Many-objective ant lion optimizer (MaOALO): A new many-objective optimizer with its engineering applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39022051
PubMed Central
PMC11253286
DOI
10.1016/j.heliyon.2024.e32911
PII: S2405-8440(24)08942-4
Knihovny.cz E-zdroje
- Klíčová slova
- Ant lion optimizer, Convergence, Diversity, MaF benchmark, Many-objective optimization,
- Publikační typ
- časopisecké články MeSH
Many-objective optimization (MaO) is an important aspect of engineering scenarios. In many-objective optimization algorithms (MaOAs), a key challenge is to strike a balance between diversity and convergence. MaOAs employs various tactics to either enhance selection pressure for better convergence and/or implements additional measures for sustaining diversity. With increase in number of objectives, the process becomes more complex, mainly due to challenges in achieving convergence during population selection. This paper introduces a novel Many-Objective Ant Lion Optimizer (MaOALO), featuring the widely-popular ant lion optimizer algorithm. This method utilizes reference point, niche preserve and information feedback mechanism (IFM), to enhance the convergence and diversity of the population. Extensive experimental tests on five real-world (RWMaOP1- RWMaOP5) optimization problems and standard problem classes, including MaF1-MaF15 (for 5, 9 and 15 objectives), DTLZ1-DTLZ7 (for 8 objectives) has been carried out. It is shown that MaOALO is superior compared to ARMOEA, NSGA-III, MaOTLBO, RVEA, MaOABC-TA, DSAE, RL-RVEA and MaOEA-IH algorithms in terms of GD, IGD, SP, SD, HV and RT metrics. The MaOALO source code is available at: https://github.com/kanak02/MaOALO.
Applied Science Research Center Applied Science Private University Amman 11931 Jordan
Computer Science Department Al Al Bayt University Mafraq 25113 Jordan
Department of Electrical Engineering Shri K J Polytechnic Bharuch 392 001 India
Jadara Research Center Jadara University Irbid 21110 Jordan
MEU Research Unit Middle East University Amman 11831 Jordan
University Centre for Research and Development Chandigarh University Mohali 140413 India
Zobrazit více v PubMed
Xiao Z., Shu J., Jiang H., Lui J.C.S., Min G., Liu J.…Dustdar S. Multi-objective parallel task offloading and content caching in d2d-aided MEC networks. IEEE Trans. Mobile Comput. 2023;22(11):6599–6615. doi: 10.1109/TMC.2022.3199876. DOI
Cao B., Zhao J., Yang P., Gu Y., Muhammad K., Rodrigues J.J.P.C.…de Albuquerque V.H.C. Multiobjective 3-D topology optimization of next-generation wireless data center network. IEEE Trans. Ind. Inf. 2020;16(5):3597–3605. doi: 10.1109/TII.2019.2952565. DOI
Ishibuchi H., Tsukamoto N., Nojima Y. Proceedings of the IEEE Congress Evolutionary Computation. IEEE World Congress Computational Intelligence); Hong Kong: 2008. Evolutionary many-objective optimization: a short review; pp. 2419–2426. DOI
Cao B., Zhao J., Gu Y., Ling Y., Ma X. Applying graph-based differential grouping for multiobjective large-scale optimization. Swarm Evol. Comput. 2020;53 doi: 10.1016/j.swevo.2019.100626. DOI
Yin L., Zhuang M., Jia J., Wang H. Energy saving in flow-shop scheduling management: an improved multiobjective model based on grey wolf optimization algorithm. Math. Probl Eng. 2020;2020 doi: 10.1155/2020/9462048. DOI
Lin Q., Li J., Du Z., Chen J., Ming Z. A novel multi-objective particle swarm optimization with multiple search strategies. Eur. J. Oper. Res. 2015;247(3):732–744. doi: 10.1016/j.ejor.2015.06.071. DOI
Zhang Q., Liu J., Yao X. An efficient many objective optimization algorithm with few parameters. Swarm Evol. Comput. 2023;83 doi: 10.1016/j.swevo.2023.101405. DOI
Wu X., Dong S., Hu J., Huang Z. An efficient many-objective optimization algorithm for computation offloading in heterogeneous vehicular edge computing network. Simulat. Model. Pract. Theor. 2024;131 doi: 10.1016/j.simpat.2023.102870. DOI
