Phosphorylated and Phosphomimicking Variants May Differ-A Case Study of 14-3-3 Protein
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35321476
PubMed Central
PMC8935074
DOI
10.3389/fchem.2022.835733
PII: 835733
Knihovny.cz E-zdroje
- Klíčová slova
- 14-3-3, dissociation constant, oligomeric state, phosphomimicking mutation, phosphorylation,
- Publikační typ
- časopisecké články MeSH
Protein phosphorylation is a critical mechanism that biology uses to govern cellular processes. To study the impact of phosphorylation on protein properties, a fully and specifically phosphorylated sample is required although not always achievable. Commonly, this issue is overcome by installing phosphomimicking mutations at the desired site of phosphorylation. 14-3-3 proteins are regulatory protein hubs that interact with hundreds of phosphorylated proteins and modulate their structure and activity. 14-3-3 protein function relies on its dimeric nature, which is controlled by Ser58 phosphorylation. However, incomplete Ser58 phosphorylation has obstructed the detailed study of its effect so far. In the present study, we describe the full and specific phosphorylation of 14-3-3ζ protein at Ser58 and we compare its characteristics with phosphomimicking mutants that have been used in the past (S58E/D). Our results show that in case of the 14-3-3 proteins, phosphomimicking mutations are not a sufficient replacement for phosphorylation. At physiological concentrations of 14-3-3ζ protein, the dimer-monomer equilibrium of phosphorylated protein is much more shifted towards monomers than that of the phosphomimicking mutants. The oligomeric state also influences protein properties such as thermodynamic stability and hydrophobicity. Moreover, phosphorylation changes the localization of 14-3-3ζ in HeLa and U251 human cancer cells. In summary, our study highlights that phosphomimicking mutations may not faithfully represent the effects of phosphorylation on the protein structure and function and that their use should be justified by comparing to the genuinely phosphorylated counterpart.
Central European Institute of Technology Masaryk University Brno Czechia
Department of Chemistry Faculty of Science Masaryk University Brno Czechia
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Alexander C. G., Wanner R., Johnson C. M., Breitsprecher D., Winter G., Duhr S., et al. (2014). Novel Microscale Approaches for Easy, Rapid Determination of Protein Stability in Academic and Commercial Settings. Biochim. Biophys. Acta (Bba) - Proteins Proteomics 1844, 2241–2250. 10.1016/j.bbapap.2014.09.016 PubMed DOI PMC
Andrade M. A., Chacón P., Merelo J. J., Morán F. (1993). Evaluation of Secondary Structure of Proteins from Uv Circular Dichroism Spectra Using an Unsupervised Learning Neural Network. Protein Eng. Des. Sel 6, 383–390. 10.1093/protein/6.4.383 PubMed DOI
Ardito F., Giuliani M., Perrone D., Troiano G., Muzio L. L. (2017). The Crucial Role of Protein Phosphorylation in Cell Signaling and its Use as Targeted Therapy (Review). J. Mol. Med. 40, 271–280. 10.3892/ijmm.2017.3036 PubMed DOI PMC
Bernatik O., Pejskova P., Vyslouzil D., Hanakova K., Zdrahal Z., Cajanek L. (2020). Phosphorylation of Multiple Proteins Involved in Ciliogenesis by Tau Tubulin Kinase 2. MBoC 31, 1032–1046. 10.1091/MBC.E19-06-0334 PubMed DOI PMC
