A simplified system for the detection of antennal responses to host-borne volatile organic compounds in sand flies
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
PE00000007
EU funding within the NextGeneration EU-MUR PNRR
PubMed
40830491
PubMed Central
PMC12363082
DOI
10.1186/s13071-025-06998-3
PII: 10.1186/s13071-025-06998-3
Knihovny.cz E-resources
- Keywords
- Leishmania infantum, Electroantennography, HS-SPME, Leishmaniasis, Phlebotominae, Psychodidae, Semiochemicals,
- MeSH
- Insect Vectors physiology chemistry MeSH
- Solid Phase Microextraction MeSH
- Phlebotomus * physiology chemistry MeSH
- Gas Chromatography-Mass Spectrometry methods MeSH
- Dogs MeSH
- Volatile Organic Compounds * analysis MeSH
- Arthropod Antennae * physiology MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Volatile Organic Compounds * MeSH
BACKGROUND: Phlebotomus (Larroussius) perniciosus (Diptera: Psychodidae) is the most common and predominant vector of Leishmania infantum in the Western Mediterranean region. Volatile organic compounds (VOCs) produced by vertebrates are important cues affecting the behaviour of blood-feeding insects. Generally, the identification of putative behaviourally active VOCs involves three distinct phases: extraction, chemical characterization and chemoreceptivity evaluation using electrophysiological techniques. Here, we present a simplified gas chromatography-mass spectrometry-electroantennographic detection (GC-MS-EAD) setup adapted for screening bioactive compounds in sand flies, in which the chemical identification and antennal responses are recorded simultaneously. METHODS: The method integrates: (i) a flow-splitter that balances the flow rate of the two outgoing streams, (ii) GC columns with different lengths and diameters in the two sections splitter-MS and splitter-EAD and (iii) an antennal signal amplifier. The GC-MS-EAD analysis was applied to headspace solid-phase microextraction (HS-SPME) extracts from a healthy dog, and antennal responses were recorded in female P. perniciosus sand flies. RESULTS: The canine VOC profile was predominantly composed of aldehydes, with hexanal and nonanal eliciting the strongest antennal responses in P. perniciosus. CONCLUSIONS: This simplified GC-MS-EAD system shows promise for broader application in the study of host-vector interactions. Its use across different host-vector pairs may enhance our understanding of these relationships and inform the development of strategies for integrated vector monitoring and control.
Department of Agriculture Food and Environment University of Pisa Pisa Italy
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Department of Veterinary Clinical Sciences City University of Hong Kong Hong Kong China
Department of Veterinary Medicine University of Bari Valenzano Italy
See more in PubMed
Dantas-Torres F, Solano-Gallego L, Baneth G, Ribeiro VM, de Paiva-Cavalcanti M, Otranto D. Canine leishmaniosis in the old and new worlds: unveiled similarities and differences. Trends Parasitol. 2012;28:531–8. 10.1016/j.pt.2012.08.007. PubMed
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–47. 10.1111/j.1365-2915.2012.01034.x. PubMed
de Freitas Milagres T, Maia C. PubMed
Scarpini S, Dondi A, Totaro C, Biagi C, Melchionda F, Zama D, et al. Visceral leishmaniasis: epidemiology, diagnosis, and treatment regimens in different geographical areas with a focus on pediatrics. Microorganisms. 2022;10:1887. 10.3390/microorganisms10101887. PubMed PMC
Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392:951–70. 10.1016/S0140-6736(18)31204-2. PubMed