Li Q., Shi Z., Xue Z., Cui Z., Xu Y. A many-objective evolutionary algorithm for solving computation offloading problems under uncertain communication conditions. Comput. Commun. 2024;213:22–32. doi: 10.1016/j.comcom.2023.10.020. DOI
Ming F., Gong W., Wang L., Gao L. A constraint-handling technique for decomposition-based constrained many-objective evolutionary algorithms. IEEE Transactions on Systems, Man and Cybernetics: Systems. 2023;53:7783–7793. doi: 10.1109/TSMC.2023.3299570. PubMed DOI
Zhang W., Liu J., Liu J., Liu Y., Wang H. A many-objective evolutionary algorithm based on novel fitness estimation and grouping layering. Neural Comput. Appl. 2023;35(34):24283–24314. doi: 10.1007/s00521-023-08950-x. DOI
Shi Z., Zhao T., Li Q., Zhang Z., Cui Z. Workflow migration in uncertain edge computing environments based on interval many-objective evolutionary algorithm. Egyptian Informatics Journal. 2023;24(4) doi: 10.1016/j.eij.2023.100418. DOI
Zhai Z., Tan Y., Li X., Li J., Zhang H. A composite surrogate-assisted evolutionary algorithm for expensive many-objective optimization. Expert Syst. Appl. 2024;236 doi: 10.1016/j.eswa.2023.121374. DOI
Palakonda V., Kang J.-M. Pre-DEMO: preference-inspired differential evolution for multi/many-objective optimization. IEEE Transactions on Systems, Man and Cybernetics: Systems. 2023;53(12):7618–7630. doi: 10.1109/TSMC.2023.3298690. DOI
Sun Y., Cao Y., Cheng S., Yang J., Shi W., Zhang A., Ju J. A many objective commercial recommendation algorithm via Game-Based core node extraction. Egyptian Informatics Journal. 2023;24(4) doi: 10.1016/j.eij.2023.100419. DOI
Cai J., Yang J., Wen J., Zhao H., Cui Z. A game theory based many-objective hybrid tensor decomposition for skin cancer prediction. Expert Syst. Appl. 2024;239 doi: 10.1016/j.eswa.2023.122425. DOI
Wang W., Zhang S., Song W., Ge W. Preference-inspired coevolutionary algorithm with sparse autoencoder for many-objective optimization. Soft Comput. 2023;27(23):17729–17745. doi: 10.1007/s00500-023-09050-7. DOI
Márquez-Vega L.A., Falcón-Cardona J.G., Covantes Osuna E. On the adaptation of reference sets using niching and pair-potential energy functions for multi-objective optimization. Swarm Evol. Comput. 2023;83 doi: 10.1016/j.swevo.2023.101408. DOI
Ye T., Wang H., Zeng T., Omran M.G.H., Wang F., Cui Z., Zhao J. An improved two-archive artificial bee colony algorithm for many-objective optimization. Expert Syst. Appl. 2024;236 doi: 10.1016/j.eswa.2023.121281. DOI
Liu Z., Han F., Ling Q., Han H., Jiang J. A many-objective optimization evolutionary algorithm based on hyper-dominance degree. Swarm Evol. Comput. 2023;83 doi: 10.1016/j.swevo.2023.101411. DOI
Zhang W., Liu J., Liu J., Liu Y., Tan S. A dual distance dominance based evolutionary algorithm with selection-replacement operator for many-objective optimization. Expert Syst. Appl. 2024;237 doi: 10.1016/j.eswa.2024.124226. DOI
Sun Y., Liu J., Liu Z. MaOEA/D with adaptive external population guided weight vector adjustment. Expert Syst. Appl. 2024;242 doi: 10.1016/j.eswa.2023.122720. DOI
Dai C., Peng C., Lei X. A point crowding-degree based evolutionary algorithm for many-objective optimization. Memetic Computing. 2023;15(4):391–403. doi: 10.1007/s12293-023-00398-9. DOI
Jameel M., Abouhawwash M. A new proximity metric based on optimality conditions for single and multi-objective optimization: method and validation. Expert Syst. Appl. 2024;241 doi: 10.1016/j.eswa.2023.122677. DOI
Liang P., Chen Y., Sun Y., Huang Y., Li W. An information entropy-driven evolutionary algorithm based on reinforcement learning for many-objective optimization. Expert Syst. Appl. 2024;238 doi: 10.1016/j.eswa.2023.122164. DOI
Liu Q., Jin Y., Heiderich M., Rodemann T., Yu G. An adaptive reference vectorguided evolutionary algorithm using growing neural gas for many-objective optimization of irregular problems. IEEE Trans. Cybern. 2022;52(5):2698–2711. doi: 10.1109/TCYB.2020.3020630. PubMed DOI
Song Z., Wang H., Xu H. A framework for expensive many-objective optimization with Pareto-based bi-indicator infill sampling criterion. Memetic Computing. 2022;14(2):179–191. doi: 10.1007/s12293-021-00351-8. DOI
