Proteomic Analysis Unveils Expressional Changes in Cytoskeleton- and Synaptic Plasticity-Associated Proteins in Rat Brain Six Months after Withdrawal from Morphine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-03295S
Grantová Agentura České Republiky
SVV-260571/2020
Charles University Institutional Research Fund
CZ.1.05/1.1.00/02.0109
European Regional Development Fund
PubMed
34357055
PubMed Central
PMC8304287
DOI
10.3390/life11070683
PII: life11070683
Knihovny.cz E-zdroje
- Klíčová slova
- brain, morphine, proteomics, synaptic plasticity, withdrawal,
- Publikační typ
- časopisecké články MeSH
Drug withdrawal is associated with abstinence symptoms including deficits in cognitive functions that may persist even after prolonged discontinuation of drug intake. Cognitive deficits are, at least partially, caused by alterations in synaptic plasticity but the precise molecular mechanisms have not yet been fully identified. In the present study, changes in proteomic and phosphoproteomic profiles of selected brain regions (cortex, hippocampus, striatum, and cerebellum) from rats abstaining for six months after cessation of chronic treatment with morphine were determined by label-free quantitative (LFQ) proteomic analysis. Interestingly, prolonged morphine withdrawal was found to be associated especially with alterations in protein phosphorylation and to a lesser extent in protein expression. Gene ontology (GO) term analysis revealed enrichment in biological processes related to synaptic plasticity, cytoskeleton organization, and GTPase activity. More specifically, significant changes were observed in proteins localized in synaptic vesicles (e.g., synapsin-1, SV2a, Rab3a), in the active zone of the presynaptic nerve terminal (e.g., Bassoon, Piccolo, Rims1), and in the postsynaptic density (e.g., cadherin 13, catenins, Arhgap35, Shank3, Arhgef7). Other differentially phosphorylated proteins were associated with microtubule dynamics (microtubule-associated proteins, Tppp, collapsin response mediator proteins) and the actin-spectrin network (e.g., spectrins, adducins, band 4.1-like protein 1). Taken together, a six-month morphine withdrawal was manifested by significant alterations in the phosphorylation of synaptic proteins. The altered phosphorylation patterns modulating the function of synaptic proteins may contribute to long-term neuroadaptations induced by drug use and withdrawal.
Zobrazit více v PubMed
Listos J., Lupina M., Talarek S., Mazur A., Orzelska-Gorka J., Kotlinska J. The Mechanisms Involved in Morphine Addiction: An Overview. Int. J. Mol. Sci. 2019;20:4302. doi: 10.3390/ijms20174302. PubMed DOI PMC
Meye F.J., Trusel M., Soiza-Reilly M., Mameli M. Neural circuit adaptations during drug withdrawal—Spotlight on the lateral habenula. Pharmacol. Biochem. Behav. 2017;162:87–93. doi: 10.1016/j.pbb.2017.08.007. PubMed DOI
Volkow N.D., Koob G.F., McLellan A.T. Neurobiologic Advances from the Brain Disease Model of Addiction. N. Engl. J. Med. 2016;374:363–371. doi: 10.1056/NEJMra1511480. PubMed DOI PMC
Gipson C.D., Kupchik Y.M., Kalivas P.W. Rapid, transient synaptic plasticity in addiction. Neuropharmacology. 2014;76 Pt B:276–286. doi: 10.1016/j.neuropharm.2013.04.032. PubMed DOI PMC
