Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
30884818
PubMed Central
PMC6468450
DOI
10.3390/biom9030105
PII: biom9030105
Knihovny.cz E-zdroje
- Klíčová slova
- intrinsically disordered protein, microtubule associated protein, nuclear magnetic resonance, phosphorylation, tau,
- MeSH
- lidé MeSH
- mikrotubuly chemie metabolismus MeSH
- proteiny asociované s mikrotubuly chemie metabolismus MeSH
- proteiny tau chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- proteiny asociované s mikrotubuly MeSH
- proteiny tau MeSH
The stability and dynamics of cytoskeleton in brain nerve cells are regulated by microtubule associated proteins (MAPs), tau and MAP2. Both proteins are intrinsically disordered and involved in multiple molecular interactions important for normal physiology and pathology of chronic neurodegenerative diseases. Nuclear magnetic resonance and cryo-electron microscopy recently revealed propensities of MAPs to form transient local structures and long-range contacts in the free state, and conformations adopted in complexes with microtubules and filamentous actin, as well as in pathological aggregates. In this paper, we compare the longest, 441-residue brain isoform of tau (tau40), and a 467-residue isoform of MAP2, known as MAP2c. For both molecules, we present transient structural motifs revealed by conformational analysis of experimental data obtained for free soluble forms of the proteins. We show that many of the short sequence motifs that exhibit transient structural features are linked to functional properties, manifested by specific interactions. The transient structural motifs can be therefore classified as molecular recognition elements of tau40 and MAP2c. Their interactions are further regulated by post-translational modifications, in particular phosphorylation. The structure-function analysis also explains differences between biological activities of tau40 and MAP2c.
Axon Neuroscience R and D Services SE Dvořákovo nábrežie 10 811 02 Bratislava Slovakia
Central European Institute of Technology Masaryk University Kamenice 5 625 00 Brno Czech Republic
German Center for Neurodegenerative Diseases Von Siebold Str 3a 37075 Göttingen Germany
Institute of Neuroimmunology Slovak Academy of Sciences Dúbravská cesta 9 845 10 Bratislava Slovakia
Zobrazit více v PubMed
Amos L.A., Schlieper D. Microtubules and MAPs. Adv. Protein Chem. 2005;71:257–298. PubMed
Dehmelt L., Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 2004;6:204. doi: 10.1186/gb-2004-6-1-204. PubMed DOI PMC
Arendt T., Stieler J.T., Holzer M. Tau and tauopathies. Brain Res. Bull. 2016;126:238–292. doi: 10.1016/j.brainresbull.2016.08.018. PubMed DOI
Caillet-Boudin M.L., Buée L., Sergeant N., Lefebvre B. Regulation of human MAPT gene expression. Mol. Neurodegener. 2015;10:28. doi: 10.1186/s13024-015-0025-8. PubMed DOI PMC
Sánchez C., Díaz-Nido J., Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog. Neurobiol. 2000;61:133–168. doi: 10.1016/S0301-0082(99)00046-5. PubMed DOI
Kanai Y., Hirokawa N. Sorting mechanisms of Tau and MAP2 in neurons: Suppressed axonal transit of MAP2 and locally regulated microtubule binding. Neuron. 1995;14:421–432. doi: 10.1016/0896-6273(95)90298-8. PubMed DOI
Chen J., Kanai Y., Cowan N.J., Hirokawa N. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature. 1992;360:674–677. doi: 10.1038/360674a0. PubMed DOI
Rosenberg K.J., Ross J.L., Feinstein H.E., Feinstein S.C., Israelachvili J. Complementary dimerization of microtubule-associated tau protein: Implications for microtubule bundling and tau-mediated pathogenesis. Proc. Natl. Acad. Sci. USA. 2008;105:7445–7450. doi: 10.1073/pnas.0802036105. PubMed DOI PMC
Chung P.J., Choi M.C., Miller H.P., Feinstein H.E., Raviv U., Li Y., Wilson L., Feinstein S.C., Safinya C.R. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules. Proc. Natl. Acad. Sci. USA. 2015;112:E6416–E6425. doi: 10.1073/pnas.1513172112. PubMed DOI PMC
Cabrales Fontela Y., Kadavath H., Biernat J., Riedel D., Mandelkow E., Zweckstetter M. Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau. Nat. Commun. 2017;8:1981. doi: 10.1038/s41467-017-02230-8. PubMed DOI PMC
Elie A., Prezel E., Guérin C., Denarier E., Ramirez-Rios S., Serre L., Andrieux A., Fourest-Lieuvin A., Blanchoin L., Arnal I. Tau co-organizes dynamic microtubule and actin networks. Sci. Rep. 2015;5:9964. doi: 10.1038/srep09964. PubMed DOI PMC
Goode B.L., Chau M., Denis P.E., Feinstein S.C. Structural and functional differences between 3-repeat and 4-repeat tau isoforms: Implications for normal tau function and the onset of neurodegenerative disease. J. Biol. Chem. 2000;275:38182–38189. doi: 10.1074/jbc.M007489200. PubMed DOI
Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Ohshima T., Sato-Yoshitake R., Takei Y., Noda T., Hirokawa N. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature. 1994;369:488–491. doi: 10.1038/369488a0. PubMed DOI
Teng J., Takei Y., Harada A., Nakata T., Chen J., Hirokawa N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J. Cell Biol. 2001;155:65–76. doi: 10.1083/jcb.200106025. PubMed DOI PMC
Takei Y., Teng J., Harada A., Hirokawa N. Defects in Axonal Elongation and Neuronal Migration in Mice with Disrupted tau and map1b Genes. J. Cell Biol. 2000;150:989–1000. doi: 10.1083/jcb.150.5.989. PubMed DOI PMC
Mukaetova-Ladinska E.B., Xuereb J.H., Garcia-Sierra F., Hurt J., Gertz H.J., Hills R., Brayne C., Huppert F.A., Paykel E.S., McGee M.A., et al. Lewy body variant of Alzheimer’s disease: Selective neocortical loss of t-SNARE proteins and loss of MAP2 and α-Synuclein in medial temporal lobe. Sci. World J. 2009;9:1463–1475. doi: 10.1100/tsw.2009.151. PubMed DOI PMC
D’Andrea M.R., Ilyin S., Plata-Salaman C.R. Abnormal patterns of microtubule-associated protein-2 (MAP-2) immunolabeling in neuronal nuclei and Lewy bodies in Parkinson’s disease substantia nigra brain tissues. Neurosci. Lett. 2001;306:137–140. doi: 10.1016/S0304-3940(01)01811-0. PubMed DOI
Cabrera J.R., Lucas J.J. MAP2 Splicing is Altered in Huntington’s Disease. Brain Pathol. 2016;27:181–189. doi: 10.1111/bpa.12387. PubMed DOI PMC
Bianchi M., Baulieu E.E. 3β-Methoxy-pregnenolone (MAP4343) as an innovative therapeutic approach for depressive disorders. Proc. Natl. Acad. Sci. USA. 2012;109:1713–1718. doi: 10.1073/pnas.1121485109. PubMed DOI PMC
Goedert M. Tau filaments in neurodegenerative diseases. FEBS Lett. 2018;592:2383–2391. doi: 10.1002/1873-3468.13108. PubMed DOI
Congdon E.E., Sigurdsson E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018;14:399–415. doi: 10.1038/s41582-018-0013-z. PubMed DOI PMC
Novak P., Cehlar O., Skrabana R., Novak M. Tau Conformation as a Target for Disease-Modifying Therapy: The Role of Truncation. J. Alzheimers Dis. 2018;64:S535–S546. doi: 10.3233/JAD-179942. PubMed DOI
Jadhav S., Avila J., Schöll M., Kovacs G.G., Kövari E., Skrabana R., Evans L.D., Kontsekova E., Malawska B., de Silva R., et al. A walk through tau therapeutic strategies. Acta Neuropathol. Commun. 2019;7:22. doi: 10.1186/s40478-019-0664-z. PubMed DOI PMC
Fitzpatrick A.W.P., Falcon B., He S., Murzin A.G., Murshudov G., Garringer H.J., Crowther R.A., Ghetti B., Goedert M., Scheres S.H.W. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 2017;547:185–190. doi: 10.1038/nature23002. PubMed DOI PMC
DeTure M.A., Di Noto L., Purich D.L. In vitro assembly of Alzheimer-like filaments: How a small cluster of charged residues in Tau and MAP2 controls filament morphology. J. Biol. Chem. 2002;277:34755–34759. doi: 10.1074/jbc.M201201200. PubMed DOI
Xie C., Soeda Y., Shinzaki Y., In Y., Tomoo K., Ihara Y., Miyasaka T. Identification of key amino acids responsible for the distinct aggregation properties of microtubule-associated protein 2 and tau. J. Neurochem. 2015;135:19–26. doi: 10.1111/jnc.13228. PubMed DOI PMC
Wang Y., Mandelkow E. Tau in physiology and pathology. Nat. Rev. Nerocsi. 2016;17:5–21. doi: 10.1038/nrn.2015.1. PubMed DOI
Sánchez C., Pérez M., Avila J. GSK3β-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. Eur. J. Cell Biol. 2000;79:252–260. doi: 10.1078/S0171-9335(04)70028-X. PubMed DOI
Fischer D., Mukrasch M.D., Biernat J., Bibow S., Blackledge M., Griesinger C., Mandelkow E., Zweckstetter M. Conformational Changes Specific for Pseudophosphorylation at Serine 262 Selectively Impair Binding of Tau to Microtubules. Biochemistry. 2009;48:10047–10055. doi: 10.1021/bi901090m. PubMed DOI
Schwalbe M., Biernat J., Bibow S., Ozenne V., Jensen M.R., Kadavath H., Blackledge M., Mandelkow E., Zweckstetter M. Phosphorylation of human tau protein by microtubule affinity-regulating kinase 2. Biochemistry. 2013;52:9068–9079. doi: 10.1021/bi401266n. PubMed DOI
Schwalbe M., Kadavath H., Biernat J., Ozenne V., Blackledge M., Mandelkow E., Zweckstetter M. Structural Impact of Tau Phosphorylation at Threonine 231. Structure. 2015;23:1448–1458. doi: 10.1016/j.str.2015.06.002. PubMed DOI
Tholey A., Lindemann A., Kinzel V., Reed J. Direct effects of phosphorylation on the preferred backbone conformation of peptides: A nuclear magnetic resonance study. Biophys. J. 1999;76:76–87. doi: 10.1016/S0006-3495(99)77179-1. PubMed DOI PMC
Newberry R.W., Raines R.T. The n→π* Interaction. Acc. Chem. Res. 2017;50:1838–1846. doi: 10.1021/acs.accounts.7b00121. PubMed DOI PMC