Zhang C., Zhou L., Li Y. Pareto optimal reconfiguration planning and distributed parallel motion control of mobile modular robots. IEEE Trans. Ind. Electron. 2024;71(8):9255–9264. doi: 10.1109/TIE.2023.3321997. DOI
Zhu C., Wang M., Guo M., Deng J., Du Q., Wei W.…Mohebbi A. An innovative process design and multi-criteria study/optimization of a biomass digestion-supercritical carbon dioxide scenario toward boosting a geothermal-driven cogeneration system for power and heat. Energy. 2024;292 doi: 10.1016/j.energy.2024.130408. DOI
Tian Y., Wang H., Zhang X., Jin Y. Effectiveness and efficiency of non-dominated sorting for evolutionary multi- and many-objective optimization. Complex and Intelligent Systems. 2017;3(4):247–263. doi: 10.1007/s40747-017-0057-5. DOI
Ikeda K., Kita H., Kobayashi S. CEC. IEEE Publications Congress on Evolutionary Computation; 2001. Failure of Pareto-based MOEAs: does nondominated really mean near to optimal? pp. 957–962. (Proceedings of the 2001 Congress on Evolutionary Computation). (Institute of Electrical and Electronics Engineers. Cat. No. 01TH8546) DOI
Sato H., Aguirre H.E., Tanaka K. Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference. 2011. Improved S-CDAs using crossover controlling the number of crossed genes for many-objective optimization; pp. 753–760. Dublin, Ireland. DOI
Zhu C., Xu L., Goodman E.D. Generalization of Pareto-optimality for manyobjective evolutionary optimization. IEEE Trans. Evol. Comput. 2016;20(2):299–315. doi: 10.1109/TEVC.2015.2457245. DOI
Yang S., Li M., Liu X., Zheng J. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2013;17(5):721–736. doi: 10.1109/TEVC.2012.2227145. DOI
Li M., Yang S., Liu X. Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Trans. Evol. Comput. 2014;18(3):348–365. doi: 10.1109/TEVC.2013.2262178. DOI
Bader J., Zitzler E. HypE: an algorithm for fast hypervolume-based manyobjective optimization. Evol. Comput. 2011;19(1):45–76. doi: 10.1162/EVCO_a_00009. PubMed DOI
Luo J., Huang X., Yang Y., Li X., Wang Z., Feng J. A many-objective particle swarm optimizer based on indicator and direction vectors for many-objective optimization. Inf. Sci. 2020;514:166–202. doi: 10.1016/j.ins.2019.11.047. DOI
Li L., Yen G.G., Sahoo A., Chang L., Gu T. On the estimation of pareto front and dimensional similarity in many-objective evolutionary algorithm. Inf. Sci. 2021;563:375–400. doi: 10.1016/j.ins.2021.03.008. DOI
Cheng R., Jin Y., Olhofer M., Sendhoff B. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2016;20(5):773–791. doi: 10.1109/TEVC.2016.2519378. DOI
Yuan Y., Xu H., Wang B., Yao X. A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2016;20(1):16–37. doi: 10.1109/TEVC.2015.2420112. DOI
Chen H., Tian Y., Pedrycz W., Wu G., Wang R., Wang L. Hyperplane assisted evolutionary algorithm for many-objective optimization problems. IEEE Trans. Cybern. 2020;50(7):3367–3380. doi: 10.1109/TCYB.2019.2899225. PubMed DOI
Xiang Y., Zhou Y., Li M., Chen Z. A vector angle-based evolutionary algorithm for unconstrained many-objective optimization. IEEE Trans. Evol. Comput. 2017;21(1):131–152. doi: 10.1109/TEVC.2016.2587808. DOI
Shen J., Wang P., Wang X. A controlled strengthened dominance relation for evolutionary many-objective optimization. IEEE Trans. Cybern. 2022;52(5):3645–3657. doi: 10.1109/TCYB.2020.3015998. PubMed DOI
Gu Q., Xu Q., Li X. An improved NSGA-III algorithm based on distance dominance relation for many-objective optimization. Expert Syst. Appl. 2022;207 doi: 10.1016/j.eswa.2022.117738. DOI
Lin Q., Liu S., Zhu Q., Tang C., Song R., Chen J., Coello C.A.C., Wong K., Zhang J. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans. Evol. Comput. 2018;22(1):32–46. doi: 10.1109/TEVC.2016.2631279. DOI
Liu S.C., Zhan Z.H., Tan K.C., Zhang J. A multiobjective framework for manyobjective optimization. IEEE Trans. Cybern. 2022;52(12):13654–13668. doi: 10.1109/TCYB.2021.3082200. PubMed DOI
