Characterization of multiple binding sites on microtubule associated protein 2c recognized by dimeric and monomeric 14-3-3ζ

. 2025 Apr ; 292 (8) : 1991-2016. [epub] 20250129

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39877981

Grantová podpora
20-12669S Grantová Agentura České Republiky
GF20-05789L Grantová Agentura České Republiky
101087124 HORIZON EUROPE Widening Participation and Strengthening the European Research Area
873127 H2020 Marie Skłodowska-Curie Actions
LM2023042 Ministry of Education, Youth and Sports, Czech Republic Infrastructure Project
CZ.02.01.01/00/23_015/0008175 Innovation of Czech Infrastructure for Integrative Structural Biology

Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain. Monomerization of 14-3-3ζ leads to the loss of affinity for the unphosphorylated residues. In neuroblastoma cell extract, MAP2c is heavily phosphorylated by PKA and the proline kinase ERK2. Although 14-3-3ζ dimer or monomer do not interact with the residues phosphorylated by ERK2, ERK2 phosphorylation of MAP2c in the C-terminal domain reduces the binding of MAP2c to both oligomeric variants of 14-3-3ζ.

Zobrazit více v PubMed

Gamblin TC, Nachmanoff K, Halpain S & Williams RC (1996) Recombinant microtubule‐associated protein 2c reduces the dynamic instability of individual microtubules. Biochemistry 35, 12576–12586. PubMed

Jalava NS, Lopez‐Picon FR, Kukko‐Lukjanov TK & Holopainen IE (2007) Changes in microtubule‐associated protein‐2 (MAP2) expression during development and after status epilepticus in the immature rat hippocampus. Int J Dev Neurosci 25, 121–131. PubMed

Dunker AK, Obradovic Z, Romero P, Garner EC & Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11, 161–171. PubMed

Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z & Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9, S1. PubMed PMC

Dyson HJ & Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6, 197–208. PubMed

Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579, 3346–3354. PubMed

Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15, 35–41. PubMed

Dehmelt L & Halpain S (2005) The MAP2/Tau family of microtubule‐associated proteins. Genome Biol 6, 204. PubMed PMC

Melkova K, Zapletal V, Narasimhan S, Jansen S, Hritz J, Skrabana R, Zweckstetter M, Jensen MR, Blackledge M & Zidek L (2019) Structure and functions of microtubule associated proteins tau and map2c: similarities and differences. Biomolecules 9, 105. PubMed PMC

Viereck C, Tucker RP & Matus A (1989) The adult rat olfactory system expresses microtubule‐associated proteins found in the developing brain. J Neurosci 9, 3547–3557. PubMed PMC

Diaz‐Nido J, Serrano L, Hernandez MA & Avila J (1990) Phosphorylation of microtubule proteins in rat brain at different developmental stages: comparison with that found in neuronal cultures. J Neurochem 54, 211–222. PubMed

Sánchez C, Diaz‐Nido J & Avila J (2000) Phosphorylation of microtubule‐associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61, 133–168. PubMed

Plucarová J, Jansen S, Narasimhan S, Laníková A, Lewitzky M, Feller SM & Žídek L (2022) Specific phosphorylation of microtubule‐associated protein 2c by extracellular signal‐regulated kinase reduces interactions at its Pro‐rich regions. J Biol Chem 298, 102384. PubMed PMC

Vallee R (1980) Structure and phosphorylation of microtubule‐associated protein 2 (MAP2). Proc Natl Acad Sci USA 77, 3206–3210. PubMed PMC

Yamauchi T & Fujisawa H (1983) Disassembly of microtubules by the action of calmodulin‐dependent protein kinase (kinase II) which occurs only in the brain tissues. Biochem Biophys Res Commun 110, 287–291. PubMed

Burns RG, Islam K & Chapman R (1984) The multiple phosphorylation of the microtubule‐associated protein MAP2 controls the MAP2:tubulin interaction. Eur J Biochem 141, 609–615. PubMed

Hoshi M, Akiyama T, Shinohara Y, Miyata Y, Ogawara H, Nishida E & Sakai H (1988) Protein‐kinase‐C‐catalyzed phosphorylation of the microtubule‐binding domain of microtubule‐associated protein 2 inhibits its ability to induce tubulin polymerization. Eur J Biochem 174, 225–230. PubMed