Bielska A.A., Zondlo N.J. Hyperphosphorylation of Tau Induces Local Polyproline II Helix. Biochemistry. 2006;45:5527–5537. doi: 10.1021/bi052662c. PubMed DOI
Martin L., Latypova X., Wilson C.M., Magnaudeix A., Perrin M.L., Yardin C., Terro F. Tau protein kinases: Involvement in Alzheimer’s disease. Ageing Res. Rev. 2013;12:289–309. doi: 10.1016/j.arr.2012.06.003. PubMed DOI
Lebouvier T., Scales T.M.E., Williamson R., Noble W., Duyckaerts C., Hanger D.P., Reynolds C.H., Anderton B.H., Derkinderen P. The Microtubule-Associated Protein Tau is Also Phosphorylated on Tyrosine. J. Alzheimers Dis. 2009;18:1–9. doi: 10.3233/JAD-2009-1116. PubMed DOI
Tremblay M.A., Acker C.M., Davies P. Tau phosphorylated at tyrosine 394 is found in Alzheimer’s disease tangles and can be a product of the abl-related kinase, Arg. J. Alzheimers Dis. 2010;19:721–733. doi: 10.3233/JAD-2010-1271. PubMed DOI PMC
Mukrasch M.D., Bibow S., Korukottu J., Jeganathan S., Biernat J., Griesinger C., Mandelkow E., Zweckstetter M. Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol. 2009;7:e34. doi: 10.1371/journal.pbio.1000034. PubMed DOI PMC
Schwalbe M., Ozenne V., Bibow S., Jaremko M., Jaremko L., Gajda M., Jensen M.R., Biernat J., Becker S., Mandelkow E., et al. Predictive Atomic Resolution Descriptions of Intrinsically Disordered hTau40 and α-Synuclein in Solution from NMR and Small Angle Scattering. Structure. 2014;22:238–249. doi: 10.1016/j.str.2013.10.020. PubMed DOI
Jansen S., Melková K., Trošanová Z., Hanáková K., Zachrdla M., Nováček J., Župa E., Zdráhal Z., Hritz J., Žídek L. Quantitative mapping of microtubule-associated protein 2c (MAP2c) phosphorylation and regulatory protein 14-3-3ζ-binding sites reveals key differences between MAP2c and its homolog Tau. J. Biol. Chem. 2017;292:6715–6727. doi: 10.1074/jbc.M116.771097. PubMed DOI PMC
Kadavath H., Jaremko M., Jaremko Ł., Biernat J., Mandelkow E., Zweckstetter M. Folding of the Tau Protein on Microtubules. Angew. Chem. Int. Ed. 2015;54:10347–10351. doi: 10.1002/anie.201501714. PubMed DOI
Kadavath H., Hofele R.V., Biernat J., Kumar S., Tepper K., Urlaub H., Mandelkow E., Zweckstetter M. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc. Natl. Acad. Sci. USA. 2015;112:7501–7506. doi: 10.1073/pnas.1504081112. PubMed DOI PMC
Kellogg E.H., Hejab N.M.A., Poepsel S., Downing K.H., DiMaio F., Nogales E. Near-atomic model of microtubule-tau interactions. Science. 2018;360:1242–1246. doi: 10.1126/science.aat1780. PubMed DOI PMC
Bibow S., Mukrasch M.D., Chinnathambi S., Biernat J., Griesinger C., Mandelkow E., Zweckstetter M. The dynamic structure of filamentous Tau. Angew. Chem. Int. Ed. 2011;50:11520–11524. doi: 10.1002/anie.201105493. PubMed DOI
Sündermann F., Fernandez M.P., Morgan R.O. An evolutionary roadmap to the microtubule-associated protein MAP Tau. BMC Genom. 2016;17:264. doi: 10.1186/s12864-016-2590-9. PubMed DOI PMC
Smet C., Leroy A., Sillen A., Wieruszeski J.M., Landrieu I., Lippens G. Accepting its Random Coil Nature Allows a Partial NMR Assignment of the Neuronal Tau Protein. ChemBioChem. 2004;5:1639–1646. doi: 10.1002/cbic.200400145. PubMed DOI
Lippens G., Wieruszeski J.M., Leroy A., Smet C., Sillen A., Buée L., Landrieu I. Proline-Directed Random-Coil Chemical Shift Values as a Tool for the NMR Assignment of the Tau Phosphorylation Sites. ChemBioChem. 2004;5:73–78. doi: 10.1002/cbic.200300763. PubMed DOI
Mukrasch M.D., Biernat J., von Bergen M., Griesinger C., Mandelkow E., Zweckstetter M. Sites of tau important for aggregation populate β-structure and bind to microtubules and polyanions. J. Biol. Chem. 2005;280:24978–24986. doi: 10.1074/jbc.M501565200. PubMed DOI
Mukrasch M.D., von Bergen M., Biernat J., Fischer D., Griesinger C., Mandelkow E., Zweckstetter M. The “jaws” of the tau-microtubule interaction. J. Biol. Chem. 2007;282:12230–12239. doi: 10.1074/jbc.M607159200. PubMed DOI
Verdegem D., Dijkstra K., Hanoulle X., Lippens G. Graphical interpretation of Boolean operators for protein NMR assignments. J. Biomol. NMR. 2008;42:11–21. doi: 10.1007/s10858-008-9262-2. PubMed DOI
Sibille N., Hanoulle X., Fanny B., Dries V., Isabelle L., Jean-Michel W., Guy L. Selective backbone labelling of ILV methyl labelled proteins. J. Biomol. NMR. 2009;43:219–227. doi: 10.1007/s10858-009-9307-1. PubMed DOI
Lopez J., Ahuja P., Gerard M., Wieruszeski J.M., Lippens G. A new strategy for sequential assignment of intrinsically unstructured proteins based on 15N single isotope labelling. J. Magn. Reson. 2013;236:1–6. doi: 10.1016/j.jmr.2013.07.007. PubMed DOI
Narayanan R.L., Dürr U.H.N., Bibow S., Biernat J., Mandelkow E., Zweckstetter M. Automatic Assignment of the Intrinsically Disordered Protein Tau with 441-Residues. J. Am. Chem. Soc. 2010;132:11906–11907. doi: 10.1021/ja105657f. PubMed DOI