Carbonara M, Iatta R, Miró G, Montoya A, Benelli G, Mendoza-Roldan JA, et al. Affiliation Feline leishmaniosis in the Mediterranean Basin: a multicenter study. Parasit Vectors. 2024;17:346. 10.1186/s13071-024-06419-x. PubMed PMC
Martín-Sánchez J, Torres-Medina N, Morillas-Márquez F, Corpas-López V, Díaz-Sáez V. Role of wild rabbits as reservoirs of leishmaniasis in a non-epidemic Mediterranean hot spot in Spain. Acta Trop. 2021;222:106036. 10.1016/j.actatropica.2021.106036. PubMed
Helhazar M, Leitão J, Duarte A, Tavares L, da Fonseca IP. Natural infection of synanthropic rodent species PubMed PMC
Galán-Puchades MT, Solano J, González G, Osuna A, Pascual J, Bueno-Marí R, et al. Molecular detection of PubMed PMC
Abbate JM, Arfuso F, Napoli E, Gaglio G, Giannetto S, Latrofa MS, et al. PubMed
Dantas-Torres F. Canine leishmaniasis in the Americas: etiology, distribution, and clinical and zoonotic importance. Parasit Vectors. 2024;17:198. 10.1186/s13071-024-06282-w. PubMed PMC
Conn DB, Soares Magalhães RJ. Climate change: A health emergency for humans, animals, and the environment. One Health. 2024;19:100867. 10.1016/j.onehlt.2024.100867. PubMed PMC
Wilke ABB, Farina P, Ajelli M, Canale A, Dantas-Torres F, Otranto D, Benelli G. Human migrations, anthropogenic changes, and insect-borne diseases in Latin America. Parasit Vectors. 2025;18:4. 10.1186/s13071-024-06598-7. PubMed PMC
Tarallo VD, Dantas-Torres F, Lia RP, Otranto D. Phlebotomine sand fly population dynamics in a leishmaniasis endemic peri-urban area in southern Italy. Acta Trop. 2010;116:227–34. 10.1016/j.actatropica.2010.08.013. PubMed
Abbate JM, Maia C, Pereira A, Arfuso F, Gaglio G, Rizzo M, et al. Identification of trypanosomatids and blood feeding preferences of phlebotomine sand fly species common in Sicily, Southern Italy. PLoS ONE. 2020;15:e0229536. 10.1371/journal.pone.0229536. PubMed PMC
Bezerra-Santos MA, Benelli G, Germinara GS, Volf P, Otranto D. Smelly interactions: host-borne volatile organic compounds triggering behavioural responses in mosquitoes, sand flies, and ticks. Parasit Vectors. 2024;16:227. 10.1186/s13071-024-06299-1. PubMed PMC
O’Shea B, Rebollar-Tellez E, Ward RD, Hamilton JG, el Naiem D, Polwart A. Enhanced sandfly attraction to PubMed
Chelbi I, Maghraoui K, Zhioua S, Cherni S, Labidi I, Satoskar A, et al. Enhanced attraction of sand fly vectors of PubMed PMC
de Oliveira LS, Rodrigues Fde M, de Oliveira FS, Mesquita PR, Leal DC, Alcântara AC, et al. Headspace solid phase microextraction/gas chromatography-mass spectrometry combined to chemometric analysis for volatile organic compounds determination in canine hair: a new tool to detect dog contamination by visceral leishmaniasis. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;875:392–8. 10.1016/j.jchromb.2008.09.028. PubMed
Torres Magalhães-Junior J, Ribeiro Mesquita PR, dos Santos Oliveira WF, Santos Oliveira F, Franke CR, de Medeiros Rodrigues F, et al. Identification of biomarkers in the hair of dogs: new diagnostic possibilities in the study and control of visceral leishmaniasis. Anal Bioanal Chem. 2014;406:6691–700. 10.1007/s00216-014-8103-2. PubMed
Pistillo OM, D’Isita I, Di Palma A, Germinara GS. Identification of the sex pheromone of the asparagus moth, PubMed PMC
Bezerra-Santos MA, Zeni V, Pistillo OM, Bedini S, D’Isita I, Benelli G, et al. PubMed PMC
Shuttleworth A, Johnson SD. GC-MS/FID/EAD: a method for combining mass spectrometry with gas chromatography-electroantennographic detection. Front Ecol Evol. 2022;10:1042732. 10.3389/fevo.2022.1042732.