Braicu C., Buse M., Busuioc C., Drula R., Gulei D., Raduly L., et al. (2019). A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel) 11, 1–25. 10.3390/cancers11101618 PubMed DOI PMC
Brautigam C. A. (2015). Calculations and Publication-Quality Illustrations for Analytical Ultracentrifugation Data. Methods Enzymol. Vol 562, 109–133. 10.1016/bs.mie.2015.05.001 PubMed DOI
Bustad H. J., Skjaerven L., Ying M., Halskau Ø., Baumann A., Rodriguez-Larrea D., et al. (2012). The Peripheral Binding of 14-3-3γ to Membranes Involves Isoform-specific Histidine Residues. PLoS One 7, e49671–11. 10.1371/journal.pone.0049671 PubMed DOI PMC
Civiero L., Cogo S., Kiekens A., Morganti C., Tessari I., Lobbestael E., et al. (2017). PAK6 Phosphorylates 14-3-3γ to Regulate Steady State Phosphorylation of LRRK2. Front. Mol. Neurosci. 10, 417–17. 10.3389/fnmol.2017.00417 PubMed DOI PMC
Dephoure N., Gould K. L., Gygi S. P., Kellogg D. R. (2013). Mapping and Analysis of Phosphorylation Sites: A Quick Guide for Cell Biologists. MBoC 24, 535–542. 10.1091/mbc.E12-09-0677 PubMed DOI PMC
Dubois T., Rommel C., Howell S., Steinhussen U., Soneji Y., Morrice N., et al. (1997). 14-3-3 Is Phosphorylated by Casein Kinase I on Residue 233. J. Biol. Chem. 272, 28882–28888. 10.1074/jbc.272.46.28882 PubMed DOI
Gardino A. K., Smerdon S. J., Yaffe M. B. (2006). Structural Determinants of 14-3-3 Binding Specificities and Regulation of Subcellular Localization of 14-3-3-ligand Complexes: A Comparison of the X-ray crystal Structures of All Human 14-3-3 Isoforms. Semin. Cancer Biol. 16, 173–182. 10.1016/j.semcancer.2006.03.007 PubMed DOI
Gardino A. K., Yaffe M. B. (2011). 14-3-3 Proteins as Signaling Integration Points for Cell Cycle Control and Apoptosis. Semin. Cel Dev. Biol. 22, 688–695. 10.1016/j.semcdb.2011.09.008 PubMed DOI PMC
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., et al. (2005). Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protoc. Handbook 112, 531–552. 10.1385/1592598900 PubMed DOI
Gerst F., Kaiser G., Panse M., Sartorius T., Pujol A., Hennige A. M., et al. (2015). Protein Kinase Cδ Regulates Nuclear export of FOXO1 through Phosphorylation of the Chaperone 14-3-3ζ. Diabetologia 58, 2819–2831. 10.1007/s00125-015-3744-z PubMed DOI
Gogl G., Tugaeva K. V., Eberling P., Kostmann C., Trave G., Sluchanko N. N. (2021). Hierarchized Phosphotarget Binding by the Seven Human 14-3-3 Isoforms. Nat. Commun. 12, 2–13. 10.1038/s41467-021-21908-8 PubMed DOI PMC
Gu Y.-M., Jin Y.-H., Choi J.-K., Baek K.-H., Yeo C.-Y., Lee K.-Y. (2006). Protein Kinase A Phosphorylates and Regulates Dimerization of 14-3-3ζ. FEBS Lett. 580, 305–310. 10.1016/j.febslet.2005.12.024 PubMed DOI
Haladová K., Mrázek H., Ječmen T., Halada P., Man P., Novák P., et al. (2012). The Combination of Hydrogen/deuterium Exchange or Chemical Cross-Linking Techniques with Mass Spectrometry: Mapping of Human 14-3-3ζ Homodimer Interface. J. Struct. Biol. 179, 10–17. 10.1016/j.jsb.2012.04.016 PubMed DOI
Hermeking H., Benzinger A. (2006). 14-3-3 Proteins in Cell Cycle Regulation. Semin. Cancer Biol. 16, 183–192. 10.1016/j.semcancer.2006.03.002 PubMed DOI
Hofmeister F. (1888). Zur Lehre von der Wirkung der Salze. Archiv F. Experiment. Pathol. U. Pharmakol 24, 247–260. 10.1007/BF01918191 DOI
Hou Z., Peng H., White D. E., Wang P., Lieberman P. M., Halazonetis T., et al. (2010). 14-3-3 Binding Sites in the Snail Protein Are Essential for Snail-Mediated Transcriptional Repression and Epithelial-Mesenchymal Differentiation. Cancer Res. 70, 4385–4393. 10.1158/0008-5472.CAN-10-0070 PubMed DOI PMC
