Dissection of binding between a phosphorylated tyrosine hydroxylase peptide and 14-3-3zeta: A complex story elucidated by NMR
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25418103
PubMed Central
PMC4223184
DOI
10.1016/j.bpj.2014.08.039
PII: S0006-3495(14)01012-1
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- dimerizace MeSH
- epitopy chemie MeSH
- Escherichia coli MeSH
- fosforylace MeSH
- izoenzymy MeSH
- izotopy fosforu MeSH
- lidé MeSH
- molekulární modely MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- peptidy chemie genetika MeSH
- počítačová simulace MeSH
- proteiny 14-3-3 chemie MeSH
- termodynamika MeSH
- tyrosin-3-monooxygenasa chemie genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- epitopy MeSH
- izoenzymy MeSH
- izotopy fosforu MeSH
- peptidy MeSH
- proteiny 14-3-3 MeSH
- tyrosin-3-monooxygenasa MeSH
- YWHAZ protein, human MeSH Prohlížeč
Human tyrosine hydroxylase activity is regulated by phosphorylation of its N-terminus and by an interaction with the modulator 14-3-3 proteins. We investigated the binding of singly or doubly phosphorylated and thiophosphorylated peptides, comprising the first 50 amino acids of human tyrosine hydroxylase, isoform 1 (hTH1), that contain the critical interaction domain, to 14-3-3?, by (31)P NMR. Single phosphorylation at S19 generates a high affinity 14-3-3? binding epitope, whereas singly S40-phosphorylated peptide interacts with 14-3-3? one order-of-magnitude weaker than the S19-phosphorylated peptide. Analysis of the binding data revealed that the 14-3-3? dimer and the S19- and S40-doubly phosphorylated peptide interact in multiple ways, with three major complexes formed: 1), a single peptide bound to a 14-3-3? dimer via the S19 phosphate with the S40 phosphate occupying the other binding site; 2), a single peptide bound to a 14-3-3? dimer via the S19 phosphorous with the S40 free in solution; or 3), a 14-3-3? dimer with two peptides bound via the S19 phosphorous to each binding site. Our system and data provide information as to the possible mechanisms by which 14-3-3 can engage binding partners that possess two phosphorylation sites on flexible tails. Whether these will be realized in any particular interacting pair will naturally depend on the details of each system.
Department of Biomedicine University of Bergen Bergen Norway
Department of Structural Biology University of Pittsburgh School of Medicine Pittsburgh Pennsylvania
Zobrazit více v PubMed
Morrison D.K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 2009;19:16–23. PubMed PMC
Gardino A.K., Yaffe M.B. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin. Cell Dev. Biol. 2011;22:688–695. PubMed PMC
Freeman A.K., Morrison D.K. 14-3-3 proteins: diverse functions in cell proliferation and cancer progression. Semin. Cell Dev. Biol. 2011;22:681–687. PubMed PMC
Johnson C., Crowther S., MacKintosh C. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J. 2010;427:69–78. PubMed PMC
Jin J., Smith F.D., Pawson T. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr. Biol. 2004;14:1436–1450. PubMed
Obsil T., Obsilova V. Structural basis of 14-3-3 protein functions. Semin. Cell Dev. Biol. 2011;22:663–672. PubMed
Yang X., Lee W.H., Elkins J.M. Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA. 2006;103:17237–17242. PubMed PMC
Gardino A.K. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the x-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 2006;16:173–182. PubMed
Yaffe M.B., Rittinger K., Cantley L.C. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell. 1997;91:961–971. PubMed
Ganguly S., Weller J.L., Klein D.C. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine n-acetyltransferase mediated by phosphoserine-205. Proc. Natl. Acad. Sci. USA. 2005;102:1222–1227. PubMed PMC
Aitken A. 14-3-3 proteins: a historical overview. Semin. Cancer Biol. 2006;16:162–172. PubMed
Ichimura T., Isobe T., Fujisawa H. Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+ calmodulin-dependent protein kinase II. FEBS Lett. 1987;219:79–82. PubMed
Nagatsu T., Levitt M., Udenfriend S. Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J. Biol. Chem. 1964;239:2910–2917. PubMed
Grima B., Lamouroux A., Mallet J. A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics. Nature. 1987;326:707–711. PubMed
Kaneda N., Kobayashi K., Nagatsu T. Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene. Biochem. Biophys. Res. Commun. 1987;146:971–975. PubMed
Fitzpatrick P.F. Tetrahydropterin-dependent amino acid hydroxylases. Annu. Rev. Biochem. 1999;68:355–381. PubMed
Daubner S.C., Le T., Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 2011;508:1–12. PubMed PMC
Kleppe R., Toska K., Haavik J. Interaction of phosphorylated tyrosine hydroxylase with 14-3-3 proteins: evidence for a phosphoserine 40-dependent association. J. Neurochem. 2001;77:1097–1107. PubMed
Obsilova V., Nedbalkova E., Obsil T. The 14-3-3 protein affects the conformation of the regulatory domain of human tyrosine hydroxylase. Biochemistry. 2008;47:1768–1777. PubMed
Itagaki C., Isobe T., Ichimura T. Stimulus-coupled interaction of tyrosine hydroxylase with 14-3-3 proteins. Biochemistry. 1999;38:15673–15680. PubMed
Skjevik A.A., Mileni M., Martinez A. The N-terminal sequence of tyrosine hydroxylase is a conformationally versatile motif that binds 14-3-3 proteins and membranes. J. Mol. Biol. 2013;426:150–168. PubMed PMC
Kleppe R., Rosati S., Martinez A. Phosphorylation dependence and stoichiometry of the complex formed by tyrosine hydroxylase and 14-3-3γ. Mol. Cell. Proteomics. 2014;13:2017–2030. PubMed PMC
Yaffe M.B. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 2002;513:53–57. PubMed
Kleppe R., Ghorbani S., Haavik J. Modeling cellular signal communication mediated by phosphorylation dependent interaction with 14-3-3 proteins. FEBS Lett. 2014;588:92–98. PubMed
Lian L.Y., Roberts G.C.K. Effects of chemical exchange on NMR spectra. In: Robert R.C.K., editor. NMR of Macromolecules. A Practical Approach. IRL Press; Oxford, United Kingdom: 1993. pp. 153–182.
Bain A.D. Chemical exchange in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2003;43:63–103.
Kostelecky B., Saurin A.T., McDonald N.Q. Recognition of an intra-chain tandem 14-3-3 binding site within PKCε. EMBO Rep. 2009;10:983–989. PubMed PMC
Molzan M., Ottmann C. Synergistic binding of the phosphorylated S233-and S259-binding sites of C-RAF to one 14-3-3 ζ-dimer. J. Mol. Biol. 2012;423:486–495. PubMed
Phosphorylated and Phosphomimicking Variants May Differ-A Case Study of 14-3-3 Protein
Free energy calculations on the stability of the 14-3-3ζ protein