Adaptive predator prey algorithm for many objective optimization
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
REFRESH - Research Excellence For REgion Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048
European Union
Students Grant Competition SP2025/062
Czech Republic Ministry of Education, Youth and Sports and Faculty of Mechanical Engineering VŠB-TUO
PubMed
40221537
PubMed Central
PMC11993708
DOI
10.1038/s41598-025-96901-y
PII: 10.1038/s41598-025-96901-y
Knihovny.cz E-resources
- Keywords
- Convergence, Diversity, Information feedback mechanism, Many-objective optimization, Marine predator algorithm, Metaheuristic algorithm,
- MeSH
- Algorithms * MeSH
- Food Chain * MeSH
- Predatory Behavior * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Balancing diversity and convergence among solutions in many-objective optimization is challenging, particularly in high-dimensional spaces with conflicting objectives. This paper presents the Many-Objective Marine Predator Algorithm (MaOMPA), an adaptation of the Marine Predators Algorithm (MPA) specifically enhanced for many-objective optimization tasks. MaOMPA integrates an elitist, non-dominated sorting and crowding distance mechanism to maintain a well-distributed set of solutions on the Pareto front. MaOMPA improves upon traditional metaheuristic methods by achieving a robust balance between exploration and exploitation using the predator-prey interaction model. The algorithm underwent evaluation on various benchmarks together with complex real-world engineering problems where it showed superior outcomes when compared against state-of-the-art generational distance and hypervolume and coverage metrics. Engineers and researchers can use MaOMPA as an effective reliable tool to address complex optimization scenarios in engineering design. The MaOMPA source code is available at https://github.com/kanak02/MaOMPA .
Applied Science Research Center Applied Science Private University Amman 11931 Jordan
Department of CSE Graphic Era Deemed to be University Dehradun Uttarakhand 248002 India
Department of CSE Graphic Era Hill University Dehradun 248002 India
Department of Mechanical Engineering Marwadi University Rajkot 360003 India
University Centre for Research and Development Chandigarh University Mohali 140413 India
See more in PubMed
Liang, J., Lin, H., Yue, C., Ban, X. & Yu, K. Evolutionary constrained multi-objective optimization: A review. Vicinagearth10.1007/s44336-024-00006-5 (2024).
Zhao, W. et al. An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems. Comput. Methods Appl. Mech. Eng.10.1016/j.cma.2022.115223 (2022). PubMed
Mashruid, N., Tejaniid, G. G., Patelid, P. & Khisheid, M. Optimal truss design with MOHO: A multi-objective optimization perspective. PLoS ONE10.1371/journal.pone.0308474 (2024). PubMed PMC
Knowles, J. & Corne, D. The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimisation. In Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999. 98–105. 10.1109/CEC.1999.781913 (IEEE Computer Society, 1999).
Liang, J. et al. Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization. IEEE Trans Cybern53(6), 3873–3886. 10.1109/TCYB.2022.3163759 (2023). PubMed
Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II (2002).
Goel, T. et al. Response surface approximation of Pareto optimal front in multi-objective optimization. Comput Methods Appl Mech Eng196(4), 879–893. 10.1016/j.cma.2006.07.010 (2007).
Asafuddoula, M., Ray, T., Sarker, R. & Alam, K. An adaptive constraint handling approach embedded MOEA/D. IEEE Congr. Evolut. Comput.2012, 1–8. 10.1109/CEC.2012.6252868 (2012).
Mashru, N., Tejani, G. G. & Patel, P. Many-objective optimization of a 120-bar 3D dome truss structure using three metaheuristics. In Advanced Engineering Optimization Through Intelligent Techniques (Venkata Rao, R., Taler, J. eds.). 231–239 (Springer Nature Singapore, 2024).
Ho-Huu, V., Hartjes, S., Visser, H. G. & Curran, R. An improved MOEA/D algorithm for bi-objective optimization problems with complex Pareto fronts and its application to structural optimization. Expert Syst. Appl.92, 430–446. 10.1016/j.eswa.2017.09.051 (2018).
Bader, J. & Zitzler, E. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput.19(1), 45–76. 10.1162/EVCO_a_00009 (2011). PubMed
Zhou, J. et al. An infeasible solutions diversity maintenance epsilon constraint handling method for evolutionary constrained multiobjective optimization. Soft comput25(13), 8051–8062. 10.1007/s00500-021-05880-5 (2021).
Ishibuchi, H., Tsukamoto, N. & Nojima, Y. Evolutionary many-objective optimization: A short review. IEEE Congr. Evolut. Comput. (IEEE World Congress on Computational Intelligence)2008, 2419–2426. 10.1109/CEC.2008.4631121 (2008).
Jain, H. & Deb, K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: Handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput.18(4), 602–622. 10.1109/TEVC.2013.2281534 (2014).
Kumar, S. et al. A two-archive multi-objective multi-verse optimizer for truss design. Knowl Based Syst10.1016/j.knosys.2023.110529 (2023).
Cheng, R., Jin, Y., Olhofer, M. & Sendhoff, B. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput.20(5), 773–791. 10.1109/TEVC.2016.2519378 (2016).