Hritz J., Byeon I.-J. L., Krzysiak T., Martinez A., Sklenar V., Gronenborn A. M. (2014). Dissection of Binding between a Phosphorylated Tyrosine Hydroxylase Peptide and 14-3-3ζ: A Complex Story Elucidated by NMR. Biophysical J. 107, 2185–2194. 10.1016/j.bpj.2014.08.039 PubMed DOI PMC
Humphries M. J., Ohm A. M., Schaack J., Adwan T. S., Reyland M. E. (2008). Tyrosine Phosphorylation Regulates Nuclear Translocation of PKCδ. Oncogene 27, 3045–3053. 10.1038/sj.onc.1210967 PubMed DOI PMC
Hunter T. (2012). Why Nature Chose Phosphate to Modify Proteins. Phil. Trans. R. Soc. B 367, 2513–2516. 10.1098/rstb.2012.0013 PubMed DOI PMC
Inoue H., Nojima H., Okayama H. (1990). High Efficiency Transformation of Escherichia coli with Plasmids. Gene 96, 23–28. 10.1016/0378-1119(90)90336-P PubMed DOI
Jandova Z., Trosanova Z., Weisova V., Oostenbrink C., Hritz J. (2018). Free Energy Calculations on the Stability of the 14-3-3ζ Protein. Biochim. Biophys. Acta (Bba) - Proteins Proteomics 1866, 442–450. 10.1016/j.bbapap.2017.11.012 PubMed DOI PMC
Jin C., Strich R., Cooper K. F. (2014). Slt2p Phosphorylation Induces Cyclin C Nuclear-To-Cytoplasmic Translocation in Response to Oxidative Stress. MBoC 25, 1396–1407. 10.1091/mbc.E13-09-0550 PubMed DOI PMC
Kanno T., Nishizaki T. (2011). Sphingosine Induces Apoptosis in Hippocampal Neurons and Astrocytes by Activating Caspase-3/-9 via a Mitochondrial Pathway Linked to SDK/14-3-3 protein/Bax/cytochrome C. J. Cel. Physiol. 226, 2329–2337. 10.1002/jcp.22571 PubMed DOI
Kennelly P. J. (2002). Protein Kinases and Protein Phosphatases in Prokaryotes: A Genomic Perspective. FEMS Microbiol. Lett. 206, 1–8. 10.1016/S0378-1097(01)00479-710.1111/j.1574-6968.2002.tb10978.x PubMed DOI
Kostelecky B., Saurin A. T., Purkiss A., Parker P. J., Mcdonald N. Q. (2009). Recognition of an Intra‐chain Tandem 14‐3‐3 Binding Site within PKCε. EMBO Rep. 10, 983–989. 10.1038/embor.2009.150 PubMed DOI PMC
Kunz W., Henle J., Ninham B. W. (2004). 'Zur Lehre von der Wirkung der Salze' (about the science of the effect of salts): Franz Hofmeister's historical papers. Curr. Opin. Colloid Interf. Sci. 9, 19–37. 10.1016/j.cocis.2004.05.005 DOI
Laage D., Elsaesser T., Hynes J. T. (2017). Water Dynamics in the Hydration Shells of Biomolecules. Chem. Rev. 117, 10694–10725. 10.1021/acs.chemrev.6b00765 PubMed DOI PMC
Liu H., Naismith J. H. (2008). An Efficient One-step Site-Directed Deletion, Insertion, Single and Multiple-Site Plasmid Mutagenesis Protocol. BMC Biotechnol. 8., 10.1186/1472-6750-8-91 PubMed DOI PMC
Louis-Jeune C., Andrade-Navarro M. A., Perez-Iratxeta C. (2012). Prediction of Protein Secondary Structure from Circular Dichroism Using Theoretically Derived Spectra. Proteins 80, 374–381. 10.1002/prot.23188 PubMed DOI
Ma Y., Pitson S., Hercus T., Murphy J., Lopez A., Woodcock J. (2005). Sphingosine Activates Protein Kinase A Type II by a Novel cAMP-independent Mechanism. J. Biol. Chem. 280, 26011–26017. 10.1074/jbc.M409081200 PubMed DOI
Mackintosh C. (2004). Dynamic Interactions between 14-3-3 Proteins and Phosphoproteins Regulate Diverse Cellular Processes. Biochem. J. 381, 329–342. 10.1042/BJ20031332 PubMed DOI PMC
Mandell D. J., Chorny I., Groban E. S., Wong S. E., Levine E., Rapp C. S., et al. (2007). Strengths of Hydrogen Bonds Involving Phosphorylated Amino Acid Side Chains. J. Am. Chem. Soc. 129, 820–827. 10.1021/ja063019w PubMed DOI