Ainsztein AM & Purich DL (1994) Stimulation of tubulin polymerization by MAP‐2 control by protein kinase C‐mediated phosphorylation at specific sites in the microtubule‐binding region. J Biol Chem 269, 28465–28471. PubMed

Illenberger S, Drewes G, Trinczek B, Biernat J, Meyer HE, Olmsted JB, Mandelkow EM & Mandelkow E (1996) Phosphorylation of microtubule‐associated proteins MAP2 and MAP4 by the protein kinase p110mark. Phosphorylation sites and regulation of microtubule dynamics. J Biol Chem 271, 10834–10843. PubMed

Valencia R, Walko G, Janda L, Novaček J, Mihailovska E, Reipert S, Andrä‐Marobela K & Wiche G (2013) Intermediate filament‐associated cytolinker plectin 1c destabilizes microtubules in keratinocytes. Mol Biol Cell 24, 768–784. PubMed PMC

Jansen S, Melková K, Trošanová Z, Hanáková K, Zachrdla M, Nováček J, Župa E, Zdráhal Z, Hritz J & Žídek L (2017) Quantitative mapping of microtubule‐associated protein 2c (MAP2c) phosphorylation and regulatory protein 14‐3‐3ζ‐binding sites reveals key differences between MAP2c and its homolog Tau. J Biol Chem 292, 6715–6727. PubMed PMC

Melková K, Zapletal V, Jansen S, Nomilner E, Zachrdla M, Hritz J, Nováček J, Zweckstetter M, Jensen MR, Blackledge M et al. (2018) Functionally specific binding regions of microtubule‐associated protein 2c exhibit distinct conformations and dynamics. J Biol Chem 293, 13297–13309. PubMed PMC

Aitken A, Collinge DB, van Heusden BP, Isobe T, Roseboom PH, Rosenfeld G & Soll J (1992) 14‐3‐3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci 17, 498–501. PubMed

Skoulakis EM & Davis RL (1998) 14‐3‐3 proteins in neuronal development and function. Mol Neurobiol 16, 269–284. PubMed

Hashiguchi M, Sobue K & Paudel HK (2000) 14‐3‐3ζ is an effector of tau protein phosphorylation. J Biol Chem 275, 25247–25254. PubMed

Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ & Cantley LC (1997) The structural basis for 14‐3‐3:phosphopeptide binding specificity. Cell 91, 961–971. PubMed

Muslin AJ, Tanner JW, Allen PM & Shaw AS (1996) Interaction of 14‐3‐3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897. PubMed

Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ & Yaffe MB (1999) Structural analysis of 14‐3‐3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14‐3‐3 in ligand binding. Mol Cell 4, 153–166. PubMed

Coblitz B, Shikano S, Wu M, Gabelli SB, Cockrell LM, Spieker M, Hanyu Y, Fu H, Amzel LM & Li M (2005) C‐terminal recognition by 14‐3‐3 proteins for surface expression of membrane receptors. J Biol Chem 280, 36263–36272. PubMed

Nagy G, Oostenbrink C & Hritz J (2017) Exploring the binding pathways of the 14‐3‐3ζ protein: structural and free‐energy profiles revealed by Hamiltonian replica exchange molecular dynamics with distancefield distance restraints. PLoS One 12, 1–30. PubMed PMC

Masters SC, Pederson KJ, Zhang L, Barbieri JT & Fu H (1999) Interaction of 14‐3‐3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa . Biochemistry 38, 5216–5221. PubMed

Xiao B, Smerdon SJ, Jones DH, Dodson GG, Soneji Y, Aitken A & Gamblin SJ (1995) Structure of a 14‐3‐3 protein and implications for coordination of multiple signalling pathways. Nature 376, 188–191. PubMed

Liu D, Bienkowska J, Petosa C, Collier RJ, Fu H & Liddington R (1995) Crystal structure of the zeta isoform of the 14‐3‐3 protein. Nature 376, 191–194. PubMed

Yang X, Lee WH, Sobott F, Papagrigoriou E, Robinson CV, Grossmann JG, Sundström M, Doyle DA & Elkins JM (2006) Structural basis for protein–protein interactions in the 14‐3‐3 protein family. Proc Natl Acad Sci USA 103, 17237–17242. PubMed PMC