Harbison N.W., Bhattacharya S., Eliezer D. Assigning Backbone NMR Resonances for Full Length Tau Isoforms: Efficient Compromise between Manual Assignments and Reduced Dimensionality. PLoS ONE. 2012;7:e34679. doi: 10.1371/journal.pone.0034679. PubMed DOI PMC
Nováček J., Janda L., Dopitová R., Žídek L., Sklenář V. Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: Transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J. Biomol. NMR. 2013;56:291–301. doi: 10.1007/s10858-013-9761-7. PubMed DOI
Nodet G., Salmon L., Ozenne V., Meier S., Jensen M.R., Blackledge M. Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings. J. Am. Chem. Soc. 2009;131:17908–17918. doi: 10.1021/ja9069024. PubMed DOI
Melková K., Zapletal V., Jansen S., Nomilner E., Zachrdla M., Hritz J., Nováček J., Zweckstetter M., Jensen M.R., Blackledge M., et al. Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J. Biol. Chem. 2018;293:13297–13309. doi: 10.1074/jbc.RA118.001769. PubMed DOI PMC
Kovacech B., Skrabana R., Novak M. Transition of Tau Protein from Disordered to Misordered in Alzheimer’s Disease. Neurodegener. Dis. 2010;7:24–27. doi: 10.1159/000283478. PubMed DOI
Kontsekova E., Zilka N., Kovacech B., Skrabana R., Novak M. Identification of structural determinants on tau protein essential for its pathological function: Novel therapeutic target for tau immunotherapy in Alzheimer’s disease. Alzheimers Res. Ther. 2014;6:45. doi: 10.1186/alzrt277. PubMed DOI PMC
de Brevern A.G. Extension of the classical classification of β-turns. Sci. Rep. 2016;6:33191. doi: 10.1038/srep33191. PubMed DOI PMC
Kyte J., Doolittle R. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. PubMed DOI
Jeganathan S., von Bergen M., Brutlach H., Steinhoff H.J., Mandelkow E. Global hairpin folding of tau in solution. Biochemistry. 2006;45:2283–2293. doi: 10.1021/bi0521543. PubMed DOI
LaPointe N.E., Morfini G., Pigino G., Gaisina I.N., Kozikowski A.P., Binder L.I., Brady S.T. The amino terminus of tau inhibits kinesin-dependent axonal transport: Implications for filament toxicity. J. Neurosci. Res. 2009;87:440–451. doi: 10.1002/jnr.21850. PubMed DOI PMC
Kanaan N.M., Morfini G.A., LaPointe N.E., Pigino G.F., Patterson K.R., Song Y., Andreadis A., Fu Y., Brady S.T., Binder L.I. Pathogenic Forms of Tau Inhibit Kinesin-Dependent Axonal Transport through a Mechanism Involving Activation of Axonal Phosphotransferases. J. Neurosci. 2011;31:9858–9868. doi: 10.1523/JNEUROSCI.0560-11.2011. PubMed DOI PMC
Liao H., Li Y., Brautigan D.L., Gundersen G.G. Protein phosphatase 1 is targeted to microtubules by the microtubule- associated protein tau. J. Biol. Chem. 1998;273:21901–21908. doi: 10.1074/jbc.273.34.21901. PubMed DOI
Dente L., Vetriani C., Zucconi A., Pelicci G., Lanfrancone L., Pelicci P., Cesareni G. Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides. J. Mol. Biol. 1997;269:694–703. doi: 10.1006/jmbi.1997.1073. PubMed DOI
Lee G., Thangavel R., Sharma V.M., Litersky J.M., Bhaskar K., Fang S.M., Do L.H., Andreadis A., Van Hoesen G., Ksiezak-Reding H. Phosphorylation of Tau by Fyn: Implications for Alzheimers Disease. J. Neurosci. 2004;24:2304–2312. doi: 10.1523/JNEUROSCI.4162-03.2004. PubMed DOI PMC
Stern J.L., Lessard D.V., Hoeprich G.J., Morfini G.A., Berger C.L., Drubin D.G. Phosphoregulation of Tau modulates inhibition of kinesin-1 motility. Mol. Biol. Cell. 2017;28:1079–1087. doi: 10.1091/mbc.e16-10-0728. PubMed DOI PMC
Schroer T.A. Dynactin. Annu. Rev. Cell Dev. Biol. 2004;20:759–779. doi: 10.1146/annurev.cellbio.20.012103.094623. PubMed DOI
Carter A.P., Diamant A.G., Urnavicius L. How dynein and dynactin transport cargos: A structural perspective. Curr. Opin. Struct. Biol. 2016;37:62–70. doi: 10.1016/j.sbi.2015.12.003. PubMed DOI
Magnani E., Fan J., Gasparini L., Golding M., Williams M., Schiavo G., Goedert M., Amos L.A., Spillantini M.G. Interaction of tau protein with the dynactin complex. EMBO J. 2007;26:4546–4554. doi: 10.1038/sj.emboj.7601878. PubMed DOI PMC
Brandt R., Léger J., Lee G. Interaction of tau with the neural plasma membrane mediated by taus amino-terminal projection domain. J. Cell Biol. 1995;131:1327–1340. doi: 10.1083/jcb.131.5.1327. PubMed DOI PMC
Usardi A., Pooler A.M., Seereeram A., Reynolds C.H., Derkinderen P., Anderton B., Hanger D.P., Noble W., Williamson R. Tyrosine phosphorylation of tau regulates its interactions with Fyn SH2 domains, but not SH3 domains, altering the cellular localization of tau. FEBS J. 2011;278:2927–2937. doi: 10.1111/j.1742-4658.2011.08218.x. PubMed DOI
Hernandez P., Lee G., Sjoberg M., MacCioni R.B. Tau phosphorylation by cdk5 and Fyn in response to amyloid peptide Aβ25–35: Involvement of lipid rafts. J. Alzheimers Dis. 2009;16:149–156. doi: 10.3233/JAD-2009-0933. PubMed DOI
