Fde M, de Oliveira FS, Mesquita PR, Leal DC, Alcântara AC, et al. Headspace solid phase microextraction/gas chromatography-mass spectrometry combined to chemometric analysis for volatile organic compounds determination in canine hair: a new tool to detect dog contamination by visceral leishmaniasis. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;875:392–8. 10.1016/j.jchromb.2008.09.028. PubMed

Torres Magalhães-Junior J, Ribeiro Mesquita PR, dos Santos Oliveira WF, Santos Oliveira F, Franke CR, de Medeiros Rodrigues F, et al. Identification of biomarkers in the hair of dogs: new diagnostic possibilities in the study and control of visceral leishmaniasis. Anal Bioanal Chem. 2014;406:6691–700. 10.1007/s00216-014-8103-2. PubMed

Pistillo OM, D’Isita I, Di Palma A, Germinara GS. Identification of the sex pheromone of the asparagus moth, PubMed PMC

Bezerra-Santos MA, Zeni V, Pistillo OM, Bedini S, D’Isita I, Benelli G, et al. PubMed PMC

Shuttleworth A, Johnson SD. GC-MS/FID/EAD: a method for combining mass spectrometry with gas chromatography-electroantennographic detection. Front Ecol Evol. 2022;10:1042732. 10.3389/fevo.2022.1042732.

Weissbecker B, Holighaus G, Schütz S. Gas chromatography with mass spectrometric and electroantennographic detection: analysis of wood odorants by direct coupling of insect olfaction and mass spectrometry. J Chromatogr A. 2004;1056:209–16. PubMed

Schott M, Wehrenfennig C, Gasch T, Düring RA, Vilcinskas A. A portable gas chromatograph with simultaneous detection by mass spectrometry and electroantennography for the highly sensitive PubMed

Lawyer P, Killick-Kendrick M, Rowland T, Rowton E, Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite. 2017;24:42. 10.1051/parasite/2017041. PubMed PMC

Cordero C, Zebelo SA, Gnavi G, Griglione A, Bicchi C, Maffei ME, et al. HS-SPME-GC×GC-qMS volatile metabolite profiling of PubMed

Kaissling KE, Thorson J. Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organization. In: Sattelle DB, Hall LM, Hildebrand JG, editors. Receptors for neurotransmitters, hormones, and pheromones in insects. New York: Elsevier/North-Holland Biomedical Press; 1980. p. 261–82.

van den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr. 1963;11:463–71. 10.1016/S0021-9673(01)80947-X. PubMed

NIST 11-NIST/EPA/NIH Mass Spectral Library. Mass Spectral Database for Windows, Standard Reference Data Program, U.S. Department of Commerce. Gaithersburg: National Institute of Standards and Technology; 2012.

Elmore JS, Mottram DS, Enser M, Wood JD. The effects of diet and breed on the volatile compounds of cooked lamb. Meat Sci. 2000;55:149–59. 10.1016/S0309-1740(99)00137-0. PubMed

Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream, IL: Allured Publishing Corporation; 2009.

Thiel V. Identification and biosynthesis of tropone derivatives and sulfur volatiles produced by bacteria of the marine PubMed

Holderman CJ, Kaufman PE, Booth MM, Bernier UR. Novel collection method for volatile organic compounds (VOCs) from dogs. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1062:1–4. 10.1016/j.jchromb.2017.06.044. PubMed

Dormont L, Bessière JM, Cohuet A. Human skin volatiles: a review. J Chem Ecol. 2013;39:569–78. 10.1007/s10886-013-0286-z. PubMed

Torres Magalhães-Junior J, Oliva-Filho AA, Novais HO, Mesquita PRR, Rodrigues FM, Pinto MC, et al. Attraction of the sandfly PubMed

Torres Magalhães-Junior J, Barrouin-Melo SM, Corrêa AG, da Rocha Silva FB, Machado VE, Govone JS, et al. A laboratory evaluation of alcohols as attractants for the sandfly PubMed PMC

Pinto MC, Bray DP, Eiras AE, Carvalheira HP, Puertas CP. Attraction of the cutaneous leishmaniasis vector PubMed PMC

Machado VE, Corrêa AG, Goulart TM, Silva FB, Ortiz DG, Pinto MC. Attraction of the sand fly PubMed PMC

Omolo MO, Ndiege IO, Hassanali A. Semiochemical signatures associated with differential attraction of PubMed PMC

Johne AB, Weissbecker B, Schütz S. Volatile emissions from PubMed

Johne AB, Weissbecker B, Schuetz S. Approaching risk assessment of complex disease development in horse chestnut trees: a chemical ecologist’s perspective. J Appl Entomol. 2008;132:349–59. 10.1111/j.1439-0418.2008.01283.x.

Thakeow P, Angeli S, Weissbecker B, Schütz S. Antennal and behavioral responses of PubMed

Paczkowski S, Paczkowska M, Dippel S, Schulze N, Schütz S, Sauerwald T,  et al. The olfaction of a fire beetle leads to new concepts for early fire warning systems. Sens Actuators B Chem. 2013;183:273–82. 10.1016/j.snb.2013.03.123.

von Fragstein M, Holighaus G, Schütz S, Tscharntke T. Weak defence in a tritrophic system: olfactory response to salicylaldehyde reflects prey specialization of potter wasps. Chemoecol. 2012;23:181–90. 10.1007/s00049-013-0133-2.

Abraham J, Opuni-Frimpong E, Weissbecker B, Schütz S, Angeli S. Olfactory cues of mahogany trees to female

Branco S, Mateus EP, Gomes da Silva MDR, Mendes D, Rocha S, Mendel Z, et al. Electrophysiological and behavioural responses of the

Branco S, Pires Mateus E, Gomes da Silva MDR, Mendes D, Araújo Pereira MM, Schütz S, Paiva MR. Olfactory responses of

Song H, Liu J. GC-O-MS technique and its applications in food flavor analysis. Food Res Int. 2018;114:187–98. 10.1016/j.foodres.2018.07.037. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...