Liu F, Grundke‐Iqbal I, Iqbal K & Gong C‐X (2005) Contributions of protein phosphatases pp1, pp2a, pp2b and pp5 to the regulation of tau phosphorylation. Eur J Neurosci 22, 1942–1950. PubMed

Liu J‐Y, Li Z, Li H & Zhang J‐T (2011) Critical residue that promotes protein dimerization: a story of partially exposed Phe25 in 14‐3‐3σ . J Chem Inf Model 51, 2612–2625. PubMed PMC

Gu Y‐M, Jin Y‐H, Choi J‐K, Baek K‐H, Yeo C‐Y & Lee K‐Y (2006) Protein kinase A phosphorylates and regulates dimerization of 14‐3‐3 epsilon. FEBS Lett 580, 305–310. PubMed

Powell DW, Rane MJ, Chen Q, Singh S & McLeish KR (2002) Identification of 14‐3‐3zeta as a protein kinase B/Akt substrate. J Biol Chem 277, 21639–21642. PubMed

Gerst F, Kaiser G, Panse M, Sartorius T, Pujol A, Hennige AM, Machicao F, Lammers R, Bosch F, Häring H‐U et al. (2015) Protein kinase Cδ regulates nuclear export of FOXO1 through phosphorylation of the chaperone 14‐3‐3ζ . Diabetologia 58, 2819–2831. PubMed

Kim YS, Choi MY, Kim YH, Jeon BT, Lee DH, Roh GS, Kang SS, Kim HJ, Cho GJ & Choi WS (2010) Protein kinase Cdelta is associated with 14‐3‐3 phosphorylation in seizure‐induced neuronal death. Epilepsy Res 92, 30–40. PubMed

Trošanová Z, Louša P, Kozeleková A, Brom T, Gašparik N, Tungli J, Weisová V, Župa E, Žoldák G & Hritz J (2022) Quantitation of human 14‐3‐3ζ dimerization and the effect of phosphorylation on dimer‐monomer equilibria. J Mol Biol 434, 167479. PubMed

Kozelekova A, Naplavova A, Brom T, Gasparik N, Simek J, Houser J & Hritz J (2022) Phosphorylated and phosphomimicking variants may differ – a case study of 14‐3‐3 protein. Front Chem 10, 835733. PubMed PMC

Kanno T & Nishizaki T (2011) Sphingosine induces apoptosis in hippocampal neurons and astrocytes by activating caspase‐3/‐9 via a mitochondrial pathway linked to sdk/14‐3‐3 protein/bax/cytochrome c. J Cell Physiol 226, 2329–2337. PubMed

Zhou J, Shao Z, Kerkela R, Ichijo H, Muslin AJ, Pombo C & Force T (2009) Serine 58 of 14‐3‐3zeta is a molecular switch regulating ask1 and oxidant stress‐induced cell death. Mol Cell Biol 29, 4167–4176. PubMed PMC

Kaplan A, Morquette B, Kroner A, Leong S, Madwar C, Sanz R, Banerjee SL, Antel J, Bisson N, David S et al. (2017) Small‐molecule stabilization of 14‐3‐3 protein–protein interactions stimulates axon regeneration. Neuron 93, 1082–1093.e5. PubMed

McFerrin MB, Chi X, Cutter G & Yacoubian TA (2017) Dysregulation of 14‐3‐3 proteins in neurodegenerative diseases with Lewy body or Alzheimer pathology. Ann Clin Transl Neurol 4, 466–477. PubMed PMC

Slone SR, Lavalley N, McFerrin M, Wang B & Yacoubian TA (2015) Increased 14‐3‐3 phosphorylation observed in Parkinson's disease reduces neuroprotective potential of 14‐3‐3 proteins. Neurobiol Dis 79, 1–13. PubMed PMC

Jandova Z, Trosanova Z, Weisova V, Oostenbrink C & Hritz J (2018) Free energy calculations on the stability of the 14‐3‐3ζ protein. Biochim Biophys Acta Proteins Proteom 1866, 442–450. PubMed PMC

Parcerisas A, Pujadas L, Ortega‐Gascó A, Perelló‐Amorós B, Viais R, Hino K, Figueiro‐Silva J, La Torre A, Trullás R, Simó S et al. (2020) NCAM2 regulates dendritic and axonal differentiation through the cytoskeletal proteins MAP2 and 14‐3‐3. Cereb Cortex 30, 3781–3799. PubMed PMC