Torres V.I., Vallejo D., Inestrosa N.C. Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural. Plast. 2017;2017:8081758. doi: 10.1155/2017/8081758. PubMed DOI PMC
Perluigi M., Barone E., Di Domenico F., Butterfield D.A. Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochim. Biophys. Acta Mol. Cell Res. 2016;1862:1871–1882. doi: 10.1016/j.bbadis.2016.07.005. PubMed DOI
Tenreiro S., Eckermann K., Outeiro T.F. Protein phosphorylation in neurodegeneration: Friend or foe? Front. Mol. Neurosci. 2014;7:42. doi: 10.3389/fnmol.2014.00042. PubMed DOI PMC
Brown A.L., Flynn J.R., Smith D.W., Dayas C.V. Down-regulated striatal gene expression for synaptic plasticity-associated proteins in addiction and relapse vulnerable animals. Int. J. Neuropsychopharmacol. 2011;14:1099–1110. doi: 10.1017/S1461145710001367. PubMed DOI
Kruyer A., Chioma V.C., Kalivas P.W. The Opioid-Addicted Tetrapartite Synapse. Biol. Psychiatry. 2020;87:34–43. doi: 10.1016/j.biopsych.2019.05.025. PubMed DOI PMC
Areal L.B., Hamilton A., Martins-Silva C., Pires R.G.W., Ferguson S.S.G. Neuronal scaffolding protein spinophilin is integral for cocaine-induced behavioral sensitization and ERK1/2 activation. Mol. Brain. 2019;12:15. doi: 10.1186/s13041-019-0434-7. PubMed DOI PMC
Burns J.A., Kroll D.S., Feldman D.E., Kure Liu C., Manza P., Wiers C.E., Volkow N.D., Wang G.J. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front. Psychiatry. 2019;10:626. doi: 10.3389/fpsyt.2019.00626. PubMed DOI PMC
Miquel M., Vazquez-Sanroman D., Carbo-Gas M., Gil-Miravet I., Sanchis-Segura C., Carulli D., Manzo J., Coria-Avila G.A. Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci. Biobehav. Rev. 2016;60:1–11. doi: 10.1016/j.neubiorev.2015.11.005. PubMed DOI
Koob G.F., Volkow N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiat. 2016;3:760–773. doi: 10.1016/S2215-0366(16)00104-8. PubMed DOI PMC
Han H., Dong Z., Jia Y., Mao R., Zhou Q., Yang Y., Wang L., Xu L., Cao J. Opioid addiction and withdrawal differentially drive long-term depression of inhibitory synaptic transmission in the hippocampus. Sci. Rep. 2015;5:9666. doi: 10.1038/srep09666. PubMed DOI PMC
Gould T.J. Addiction and cognition. Addict. Sci. Clin. Pract. 2010;5:4–14. PubMed PMC
Chen J.C., Smith E.R., Cahill M., Cohen R., Fishman J.B. The opioid receptor binding of dezocine, morphine, fentanyl, butorphanol and nalbuphine. Life Sci. 1993;52:389–396. doi: 10.1016/0024-3205(93)90152-S. PubMed DOI
Buzas B., Cox B.M. Quantitative analysis of mu and delta opioid receptor gene expression in rat brain and peripheral ganglia using competitive polymerase chain reaction. Neuroscience. 1997;76:479–489. doi: 10.1016/S0306-4522(96)00242-4. PubMed DOI
Mansour A., Fox C.A., Akil H., Watson S.J. Opioid-receptor mRNA expression in the rat CNS: Anatomical and functional implications. Trends Neurosci. 1995;18:22–29. doi: 10.1016/0166-2236(95)93946-U. PubMed DOI
Mrkusich E.M., Kivell B.M., Miller J.H., Day D.J. Abundant expression of mu and delta opioid receptor mRNA and protein in the cerebellum of the fetal, neonatal, and adult rat. Dev. Brain Res. 2004;148:213–222. doi: 10.1016/j.devbrainres.2003.10.013. PubMed DOI
Herraez-Baranda L.A., Carretero J., Gonzalez-Sarmiento R., Rodriguez R.E. Kappa opioid receptor is expressed in the rat cerebellar cortex. Cell Tissue Res. 2005;320:223–228. doi: 10.1007/s00441-004-1048-6. PubMed DOI