Baulieu E.E. Neurosteroids: Of the Nervous System, By the Nervous System, For the Nervous System. Recent Progr. Horm. Res. 1997;52:1–32. PubMed
Fontaine-Lenoir V., Chambraud B., Fellous A., David S., Duchossoy Y., Baulieu E.E., Robel P. Microtubule-associated protein 2 (MAP2) is a neurosteroid receptor. Proc. Natl. Acad. Sci. USA. 2006;103:4711–4716. doi: 10.1073/pnas.0600113103. PubMed DOI PMC
Laurine E., Lafitte D., Grégoire C., Sérée E., Loret E., Douillard S., Michel B., Briand C., Verdier J.M. Specific binding of dehydroepiandrosterone to the N terminus of the microtubule-associated protein MAP2. J. Biol. Chem. 2003;278:29979–29986. doi: 10.1074/jbc.M303242200. PubMed DOI
Mizota K., Ueda H. N-terminus of MAP2C as a neurosteroid-binding site. NeuroReport. 2008;19:1529–1533. doi: 10.1097/WNR.0b013e328310fe97. PubMed DOI
Götz F., Roske Y., Schulz M.S., Autenrieth K., Bertinetti D., Faelber K., Zühlke K., Kreuchwig A., Kennedy E.J., Krause G., et al. AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA. Biochem. J. 2016;473:1881–1894. doi: 10.1042/BCJ20160242. PubMed DOI PMC
Zamora-Leon S.P., Bresnick A., Backer J.M., Shafit-Zagardo B. Fyn phosphorylates human MAP-2c on tyrosine 67. J. Biol. Chem. 2005;280:1962–1970. doi: 10.1074/jbc.M411380200. PubMed DOI
Majumder P., Roy K., Singh B.K., Jana N.R., Mukhopadhyay D. Cellular levels of Grb2 and cytoskeleton stability are correlated in a neurodegenerative scenario. Dis. Models Mech. 2017;10:655–669. doi: 10.1242/dmm.027748. PubMed DOI PMC
Illenberger S., Zheng-Fischhöfer Q., Preuss U., Stamer K., Baumann K., Trinczek B., Biernat J., Godemann R., Mandelkow E.M., Mandelkow E. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: Implications for Alzheimer’s disease. Mol. Biol. Cell. 1998;9:1495–1512. doi: 10.1091/mbc.9.6.1495. PubMed DOI PMC
Hanger D.P., Byers H.L., Wray S., Leung K.Y., Saxton M.J., Seereeram A., Reynolds C.H., Ward M.A., Anderton B.H. Novel phosphorylation sites in Tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J. Biol. Chem. 2007;282:23645–23654. doi: 10.1074/jbc.M703269200. PubMed DOI
Qi H., Prabakaran S., Cantrelle F.X., Chambraud B., Gunawardena J., Lippens X.G., Landrieu I. Characterization of neuronal tau protein as a target of extracellular signal-regulated kinase. J. Biol. Chem. 2016;291:7742–7753. doi: 10.1074/jbc.M115.700914. PubMed DOI PMC
Feijoo C., Campbell D.G., Jakes R., Goedert M., Cuenda A. Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38δ at Thr50 promotes microtubule assembly. J. Cell Sci. 2005;118:397–408. doi: 10.1242/jcs.01655. PubMed DOI
Wray S., Saxton M., Anderton B., Hanger D. Direct analysis of tau from PSP brain identifies new phosphorylation sites and a major fragment of N-terminally cleaved tau containing four microtubule-binding repeats. J. Neurochem. 2008;105:2343–2352. doi: 10.1111/j.1471-4159.2008.05321.x. PubMed DOI
Derisbourg M., Leghay C., Chiappetta G., Fernandez-Gomez F.J., Laurent C., Demeyer D., Carrier S., Buée-Scherrer V., Blum D., Vinh J., et al. Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms. Sci. Rep. 2015;5:9659. doi: 10.1038/srep09659. PubMed DOI PMC
Zilka N., Kovacech B., Barath P., Kontsekova E., Novák M. The self-perpetuating tau truncation circle. Biochem. Soc. Trans. 2012;40:681–686. doi: 10.1042/BST20120015. PubMed DOI
Skrabana R., Kovacech B., Filipcik P., Zilka N., Jadhav S., Smolek T., Kontsekova E., Novak M., Deli M. Neuronal Expression of Truncated Tau Efficiently Promotes Neurodegeneration in Animal Models: Pitfalls of Toxic Oligomer Analysis. J. Alzheimers Dis. 2017;58:1017–1025. doi: 10.3233/JAD-161124. PubMed DOI
Berling B., Wille H., Roll B., Mandelkow E.M., Garner C., Mandelkow E. Phosphorylation of microtubule-associated proteins MAP2a,b and MAP2c at Ser136 by proline-directed kinases in vivo and in vitro. Eur. J. Cell Biol. 1994;64:120–130. PubMed
Philpot B.D., Lim J.H., Halpain S., Brunjes P.C. Experience-Dependent Modifications in MAP2 Phosphorylation in Rat Olfactory Bulb. J. Neurosci. 1997;17:9596–9604. doi: 10.1523/JNEUROSCI.17-24-09596.1997. PubMed DOI PMC
Woolf N., Zinnerman M., Johnson G. Hippocampal microtubule-associated protein-2 alterations with contextual memory. Brain Res. 1999;821:241–249. doi: 10.1016/S0006-8993(99)01064-1. PubMed DOI
Tie L., Zhang J.Z., Lin Y.H., Su T.H., Li Y.H., Wu H.L., Zhang Y.Y., Yu H.M., Li X.J. Epinephrine increases phosphorylation of MAP-2c in rat pheochromocytoma cells (PC12 Cells) via a protein kinase C- and mitogen activated protein kinase-dependent mechanism. J. Proteome. Res. 2008;7:1704–1711. doi: 10.1021/pr700711s. PubMed DOI