Menzel J., Kownatzki-Danger D., Tokar S., Ballone A., Unthan-Fechner K., Kilisch M., et al. (2020). 14-3-3 Binding Creates a Memory of Kinase Action by Stabilizing the Modified State of Phospholamban. Sci. Signal. 13, 1–16. 10.1126/SCISIGNAL.AAZ1436 PubMed DOI
Messaritou G., Grammenoudi S., Skoulakis E. M. C. (2010). Dimerization Is Essential for 14-3-3ζ Stability and Function In Vivo . J. Biol. Chem. 285, 1692–1700. 10.1074/jbc.M109.045989 PubMed DOI PMC
Michel T., Li G. K., Busconi L. (1993). Phosphorylation and Subcellular Translocation of Endothelial Nitric Oxide Synthase. Proc. Natl. Acad. Sci. 90, 6252–6256. 10.1073/pnas.90.13.6252 PubMed DOI PMC
Morrison D. K. (2012). MAP Kinase Pathways. Cold Spring Harb Perspect. Biol. 4, 1–5. 10.1101/cshperspect.a011254 PubMed DOI PMC
Munier C. C., De Maria L., Edman K., Gunnarsson A., Longo M., MacKintosh C., et al. (2021). Glucocorticoid Receptor Thr524 Phosphorylation by MINK1 Induces Interactions with 14-3-3 Protein Regulators. J. Biol. Chem. 296, 100551–100615. 10.1016/j.jbc.2021.100551 PubMed DOI PMC
Nagy G., Oostenbrink C., Hritz J. (2017). Exploring the Binding Pathways of the 14-3-3ζ Protein: Structural and Free-Energy Profiles Revealed by Hamiltonian Replica Exchange Molecular Dynamics with Distancefield Distance Restraints. PLoS One 1–30. 10.1371/journal.pone.0180633 PubMed DOI PMC
Obsil T., Obsilova V. (2011). Structural Basis of 14-3-3 Protein Functions. Semin. Cel Dev. Biol. 22, 663–672. 10.1016/j.semcdb.2011.09.001 PubMed DOI
Obsilova V., Obsil T. (2020). The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases. Int. J. Mol. Sci. 21, 1–16. 10.3390/ijms21228824 PubMed DOI PMC
Paleologou K. E., Schmid A. W., Rospigliosi C. C., Kim H.-Y., Lamberto G. R., Fredenburg R. A., et al. (2008). Phosphorylation at Ser-129 but Not the Phosphomimics S129E/D Inhibits the Fibrillation of α-Synuclein. J. Biol. Chem. 283, 16895–16905. 10.1074/jbc.M800747200 PubMed DOI PMC
Pearlman S. M., Serber Z., Ferrell J. E., Jr. (2011). A Mechanism for the Evolution of Phosphorylation Sites. Cell 147, 934–946. 10.1016/j.cell.2011.08.052.A PubMed DOI PMC
Pérez-Mejías G., Velázquez-Cruz A., Guerra-Castellano A., Baños-Jaime B., Díaz-Quintana A., González-Arzola K., et al. (2020). Exploring Protein Phosphorylation by Combining Computational Approaches and Biochemical methodsExploring Protein Phosphorylation by Combining Computational Approaches and Biochemical Methods. Comput. Struct. Biotechnol. Comput. Struct. Biotechnol. J. 18, 1852–1863. 10.1016/j.csbj.2020.06.043 PubMed DOI PMC
Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., et al. (2004). UCSF Chimera?A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 25, 1605–1612. 10.1002/jcc.20084 PubMed DOI
Powell D. W., Rane M. J., Chen Q., Singh S., McLeish K. R. (2002). Identification of 14-3-3ζ as a Protein Kinase B/Akt Substrate. J. Biol. Chem. 277, 21639–21642. 10.1074/jbc.M203167200 PubMed DOI
Powell D. W., Rane M. J., Joughin B. A., Kalmukova R., Hong J.-H., Tidor B., et al. (2003). Proteomic Identification of 14-3-3ζ as a Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Substrate: Role in Dimer Formation and Ligand Binding. Mol. Cel. Biol. 23, 5376–5387. 10.1128/MCB.23.15.5376-5387.2003 PubMed DOI PMC
Schuck P. (2000). Size-distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophysical J. 78, 1606–1619. 10.1016/S0006-3495(00)76713-0 PubMed DOI PMC