Bekheet S.H., Saker S.A., Abdel-Kader A.M., Younis A.E. Histopathological and biochemical changes of morphine sulphate administration on the cerebellum of albino rats. Tissue Cell. 2010;42:165–175. doi: 10.1016/j.tice.2010.03.005. PubMed DOI
Rothenfluh A., Cowan C.W. Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: Actin or reactin’? Curr. Opin. Neurobiol. 2013;23:507–512. doi: 10.1016/j.conb.2013.01.027. PubMed DOI PMC
Dent E.W. Dynamic microtubules at the synapse. Curr. Opin. Neurobiol. 2020;63:9–14. doi: 10.1016/j.conb.2020.01.003. PubMed DOI PMC
Lasser M., Tiber J., Lowery L.A. The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders. Front. Cell. Neurosci. 2018;12:165. doi: 10.3389/fncel.2018.00165. PubMed DOI PMC
Bucher M., Fanutza T., Mikhaylova M. Cytoskeletal makeup of the synapse: Shaft versus spine. Cytoskeleton. 2020;77:55–64. doi: 10.1002/cm.21583. PubMed DOI
Ramkumar A., Jong B.Y., Ori-McKenney K.M. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev. Dyn. 2018;247:138–155. doi: 10.1002/dvdy.24599. PubMed DOI PMC
Craddock T.J.A., Tuszynski J.A., Hameroff S. Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation? PLoS Comput. Biol. 2012;8:e1002421. doi: 10.1371/journal.pcbi.1002421. PubMed DOI PMC
Bodaleo F.J., Gonzalez-Billault C. The Presynaptic Microtubule Cytoskeleton in Physiological and Pathological Conditions: Lessons from Drosophila Fragile X Syndrome and Hereditary Spastic Paraplegias. Front. Mol. Neurosci. 2016;9:60. doi: 10.3389/fnmol.2016.00060. PubMed DOI PMC
DeBonis S., Neumann E., Skoufias D.A. Self protein-protein interactions are involved in TPPP/p25 mediated microtubule bundling. Sci. Rep. 2015;5:13242. doi: 10.1038/srep13242. PubMed DOI PMC
Nouar R., Breuzard G., Bastonero S., Gorokhova S., Barbier P., Devred F., Kovacic H., Peyrot V. Direct evidence for the interaction of stathmin along the length and the plus end of microtubules in cells. Faseb J. 2016;30:3202–3215. doi: 10.1096/fj.201500125R. PubMed DOI
Bakota L., Ussif A., Jeserich G., Brandt R. Systemic and network functions of the microtubule-associated protein tau: Implications for tau-based therapies. Mol. Cell. Neurosci. 2017;84:132–141. doi: 10.1016/j.mcn.2017.03.003. PubMed DOI
Robinson T.E., Kolb B. Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse. 1999;33:160–162. doi: 10.1002/(SICI)1098-2396(199908)33:2<160::AID-SYN6>3.0.CO;2-S. PubMed DOI
Marie-Claire C., Courtin C., Roques B.P., Noble F. Cytoskeletal genes regulation by chronic morphine treatment in rat striatum. Neuropsychopharmacology. 2004;29:2208–2215. doi: 10.1038/sj.npp.1300513. PubMed DOI
Qu L., Pan C., He S.M., Lang B., Gao G.D., Wang X.L., Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front. Mol. Neurosci. 2019;12:121. doi: 10.3389/fnmol.2019.00121. PubMed DOI PMC
Kjos I., Vestre K., Guadagno N.A., Distefano M.B., Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. Biochim. Biophys. Acta Mol. Cell Res. 2018;1865:1397–1409. doi: 10.1016/j.bbamcr.2018.07.009. PubMed DOI
Schoneborn H., Raudzus F., Coppey M., Neumann S., Heumann R. Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int. J. Mol. Sci. 2018;19:4052. doi: 10.3390/ijms19124052. PubMed DOI PMC