Alexa A., Schmidt G., Tompa P., Ogueta S., Vázquez J., Kulcsár P., Kovács J., Dombrádi V., Friedrich P. The phosphorylation state of threonine-220, a uniquely phosphatase-sensitive protein kinase A site in microtubule-associated protein MAP2c, regulates microtubule binding and stability. Biochemistry. 1992;41:12427–12435. doi: 10.1021/bi025916s. PubMed DOI
Joo Y., Schumacher B., Landrieu I., Bartel M., Smet-Nocca C., Jang A., Choi H.S., Jeon N.L., Chang K.A., Kim H.S., et al. Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau. FASEB J. 2015;29:4133–4144. doi: 10.1096/fj.14-265009. PubMed DOI
Valencia R., Walko G., Janda L., Novaček J., Mihailovska E., Reipert S., Andrä-Marobela K., Wiche G. Intermediate filament-associated cytolinker plectin 1c destabilizes microtubules in keratinocytes. Mol. Biol. Cell. 2013;24:768–784. doi: 10.1091/mbc.e12-06-0488. PubMed DOI PMC
He H.J., Wang X.S., Pan R., Wang D.L., Liu M.N., He R.Q. The proline-rich domain of tau plays a role in interactions with actin. BMC Cell Biol. 2009;10:81. doi: 10.1186/1471-2121-10-81. PubMed DOI PMC
Gohar M., Yang W., Strong W., Volkening K., Leystra-Lantz C., Strong M.J. Tau phosphorylation at threonine-175 leads to fibril formation and enhanced cell death: Implications for amyotrophic lateral sclerosis with cognitive impairment. J. Neurochem. 2009;108:634–643. doi: 10.1111/j.1471-4159.2008.05791.x. PubMed DOI
Moszczynski A.J., Strong W., Xu K., McKee A., Brown A., Strong M.J. Pathologic Thr175 tau phosphorylation in CTE and CTE with ALS. Neurology. 2018;90:e380–e387. doi: 10.1212/WNL.0000000000004899. PubMed DOI PMC
Moszczynski A.J., Gohar M., Volkening K., Leystra-Lantz C., Strong W., Strong M.J. Thr175-phosphorylated tau induces pathologic fibril formation via GSK3β-mediated phosphorylation of Thr231 in vitro. Neurobiol. Aging. 2015;36:1590–1599. doi: 10.1016/j.neurobiolaging.2014.12.001. PubMed DOI
Gandhi N.S., Landrieu I., Byrne C., Kucic P., Cantrelle F.X., Wieruszeski J.M., L M.R., Jacquot Y., Lippens G. A Phosphorylation-Induced Turn Defines the Alzheimer’s Disease AT8 Antibody Epitope on the Tau Protein. Angew. Chem. Int. Ed. 2015;54:6819–6823. doi: 10.1002/anie.201501898. PubMed DOI
Ittner A., Chua S.W., Bertz J., Volkerling A., van der Hoven J., Gladbach A., Przybyla M., Bi M., van Hummel A., Stevens C.H., et al. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice. Science. 2016;354:904–908. doi: 10.1126/science.aah6205. PubMed DOI
Despres C., Byrne C., Qi H., Cantrelle F.X., Huvent I., Chambraud B., Baulieu E.E., Jacquot Y., Landrieu I., Lippens G., et al. Identification of the Tau phosphorylation pattern that drives its aggregation. Proc. Natl. Acad. Sci. USA. 2017;114:9080–9085. doi: 10.1073/pnas.1708448114. PubMed DOI PMC
Malia T.J., Teplyakov A., Ernst R., Wu S.J., Lacy E.R., Liu X., Vandermeeren M., Mercken M., Luo J., Sweet R.W., et al. Epitope mapping and structural basis for the recognition of phosphorylated tau by the anti-tau antibody AT8. Proteins Struct. Funct. Bioinf. 2016;84:427–434. doi: 10.1002/prot.24988. PubMed DOI PMC
Hashiguchi M., Hashiguchi T. Chapter Four—Kinase-Kinase Interaction and Modulation of Tau Phosphorylation. In: Jeon K.W., editor. International Review of Cell and Molecular Biology. Volume 300. Academic Press; Cambridge, MA, USA: 2013. pp. 121–160. PubMed
Yang P.H., Zhu J.X., Huang Y.D., Zhang X.Y., Lei P., Bush A., Xiang Q., Su Z., Zhang Q.H. Human Basic Fibroblast Growth Factor Inhibits Tau Phosphorylation via the PI3K/Akt-GSK3β Signaling Pathway in a 6-Hydroxydopamine-Induced Model of Parkinson’s Disease. Neurodegener. Dis. 2016;16:357–369. doi: 10.1159/000445871. PubMed DOI
Amniai L., Barbier P., Sillen A., Wieruszeski J.M., Peyrot V., Lippens G., Landrieu I. Alzheimer disease specific phosphoepitopes of Tau interfere with assembly of tubulin but not binding to microtubules. FASEB J. 2009;23:1146–1152. doi: 10.1096/fj.08-121590. PubMed DOI
Komulainen E., Zdrojewska J., Freemantle E., Mohammad H., Kulesskaya N., Deshpande P., Marchisella F., Mysore R., Hollos P., Michelsen K.A., et al. JNK1 controls dendritic field size in L2/3 and L5 of the motor cortex, constrains soma size, and influences fine motor coordination. Front. Cell. Neurosci. 2014;8:272. doi: 10.3389/fncel.2014.00272. PubMed DOI PMC
Reynolds C.H., Garwood C.J., Wray S., Price C., Kellie S., Perera T., Zvelebil M., Yang A., Sheppard P.W., Varndell I.M., et al. Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cγ1, Grb2, and Src family kinases. J. Biol. Chem. 2008;283:18177–18186. doi: 10.1074/jbc.M709715200. PubMed DOI