Sadik G, Tanaka T, Kato K, Yamamori H, Nessa BN, Morihara T & Takeda M (2015) Phosphorylation of tau at Ser214 mediates its interaction with 14‐3‐3 protein: implications for the mechanism of tau aggregation. J Neurochem 108, 33–43. PubMed

Joo Y, Schumacher B, Landrieu I, Bartel M, Smet‐Nocca C, Jang A, Choi HS, Jeon NL, Chang KA, Kim HS et al. (2015) Involvement of 14‐3‐3 in tubulin instability and impaired axon development is mediated by Tau. FASEB J 29, 4133–4144. PubMed

Neves JF, Petrvalská O, Bosica F, Cantrelle F‐X, Merzougui H, O'Mahony G, Hanoulle X, Obšil T & Landrieu I (2021) Phosphorylated full‐length Tau interacts with 14‐3‐3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14‐3‐3 dimer. FEBS J 288, 1918–1934. PubMed

Sluchanko NN, Sudnitsyna MV, Chernik IS, Seit‐Nebi AS & Gusev NB (2011) Phosphomimicking mutations of human 14‐3‐3ζ affect its interaction with tau protein and small heat shock protein HspB6. Arch Biochem Biophys 506, 24–34. PubMed

Sluchanko NN, Sudnitsyna MV, Seit‐Nebi AS, Antson AA & Gusev NB (2011) Properties of the monomeric form of human 14‐3‐3ζ protein and its interaction with tau and HspB6. Biochemistry 50, 9797–9808. PubMed

Crha R, Kozeleková A, Hofrová A, Il'kovičová L, Gašparik N, Kadeřá'vek P & Hritz J (2024) Hiding in plain sight: complex interaction patterns between tau and 14‐3‐3ζ protein variants. Int J Biol Macromol 266, 130802. PubMed

Wille H, Mandelkow EM & Mandelkow E (1992) The juvenile microtubule‐associated protein MAP2c is a rod‐like molecule that forms antiparallel dimers. J Biol Chem 267, 10737–10742. PubMed

Molzan M, Schumacher B, Ottmann C, Baljuls A, Polzien L, Weyand M, Thiel P, Rose R, Rose M, Kuhenne P et al. (2010) Impaired binding of 14‐3‐3 to C‐RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol Cell Biol 30, 4698–4711. PubMed PMC

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J et al. (2024) Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 630, 493–500. PubMed PMC

Johnson C, Crowther S, Stafford MJ, Campbell DG, Toth R & MacKintosh C (2010) Bioinformatic and experimental survey of 14‐3‐3‐binding sites. Biochem J 427, 69–78. PubMed PMC

Gogl G, Tugaeva KV, Eberling P, Kostmann C, Trave G & Sluchanko NN (2021) Hierarchized phosphotarget binding by the seven human 14‐3‐3 isoforms. Nat Commun 12, 1677. PubMed PMC

Wang M, Herrmann CJ, Simonovic M, Szklarczyk D & von Mering C (2015) Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell‐lines. Proteomics 15, 3163–3168. PubMed PMC

Boston PF, Jackson P & Thompson RJ (1982) Human 14‐3‐3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. J Neurochem 38, 1475–1482. PubMed

Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11, 114–119. PubMed

Hallberg B (2002) Exoenzyme S binds its cofactor 14‐3‐3 through a non‐phosphorylated motif. Biochem Soc Trans 30, 401–405. PubMed

Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H & Liddington RC (1998) 14‐3‐3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273, 16305–16310. PubMed

Glas A, Bier D, Hahne G, Rademacher C, Ottmann C & Grossmann TN (2014) Constrained peptides with target‐adapted cross‐links as inhibitors of a pathogenic protein–protein interaction. Angew Chem Int Ed 53, 2489–2493. PubMed

Toleman CA, Schumacher MA, Yu S‐H, Zeng W, Cox NJ, Smith TJ, Soderblom EJ, Wands AM, Kohler JJ & Boyce M (2018) Structural basis of O‐GlcNAc recognition by mammalian 14‐3‐3 proteins. Proc Natl Acad Sci USA 115, 5956–5961. PubMed PMC