Sharma K. K., Kaur H., Kumar G. S., Kester K. (1998). Interaction of 1,1′-Bi(4-Anilino)naphthalene-5,5′-Disulfonic Acid with α-Crystallin. J. Biol. Chem. 273, 8965–8970. 10.1074/jbc.273.15.8965 PubMed DOI
Shen Y. H., Godlewski J., Bronisz A., Zhu J., Comb M. J., Avruch J., et al. (2003). Significance of 14-3-3 Self-Dimerization for Phosphorylation-dependent Target Binding. MBoC 14, 4721–4733. 10.1091/mbc.e02-12-0821 PubMed DOI PMC
Sluchanko N. N., Artemova N. V., Sudnitsyna M. V., Safenkova I. V., Antson A. A., Levitsky D. I., et al. (2012). Monomeric 14-3-3ζ Has a Chaperone-like Activity and Is Stabilized by Phosphorylated HspB6. Biochemistry 51, 6127–6138. 10.1021/bi300674e PubMed DOI PMC
Sluchanko N. N., Beelen S., Kulikova A. A., Weeks S. D., Antson A. A., Gusev N. B., et al. (2017). Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator. Structure 25, 305–316. 10.1016/j.str.2016.12.005 PubMed DOI PMC
Sluchanko N. N., Bustos D. M. (2019). Intrinsic Disorder Associated with 14-3-3 Proteins and Their Partners. Prog. Mol. Biol. Transl. Sci. 166, 19–61. 10.1016/bs.pmbts.2019.03.007 PubMed DOI
Sluchanko N. N., Chernik I. S., Seit-nebi A. S., Pivovarova A. V., Levitsky D. I., Gusev N. B. (2008). Effect of Mutations Mimicking Phosphorylation on the Structure and Properties of Human 14-3-3ζ. Arch. Biochem. Biophys. 477, 305–312. 10.1016/j.abb.2008.05.020 PubMed DOI
Sluchanko N. N., Gusev N. B. (2010). 14-3-3 Proteins and Regulation of Cytoskeleton. Biochem. Mosc. 75, 1528–1546. 10.1134/S0006297910130031 PubMed DOI
Sluchanko N. N., Roman S. G., Chebotareva N. A., Gusev N. B. (2014). Chaperone-like Activity of Monomeric Human 14-3-3ζ on Different Protein Substrates. Arch. Biochem. Biophys. 549, 32–39. 10.1016/j.abb.2014.03.008 PubMed DOI
Sluchanko N. N., Sudnitsyna M. V., Chernik I. S., Seit-Nebi A. S., Gusev N. B. (2011a). Phosphomimicking Mutations of Human 14-3-3ζ Affect its Interaction with Tau Protein and Small Heat Shock Protein HspB6. Arch. Biochem. Biophys. 506, 24–34. 10.1016/j.abb.2010.11.003 PubMed DOI
Sluchanko N. N., Sudnitsyna M. V., Seit-nebi A. S., Antson A. A., Gusev N. B. (2011b). Properties of the Monomeric Form of Human 14-3-3ζ Protein and its Interaction with Tau and HspB6. Biochemistry 50, 9797–9808. 10.1021/bi201374s PubMed DOI
Sluchanko N. N., Uversky V. N. (2015). Hidden Disorder Propensity of the N-Terminal Segment of Universal Adapter Protein 14-3-3 Is Manifested in its Monomeric Form: Novel Insights into Protein Dimerization and Multifunctionality. Biochim. Biophys. Acta (Bba) - Proteins Proteomics 1854, 492–504. 10.1016/j.bbapap.2015.02.017 PubMed DOI
Somale D., Di Nardo G., di Blasio L., Puliafito A., Vara-Messler M., Chiaverina G., et al. (2020). Activation of RSK by Phosphomimetic Substitution in the Activation Loop Is Prevented by Structural Constraints. Sci. Rep. 10, 591–614. 10.1038/s41598-019-56937-3 PubMed DOI PMC
Strickfaden S. C., Winters M. J., Ben-ari G., Lamson R. E., Tyers M., Pryciak P. M. (2007). A Mechanism for Cell-Cycle Regulation of MAP Kinase Signaling in a Yeast Differentiation Pathway. Cell 128, 519–531. 10.1016/j.cell.2006.12.032 PubMed DOI PMC
Takai K. K., Hooper S., Blackwood S., Gandhi R., de Lange T. (2010). In Vivo stoichiometry of Shelterin Components. J. Biol. Chem. 285, 1457–1467. 10.1074/jbc.M109.038026 PubMed DOI PMC