Yoshida H., Goedert M. Sequential phosphorylation of tau protein by cAMP-dependent protein kinase and SAPK4/p38delta or JNK2 in the presence of heparin generates the AT100 epitope. J. Neurochem. 2006;99:154–164. doi: 10.1111/j.1471-4159.2006.04052.x. PubMed DOI
Landrieu I., Lacosse L., Leroy A., Wieruszeski J.M., Trivelli X., Sillen A., Sibille N., Schwalbe H., Saxena K., Langer T., et al. NMR analysis of a Tau phosphorylation pattern. J. Am. Chem. Soc. 2006;128:3575–3583. doi: 10.1021/ja054656+. PubMed DOI
Sadik G., Tanaka T., Kato K., Yamamori H., Nessa B.N., Morihara T., Takeda M. Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: Implications for the mechanism of tau aggregation. J. Neurochem. 2009;108:33–43. doi: 10.1111/j.1471-4159.2008.05716.x. PubMed DOI
Sluchanko N.N., Seit-Nebi A.S., Gusev N.B. Effect of phosphorylation on interaction of human tau protein with 14-3-3zeta. Biochem. Biophys. Res. Commun. 2009;379:990–994. doi: 10.1016/j.bbrc.2008.12.164. PubMed DOI
Sluchanko N.N., Seit-Nebi A.S., Gusev N.B. Phosphorylation of more than one site is required for tight interaction of human tau protein with 14-3-3zeta. FEBS Lett. 2009;583:2739–4272. doi: 10.1016/j.febslet.2009.07.043. PubMed DOI
Sluchanko N.N., Gusev N.B. 14-3-3 proteins and regulation of cytoskeleton. Biochemistry. 2010;75:1528–1546. doi: 10.1134/S0006297910130031. PubMed DOI
Johnson C., Crowther S., Stafford M., Campbell D., Toth R., MacKintosh C. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J. 2010;427:69–78. doi: 10.1042/BJ20091834. PubMed DOI PMC
Zamora-Leon S.P., Lee G., Davies P., Shafit-Zagardo B. Binding of Fyn to MAP-2c through an SH3 binding domain. J. Biol. Chem. 2001;276:39950–39958. doi: 10.1074/jbc.M107807200. PubMed DOI
Andrei S.A., Meijer F.A., Neves J.F., Brunsveld L., Landrieu I., Ottmann C., Milroy L.G. Inhibition of 14-3-3/Tau by Hybrid Small-Molecule Peptides Operating via Two Different Binding Modes. ACS Chem. Neurocsi. 2018;9:2639–2654. doi: 10.1021/acschemneuro.8b00118. PubMed DOI PMC
Gigant B., Landrieu I., Fauquan C., Barbie P., Huvent I., Wieruszeski J.M., Knossow M., Lippens G. Mechanism of Tau-Promoted Microtubule Assembly As Probed by NMR Spectroscopy. J. Am. Chem. Soc. 2014;136:12615–12623. doi: 10.1021/ja504864m. PubMed DOI
von Bergen M., Friedhoff P., Biernat J., Heberle J., Mandelkow E.M., Mandelkow E. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc. Natl. Acad. Sci. USA. 2000;97:5129–5134. doi: 10.1073/pnas.97.10.5129. PubMed DOI PMC
Wang R.Y.R., Song Y., Barad B.A., Cheng Y., Fraser J.S., DiMaio F. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife. 2016;5:e17219. doi: 10.7554/eLife.17219. PubMed DOI PMC
Al-Bassam J., Ozer R.S., Safer D., Halpain S., Milligan R.A. MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J. Cell Biol. 2002;157:1187–1196. doi: 10.1083/jcb.200201048. PubMed DOI PMC
Kar S., Fan J., Smith M.J., Goedert M., Amos L.A. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J. 2003;22:70–77. doi: 10.1093/emboj/cdg001. PubMed DOI PMC
Drewes G., Trinczek B., Illenberger S., Biernat J., Schmitt-Ulms G., Meyer H.E., Mandelkow E.M., Mandelkow E. Microtubule-associated Protein/Microtubule Affinity-regulating Kinase (p110mark): A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J. Biol. Chem. 1995;270:7679–7688. doi: 10.1074/jbc.270.13.7679. PubMed DOI
Illenberger S., Drewes G., Trinczek B., Biernat J., Meyer H.E., Olmsted J.B., Mandelkow E.M., Mandelkow E. Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110mark. Phosphorylation sites and regulation of microtubule dynamics. J. Biol. Chem. 1996;271:10834–10843. doi: 10.1074/jbc.271.18.10834. PubMed DOI
Brandt R., Lee G., Teplow D.B., Shalloway D., Abdel-Ghany M. Differential Effect of Phosphorylation and Substrate Modulation on Tau’s Ability to Promote Microtubule Growth and Nucleation. J. Biol. Chem. 1994;269:11776–11782. PubMed
Itoh T.J., Hisanaga S., Hosoi T., Kishimoto T., Hotani H. Phosphorylation states of microtubule-associated protein 2 (MAP2) determine the regulatory role of MAP2 in microtubule dynamics. Biochemistry. 1997;36:12574–12582. doi: 10.1021/bi962606z. PubMed DOI
Schneider A., Biernat J., von Bergen M., Mandelkow E., Mandelkow E.M. Phosphorylation that Detaches Tau Protein from Microtubules (Ser262, Ser214) Also Protects It against Aggregation into Alzheimer Paired Helical Filaments. Biochemistry. 1999;38:3549–3558. doi: 10.1021/bi981874p. PubMed DOI
Sattilaro R.F. Interaction of microtubule-associated protein 2 with actin filaments. Biochemistry. 1986;25:2003–2009. doi: 10.1021/bi00356a025. PubMed DOI
Ozer R.S., Halpain S. Phosphorylation-dependent localization of microtubule-associated protein MAP2c to the actin cytoskeleton. Mol. Biol. Cell. 2000;11:3573–3587. doi: 10.1091/mbc.11.10.3573. PubMed DOI PMC