Hritz J, Byeon IJ, Krzysiak T, Martinez A, Sklenar V & Gronenborn AM (2014) Dissection of binding between a phosphorylated tyrosine hydroxylase peptide and 14‐3‐3zeta: a complex story elucidated by NMR. Biophys J 107, 2185–2194. PubMed PMC

Gómez‐Ramos A, Díaz‐Hernández M, Rubio A, Miras‐Portugal MT & Avila J (2008) Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol Cell Neurosci 37, 673–681. PubMed

DeGiosio RA, Needham PG, Andrews OA, Tristan H, Grubisha MJ, Brodsky JL, Camacho C & Sweet RA (2023) Differential regulation of MAP2 by phosphorylation events in proline‐rich versus C‐terminal domains. FASEB J 37, e23194. PubMed PMC

Grubisha MJ, Sun X, MacDonald ML, Garver M, Sun Z, Paris KA, Patel DS, DeGiosio RA, Lewis DA, Yates N et al. (2021) Map2 is differentially phosphorylated in schizophrenia, altering its function. Mol Psychiatry 26, 5371–5388. PubMed PMC

Cheah PS, Ramshaw HS, Thomas PQ, Toyo‐Oka K, Xu X, Martin S, Coyle P, Guthridge MA, Stomski F, van den Buuse M et al. (2012) Neurodevelopmental and neuropsychiatric behaviour defects arise from 14‐3‐3ζ deficiency. Mol Psychiatry 17, 451–466. PubMed

Woodcock JM, Murphy J, Stomski FC, Berndt MC & Lopez AF (2003) The dimeric versus monomeric status of 14‐3‐3zeta is controlled by phosphorylation of Ser58 at the dimer interface. J Biol Chem 278, 36323–36327. PubMed

Sluchanko NN & Gusev NB (2012) Oligomeric structure of 14‐3‐3 protein: what do we know about monomers? FEBS Lett 586, 4249–4256. PubMed

Nováček J, Janda L, Dopitová R, Žídek L & Sklenář V (2013) Efficient protocol for backbone and side‐chain assignments of large, intrinsically disordered proteins: transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J Biomol NMR 56, 291–301. PubMed

Qi H, Despres C, Prabakaran S, Cantrelle F‐X, Chambraud B, Gunawar‐dena J, Lippens G, Smet‐Nocca C & Landrieu I (2017) The study of posttranslational modifications of tau protein by nuclear magnetic resonance spectroscopy: phosphorylation of tau protein by erk2 recombinant kinase and rat brain extract, and acetylation by recombinant creb‐binding protein. In Tau Protein (Smet CN, ed.), pp. 179–213. Springer, New York, NY. PubMed

Bodenhausen G & Ruben DJ (1980) Natural abundance nitrogen‐15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69, 185–189.

Sklenar V, Piotto M, Leppik R & Saudek V (1993) Gradient‐tailored water suppression for 1H‐15N HSQC experiments optimized to retain full sensitivity. J Magn Reson 102, 241–245.

Kazimierczuk K, Zawadzka A & Kózmiński W (2008) Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 192, 123–130. PubMed

Kay LE, Ikura M, Tschudin R & Bax A (1990) Three‐dimensional triple‐resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89, 496–514. PubMed

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J & Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277–293. PubMed

Stanek J & Kózmińki W (2010) Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets. J Biomol NMR 47, 65–77. PubMed

Nardi‐Schreiber A, Sapir G, Gamliel A, Kakhlon O, Sosna J, Gomori JM, Meiner V, Lossos A & Katz‐Brull R (2017) Defective ATP breakdown activity related to an ENTPD1 gene mutation demonstrated using 31P NMR spectroscopy. Chem Commun 53, 9121–9124. PubMed

Kabsch W (2010) XDS. Acta Crystallogr D 66, 125–132. PubMed PMC

Evans PR & Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D 69, 1204–1214. PubMed PMC

Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A et al. (2011) Overview of the ccp4 suite and current developments. Acta Crystallogr D 67, 235–242. PubMed PMC

Vagin A & Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D 66, 22–25. PubMed

Murshudov G, Skubak P, Lebedev A, Pannu N, Steiner R, Nicholls R, Winn M, Long F & Vaguin A (2011) Refmac5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67, 355–367. PubMed PMC

Emsley P, Lohkamp B, Scott WG & Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66, 486–501. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...