Thorsness P. E., Koshland D. E. (1987). Inactivation of Isocitrate Dehydrogenase by Phosphorylation Is Mediated by the Negative Charge of the Phosphate. J. Biol. Chem. 262, 10422–10425. 10.1016/s0021-9258(18)60975-5 PubMed DOI
Trošanová Z., Louša P., Kozeleková A., Brom T., Gašparik N., Tungli J., et al. (2022). Quantitation of Human 14-3-3ζ Dimerization and the Effect of Phosphorylation on Dimer-Monomer Equilibria. J. Mol. Biol. 167479. 10.1016/j.jmb.2022.167479 PubMed DOI
Tsuruta F., Sunayama J., Mori Y., Hattori S., Shimizu S., Tsujimoto Y., et al. (2004). JNK Promotes Bax Translocation to Mitochondria through Phosphorylation of 14-3-3 Proteins. EMBO J. 23, 1889–1899. 10.1038/sj.emboj.7600194 PubMed DOI PMC
Tugaeva K. V., Tsvetkov P. O., Sluchanko N. N. (2017). Bacterial Co-expression of Human Tau Protein with Protein Kinase A and 14-3-3 for Studies of 14-3-3/phospho-Tau Interaction. PLoS One 12, e0178933–18. 10.1371/journal.pone.0178933 PubMed DOI PMC
Tzivion G., Dobson M., Ramakrishnan G. (2011). FoxO Transcription Factors; Regulation by AKT and 14-3-3 Proteins. Biochim. Biophys. Acta (Bba) - Mol. Cel Res. 1813, 1938–1945. 10.1016/j.bbamcr.2011.06.002 PubMed DOI
Tzivion G., Luo Z., Avruch J. (1998). A Dimeric 14-3-3 Protein Is an Essential Cofactor for Raf Kinase Activity. Nature 394, 88–92. 10.1038/27938 PubMed DOI
Wei Z., Liu H. T. (2002). MAPK Signal Pathways in the Regulation of Cell Proliferation in Mammalian Cells. Cell Res. 12, 9–18. 10.1038/sj.cr.7290105 PubMed DOI
Westermark B., Pontén J., Hugosson R. (1973). Determinants for the Establishment of Permanent Tissue Culture Lines from Human Gliomas. Acta Pathol. Microbiol. Scand. A. 81, 791–805. 10.1111/j.1699-0463.1973.tb03573.x PubMed DOI
Woodcock J. M., Goodwin K. L., Sandow J. J., Coolen C., Perugini M. A., Webb A. I., et al. (2018). Role of Salt Bridges in the Dimer Interface of 14-3-3ζ in Dimer Dynamics, N-Terminal α-helical Order, and Molecular Chaperone Activity. J. Biol. Chem. 293, 89–99. 10.1074/jbc.M117.801019 PubMed DOI PMC
Woodcock J. M., Ma Y., Coolen C., Pham D., Jones C., Lopez A. F., et al. (2010). Sphingosine and FTY720 Directly Bind Pro-survival 14-3-3 Proteins to Regulate Their Function. Cell Signal. 22, 1291–1299. 10.1016/j.cellsig.2010.04.004 PubMed DOI
Woodcock J. M., Murphy J., Stomski F. C., Berndt M. C., Lopez A. F. (2003). The Dimeric versus Monomeric Status of 14-3-3ζ Is Controlled by Phosphorylation of Ser58 at the Dimer Interface. J. Biol. Chem. 278, 36323–36327. 10.1074/jbc.M304689200 PubMed DOI
Xie Y., Jiang Y., Ben-Amotz D. (2005). Detection of Amino Acid and Peptide Phosphate Protonation Using Raman Spectroscopy. Anal. Biochem. 343, 223–230. 10.1016/j.ab.2005.05.038 PubMed DOI
Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., et al. (1997). The Structural Basis for 14-3-3:Phosphopeptide Binding Specificity. Cell 91, 961–971. 10.1016/S0092-8674(00)80487-0 PubMed DOI
Zhou J., Shao Z., Kerkela R., Ichijo H., Muslin A. J., Pombo C., et al. (2009). Serine 58 of 14-3-3ζ Is a Molecular Switch Regulating ASK1 and Oxidant Stress-Induced Cell Death. Mol. Cel. Biol. 29, 4167–4176. 10.1128/MCB.01067-08 PubMed DOI PMC
Zhou Y., Reddy S., Murrey H., Fei H., Levitan I. B. (2003). Monomeric 14-3-3 Protein Is Sufficient to Modulate the Activity of the Drosophila Slowpoke Calcium-dependent Potassium Channel. J. Biol. Chem. 278, 10073–10080. 10.1074/jbc.M211907200 PubMed DOI
figshare
10.6084/m9.figshare.c.5813213.v1