Weissbecker B, Holighaus G, Schütz S. Gas chromatography with mass spectrometric and electroantennographic detection: analysis of wood odorants by direct coupling of insect olfaction and mass spectrometry. J Chromatogr A. 2004;1056:209–16. PubMed
Schott M, Wehrenfennig C, Gasch T, Düring RA, Vilcinskas A. A portable gas chromatograph with simultaneous detection by mass spectrometry and electroantennography for the highly sensitive PubMed
Lawyer P, Killick-Kendrick M, Rowland T, Rowton E, Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite. 2017;24:42. 10.1051/parasite/2017041. PubMed PMC
Cordero C, Zebelo SA, Gnavi G, Griglione A, Bicchi C, Maffei ME, et al. HS-SPME-GC×GC-qMS volatile metabolite profiling of PubMed
Kaissling KE, Thorson J. Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organization. In: Sattelle DB, Hall LM, Hildebrand JG, editors. Receptors for neurotransmitters, hormones, and pheromones in insects. New York: Elsevier/North-Holland Biomedical Press; 1980. p. 261–82.
van den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr. 1963;11:463–71. 10.1016/S0021-9673(01)80947-X. PubMed
NIST 11-NIST/EPA/NIH Mass Spectral Library. Mass Spectral Database for Windows, Standard Reference Data Program, U.S. Department of Commerce. Gaithersburg: National Institute of Standards and Technology; 2012.
Elmore JS, Mottram DS, Enser M, Wood JD. The effects of diet and breed on the volatile compounds of cooked lamb. Meat Sci. 2000;55:149–59. 10.1016/S0309-1740(99)00137-0. PubMed
Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream, IL: Allured Publishing Corporation; 2009.
Thiel V. Identification and biosynthesis of tropone derivatives and sulfur volatiles produced by bacteria of the marine PubMed
Holderman CJ, Kaufman PE, Booth MM, Bernier UR. Novel collection method for volatile organic compounds (VOCs) from dogs. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1062:1–4. 10.1016/j.jchromb.2017.06.044. PubMed
Dormont L, Bessière JM, Cohuet A. Human skin volatiles: a review. J Chem Ecol. 2013;39:569–78. 10.1007/s10886-013-0286-z. PubMed
Torres Magalhães-Junior J, Oliva-Filho AA, Novais HO, Mesquita PRR, Rodrigues FM, Pinto MC, et al. Attraction of the sandfly PubMed
Torres Magalhães-Junior J, Barrouin-Melo SM, Corrêa AG, da Rocha Silva FB, Machado VE, Govone JS, et al. A laboratory evaluation of alcohols as attractants for the sandfly PubMed PMC
Pinto MC, Bray DP, Eiras AE, Carvalheira HP, Puertas CP. Attraction of the cutaneous leishmaniasis vector PubMed PMC
Machado VE, Corrêa AG, Goulart TM, Silva FB, Ortiz DG, Pinto MC. Attraction of the sand fly PubMed PMC
Omolo MO, Ndiege IO, Hassanali A. Semiochemical signatures associated with differential attraction of PubMed PMC
Johne AB, Weissbecker B, Schütz S. Volatile emissions from PubMed
Johne AB, Weissbecker B, Schuetz S. Approaching risk assessment of complex disease development in horse chestnut trees: a chemical ecologist’s perspective. J Appl Entomol. 2008;132:349–59. 10.1111/j.1439-0418.2008.01283.x.
Thakeow P, Angeli S, Weissbecker B, Schütz S. Antennal and behavioral responses of PubMed
Paczkowski S, Paczkowska M, Dippel S, Schulze N, Schütz S, Sauerwald T, et al. The olfaction of a fire beetle leads to new concepts for early fire warning systems. Sens Actuators B Chem. 2013;183:273–82. 10.1016/j.snb.2013.03.123.
von Fragstein M, Holighaus G, Schütz S, Tscharntke T. Weak defence in a tritrophic system: olfactory response to salicylaldehyde reflects prey specialization of potter wasps. Chemoecol. 2012;23:181–90. 10.1007/s00049-013-0133-2.
Abraham J, Opuni-Frimpong E, Weissbecker B, Schütz S, Angeli S. Olfactory cues of mahogany trees to female
Branco S, Mateus EP, Gomes da Silva MDR, Mendes D, Rocha S, Mendel Z, et al. Electrophysiological and behavioural responses of the
Branco S, Pires Mateus E, Gomes da Silva MDR, Mendes D, Araújo Pereira MM, Schütz S, Paiva MR. Olfactory responses of
Song H, Liu J. GC-O-MS technique and its applications in food flavor analysis. Food Res Int. 2018;114:187–98. 10.1016/j.foodres.2018.07.037. PubMed