Al-Hilaly Y.K., Pollack S.J., Vadukul D.M., Citossi F., Rickard J.E., Simpson M., Storey J.M., Harrington C.R., Wischik C.M., Serpell L.C. Alzheimer’s Disease-like Paired Helical Filament Assembly from Truncated Tau Protein Is Independent of Disulfide Crosslinking. J. Mol. Biol. 2017;429:3650–3665. doi: 10.1016/j.jmb.2017.09.007. PubMed DOI
Xie C., Miyasaka T., Yoshimura S., Hatsuta H., Yoshina S., Kage-Nakadai E., Mitani S., Murayama S., Ihara Y. The homologous carboxyl-terminal domains of microtubule-associated protein 2 and TAU induce neuronal dysfunction and have differential fates in the evolution of neurofibrillary tangles. PLoS ONE. 2014;9:e89796. doi: 10.1371/journal.pone.0089796. PubMed DOI PMC
Gómez-Ramos A., Díaz-Hernández M., Rubio A., Miras-Portugal M.T., Avila J. Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol. Cell. Neurosci. 2008;37:673–681. doi: 10.1016/j.mcn.2007.12.010. PubMed DOI
Li T., Paudel H.K. Glycogen Synthase Kinase 3β Phosphorylates Alzheimer’s Disease-Specific Ser396 of Microtubule-Associated Protein Tau by a Sequential Mechanism. Biochemistry. 2006;45:3125–3133. doi: 10.1021/bi051634r. PubMed DOI
Díaz-Hernández M., Gómez-Ramos A., Rubio A., Gómez-Villafuertes R., Naranjo J.R., Teresa Miras-Portugal M., Avila J. Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J. Biol. Chem. 2010;285:32539–35248. doi: 10.1074/jbc.M110.145003. PubMed DOI PMC
Berry R.W., Abraha A., Lagalwar S., LaPointe N., Gamblin T.C., Cryns V.L., Binder L.I. Inhibition of Tau Polymerization by Its Carboxy-Terminal Caspase Cleavage Fragment. Biochemistry. 2003;42:8325–8331. doi: 10.1021/bi027348m. PubMed DOI
Fifre A., Sponne I., Koziel V., Kriem B., Potin F.T.Y., Bihain B.E., Olivier J.L., Oster T., Pillot T. Microtubule-associated Protein MAP1A, MAP1B, and MAP2 Proteolysis during Soluble Amyloid β-Peptide-induced Neuronal Apoptosis: Synergistic Involvement of Calpain and Caspase-3. J. Biol. Chem. 2006;281:229–240. doi: 10.1074/jbc.M507378200. PubMed DOI
Walker S., Ullman O., Stultz C.M. Using intramolecular disulfide bonds in tau protein to deduce structural features of aggregation-resistant conformations. J. Biol. Chem. 2012;287:9591–9600. doi: 10.1074/jbc.M111.336107. PubMed DOI PMC
Crowe A., James M.J., Virginia M.Y., Smith A.B., Trojanowski J.Q., Ballatore C., Brunden K.R. Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation. J. Biol. Chem. 2013;288:11024–11037. doi: 10.1074/jbc.M112.436006. PubMed DOI PMC
De Ancos J.G., Correas I., Avila J. Differences in microtubule binding and self-association abilities of bovine brain tau isoforms. J. Biol. Chem. 1993;268:7976–7982. PubMed
Paudel H.K. Phosphorylation by neuronal cdc2-like protein kinase promotes dimerization of tau protein in vitro. J. Biol. Chem. 1997;272:28328–28334. doi: 10.1074/jbc.272.45.28328. PubMed DOI
Wille H., Mandelkow E.M., Mandelkow E. The Juvenile Microtubule-associated Protein MAP2c Is a Rod-like Molecule That Forms Antiparallel Dimer. J. Biol. Chem. 1992;267:10737–10742. PubMed
Goode B.L., Denis P.E., Panda D., Radeke M.J., Miller H.P., Wilson L., Feinstein S.C. Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Mol. Biol. Cell. 1997;8:353–365. doi: 10.1091/mbc.8.2.353. PubMed DOI PMC
Guo Y., Gong H.S., Zhang J., Xie W.L., Tian C., Chen C., Shi Q., Wang S.B., Xu Y., Zhang B.Y., et al. Remarkable reduction of MAP2 in the brains of scrapie-infected rodents and human prion disease possibly correlated with the increase of calpain. PLoS ONE. 2012;7:e30163. doi: 10.1371/journal.pone.0030163. PubMed DOI PMC
Ackmann M., Wiech H., Mandelkow E. Nonsaturable binding indicates clustering of tau on the microtubule surface in a paired helical filament-like conformation. J. Biol. Chem. 2000;275:30335–30343. doi: 10.1074/jbc.M002590200. PubMed DOI
Meixner A., Haverkamp S., Wässle H., Führer S., Thalhammer J., Kropf N., Bittner R.E., Lassmann H., Wiche G., Propst F. MAP1B is required for axon guidance and Is involved in the development of the central and peripheral nervous system. J. Cell Biol. 2000;151:1169–1178. doi: 10.1083/jcb.151.6.1169. PubMed DOI PMC
Liu F., Iqbal K., Grundke-Iqbal I., Rossie S., Gong C.X. Dephosphorylation of tau by protein phosphatase 5: Impairment in Alzheimer’s disease. J. Biol. Chem. 2005;280:1790–1796. doi: 10.1074/jbc.M410775200. PubMed DOI
Tompa P., Schad E., Tantos A., Kalmar L. Intrinsically disordered proteins: Emerging interaction specialists. Curr. Opin. Struct. Biol. 2015;35:49–59. doi: 10.1016/j.sbi.2015.08.009. PubMed DOI
NMR Studies of Tau Protein in Tauopathies
Choice of Force Field for Proteins Containing Structured and Intrinsically Disordered Regions