Lin Q., Liu S., Wong K.C., Gong M., Coello C.A.C., Chen J., Zhang J. A clustering-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 2018;23(3):391–405. doi: 10.1109/TEVC.2018.2866927. DOI
Liu S., Yu Q., Lin Q., Tan K.C. An adaptive clustering-based evolutionary algorithm for many-objective optimization problems. Inf. Sci. 2020;537:261–283. doi: 10.1016/j.ins.2020.03.104. DOI
Liu S., Zheng J., Lin Q., Tan K.C. Evolutionary multi and many-objective optimization via clustering for environmental selection. Inf. Sci. 2021;578:930–949. doi: 10.1016/j.ins.2021.08.054. DOI
Liu S., Lin Q., Wong K.C., Ma L., Coello C.A.C., Gong D. A novel multi-objective evolutionary algorithm with dynamic decomposition strategy. Swarm Evol. Comput. 2019;48:182–200. doi: 10.1016/j.swevo.2019.02.010. DOI
Liu S., Lin Q., Tan K.C., Gong M., Coello C.A.C. A fuzzy decomposition-based multi/many-objective evolutionary algorithm. IEEE Trans. Cybern. 2020;52(5):3495–3509. doi: 10.1109/TCYB.2020.3008697. PubMed DOI
Liu S., Lin Q., Wong K.C., Coello C.A.C., Li J., Ming Z., Zhang J. A self-guided reference vector strategy for many-objective optimization. IEEE Trans. Cybern. 2020;52(2):1164–1178. doi: 10.1109/TCYB.2020.2971638. PubMed DOI
Liu S., Lin Q., Li J., Tan K.C. A survey on learnable evolutionary algorithms for scalable multiobjective optimization. IEEE Trans. Evol. Comput. 2023 doi: 10.1109/TEVC.2023.3250350. DOI
Mirjalili S. The ant lion optimizer. Adv. Eng. Software. 2015;83:80–98. doi: 10.1016/j.advengsoft.2015.01.010. DOI
Cheng R., Li M., Tian Y., Zhang X., Yang S., Jin Y., Yao X. A benchmark test suite for evolutionary many-objective optimization. Complex and Intelligent Systems. 2017;3(1):67–81. doi: 10.1007/s40747-017-0039-7. DOI
Tanabe R., Ishibuchi H. An easy-to-use real-world multi-objective optimization problem suite. Appl. Soft Comput. 2020;89 doi: 10.1016/j.asoc.2020.106078. article 106078. DOI
Panagant N., Kumar S., Tejani G.G., Pholdee N., Bureerat S. Many-objective meta-heuristic methods for solving constrained truss optimisation problems: a comparative analysis. MethodsX. 2023;10 doi: 10.1016/j.mex.2023.102181. PubMed DOI PMC
Ahmad N., Kamal S., Raza Z.A., Hussain T. Multi-objective optimization in the development of oil and water repellent cellulose fabric based on response surface methodology and the desirability function. Mater. Res. Express. 2017;4(3) doi: 10.1088/2053-1591/aa5f6a. article 035302. DOI
Chen Y.-S. Performance enhancement of multiband antennas through a two-stage optimization technique. Int. J. RF Microw. Computer-Aided Eng. 2017;27(2) doi: 10.1002/mmce.21064. article e21064. DOI
Goel T., Vaidyanathan R., Haftka R.T., Shyy W., Queipo N.V., Tucker K. Response surface approximation of Pareto optimal front in multi-objective optimization. Comput. Methods Appl. Mech. Eng. 2007;196(4–6):879–893. doi: 10.1016/j.cma.2006.07.010. DOI
Coello Coello C.A., Lamont G.B., Van Veldhuizen D.A. Genetic and Evolutionary Computation Series. second ed. Springer; 2007. Evolutionary algorithms for solving multi-objective problems. DOI
Tian Y., Cheng R., Zhang X., Cheng F., Jin Y. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evol. Comput. 2018;22(4):609–622. doi: 10.1109/TEVC.2017.2749619. DOI
Jangir P., Manoharan P., Pandya S., Sowmya R. Objective teaching-learning-based optimizer for control and monitoring the optimal power flow of modern power systems. Int. J. Ind. Eng. Comput. 2023;14(2):293–308. doi: 10.5267/j.ijiec.2023.1.003. MaOTLBO. DOI
Deb K., Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 2014;18(4):577–601. doi: 10.1109/TEVC.2013.2281535. DOI
Zhou S., Dai Y., Chen Z. Dominance relation selection and angle-based distribution evaluation for many-objective evolutionary algorithm. Swarm Evol. Comput. 2024;86 doi: 10.1016/j.swevo.2024.101515. DOI
Zhang Z., Shi X., Zhang Z., Cui Z., Zhang W., Chen J. A many-objective evolutionary algorithm assisted by ideal hyperplane. Swarm Evol. Comput. 2024;84 doi: 10.1016/j.swevo.2023.101461. DOI