Premkumar, M., Jangir, P., Sowmya, R. & Elavarasan, R. M. Many-objective gradient-based optimizer to solve optimal power flow problems: Analysis and validations. Eng. Appl. Artif. Intell.10.1016/j.engappai.2021.104479 (2021).
Liu, Y., Gong, D., Sun, X. & Zhang, Y. A reference points-based evolutionary algorithm for many-objective optimization. In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, in GECCO Comp ’14. New York, NY, USA: Association for Computing Machinery. 1053–1056. 10.1145/2598394.2605674 (2014).
Zheng, J., Zhang, B., Zou, J., Yang, S. & Hu, Y. A dynamic multi-objective evolutionary algorithm based on niche prediction strategy. (online). https://ssrn.com/abstract=4280056.
Zhang, Q., Li, H. & Zhang, J. MaOEA/D-ADA: An adaptive decomposition-based algorithm for many-objective optimization. IEEE Trans. Evol. Comput.26(3), 456–470 (2022).
Wang, Y., Zhang, X. & Li, B. RVEA-DPS: A reference vector guided evolutionary algorithm with dynamic population size for many-objective optimization. Elsevier Appl. Soft Comput.105, 107–120 (2021).
Chen, L., Liu, H. & Tang, K. MOEA-RL: A multi-objective evolutionary algorithm enhanced by reinforcement learning for many-objective optimization. Springer Nat. Comput. Intell.39(2), 201–215 (2023).
Li, M., Yang, S. & Liu, X. HMOA: A hybrid many-objective optimization algorithm for high-dimensional problems. IEEE Trans. Cybern.52(8), 789–803 (2022).
Fu, S. et al. Improved dwarf mongoose optimization algorithm using novel nonlinear control and exploration strategies. Expert Syst. Appl.233, 120904 (2023).
Fu, S. et al. Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems. Artif. Intell. Rev.57(6), 1–89 (2024).
Faramarzi, A., Heidarinejad, M., Mirjalili, S. & Gandomi, A. H. Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst Appl10.1016/j.eswa.2020.113377 (2020).
Jangir, P., Buch, H., Mirjalili, S. & Manoharan, P. MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems. Evol Intell16(1), 169–195. 10.1007/s12065-021-00649-z (2023).
Huband, S., Hingston, P., Barone, L. & While, L. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput.10(5), 477–506. 10.1109/TEVC.2005.861417 (2006).
Tanabe, R. & Ishibuchi, H. An easy-to-use real-world multi-objective optimization problem suite. Appl. Soft Comput. J.10.1016/j.asoc.2020.106078 (2020).
Kalita, K., Pandya, S. B., Čep, R., Jangir, P. & Abualigah, L. Many-objective ant lion optimizer (MaOALO): A new many-objective optimizer with its engineering applications. Heliyon10.1016/j.heliyon.2024.e32911 (2024). PubMed PMC
Gu, Q., Liu, Y., Chen, L. & Xiong, N. An improved competitive particle swarm optimization for many-objective optimization problems. Expert Syst. Appl.189, 116118. 10.1016/j.eswa.2021.116118 (2022).
Kalita, K., Jangir, P., Kumar, A., Pandya, S. B. & Abualigah, L. A novel many-objective symbiotic organism search algorithm for industrial engineering problems. Int. J. Interact. Des. Manuf. (IJIDeM)10.1007/s12008-024-02143-z (2024).
Kalita, K. et al. Many-objective multi-verse optimizer (MaOMVO): A novel algorithm for solving complex many-objective engineering problems. J. Inst. Eng. India Ser. C10.1007/s40032-024-01104-5 (2024).
Liu, Y., Wei, J., Li, X. & Li, M. Generational distance indicator-based evolutionary algorithm with an improved niching method for many-objective optimization problems. IEEE Access7, 63881–63891. 10.1109/ACCESS.2019.2916634 (2019).
Kalita, K. et al. Many-objective artificial hummingbird algorithm: An effective many-objective algorithm for engineering design problems. J. Comput. Des. Eng.11(4), 16–39. 10.1093/jcde/qwae055 (2024).
Auger, A., Bader, J., Brockhoff, D. & Zitzler, E. Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications. Theor. Comput. Sci.425, 75–103. 10.1016/j.tcs.2011.03.012 (2012).
Ishibuchi, H., Imada, R., Setoguchi, Y. & Nojima, Y. Reference point specification in inverted generational distance for triangular linear Pareto front. IEEE Trans. Evol. Comput.22(6), 961–975. 10.1109/TEVC.2017.2776226 (2018).
Panagant, N., Kumar, S., Tejani, G. G., Pholdee, N. & Bureerat, S. Many-objective meta-heuristic methods for solving constrained truss optimisation problems: A comparative analysis. MethodsX10.1016/j.mex.2023.102181 (2023). PubMed PMC
Ahmad, N., Kamal, S., Raza, Z. A. & Hussain, T. Multi-objective optimization in the development of oil and water repellent cellulose fabric based on response surface methodology and the desirability function. Mater. Res. Express10.1088/2053-1591/aa5f6a (2017).
Chen, Y. S. Performance enhancement of multiband antennas through a two-stage optimization technique. Int. J. RF Microwave Comput.-Aided Eng.10.1002/mmce.21064 (2017).