Song S., Cong W., Zhou S., Shi Y., Dai W., Zhang H., Wang X., He B., Zhang Q. Small GTPases: Structure, biological function and its interaction with nanoparticles. Asian. J. Pharm. Sci. 2019;14:30–39. doi: 10.1016/j.ajps.2018.06.004. PubMed DOI PMC
Ba W., Nadif Kasri N. RhoGTPases at the synapse: An embarrassment of choice. Small GTPases. 2017;8:106–113. doi: 10.1080/21541248.2016.1206352. PubMed DOI PMC
Mishra A.K., Lambright D.G. Small GTPases and Their GAPs. Biopolymers. 2016;105:431–448. doi: 10.1002/bip.22833. PubMed DOI PMC
Shirakawa R., Horiuchi H. Ral GTPases: Crucial mediators of exocytosis and tumourigenesis. J. Biochem. 2015;157:285–299. doi: 10.1093/jb/mvv029. PubMed DOI
Patel M., Karginov A.V. Phosphorylation-mediated regulation of GEFs for RhoA. Cell Adh. Migr. 2014;8:11–18. doi: 10.4161/cam.28058. PubMed DOI PMC
Walkup W.G., Washburn L., Sweredoski M.J., Carlisle H.J., Graham R.L., Hess S., Kennedy M.B. Phosphorylation of Synaptic GTPase-activating Protein (synGAP) by Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) and Cyclin-dependent Kinase 5 (CDK5) Alters the Ratio of Its GAP Activity toward Ras and Rap GTPases. J. Biol. Chem. 2015;290:4908–4927. doi: 10.1074/jbc.M114.614420. PubMed DOI PMC
Heraud C., Pinault M., Lagree V., Moreau V. p190RhoGAPs, the ARHGAP35- and ARHGAP5-Encoded Proteins, in Health and Disease. Cells. 2019;8:351. doi: 10.3390/cells8040351. PubMed DOI PMC
Kim W.Y., Shin S.R., Kim S., Jeon S., Kim J.H. Cocaine regulates ezrin-radixin-moesin proteins and RhoA signaling in the nucleus accumbens. Neuroscience. 2009;163:501–505. doi: 10.1016/j.neuroscience.2009.06.067. PubMed DOI
Bourova L., Vosahlikova M., Kagan D., Dlouha K., Novotny J., Svoboda P. Long-term adaptation to high doses of morphine causes desensitization of mu-OR- and delta-OR-stimulated G-protein response in forebrain cortex but does not decrease the amount of G-protein alpha subunits. Med. Sci. Monit. 2010;16:BR260–BR270. PubMed
Ujcikova H., Hejnova L., Eckhardt A., Roubalova L., Novotny J., Svoboda P. Impact of three-month morphine withdrawal on rat brain cortex, hippocampus, striatum and cerebellum: Proteomic and phosphoproteomic studies. Neurochem. Int. 2021;144:104975. doi: 10.1016/j.neuint.2021.104975. PubMed DOI
Humphrey S.J., Karayel O., James D.E., Mann M. High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nat. Protoc. 2018;13:1897–1916. doi: 10.1038/s41596-018-0014-9. PubMed DOI
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell. Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Collins M.O., Yu L., Coba M.P., Husi H., Campuzano I., Blackstock W.P., Choudhary J.S., Grant S.G. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 2005;280:5972–5982. doi: 10.1074/jbc.M411220200. PubMed DOI
Loscher W., Gillard M., Sands Z.A., Kaminski R.M., Klitgaard H. Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs. 2016;30:1055–1077. doi: 10.1007/s40263-016-0384-x. PubMed DOI PMC
Yao J., Nowack A., Kensel-Hammes P., Gardner R.G., Bajjalieh S.M. Cotrafficking of SV2 and Synaptotagmin at the Synapse. J. Neurosci. 2010;30:5569–5578. doi: 10.1523/JNEUROSCI.4781-09.2010. PubMed DOI PMC
Engholm-Keller K., Waardenberg A.J., Muller J.A., Wark J.R., Fernando R.N., Arthur J.W., Robinson P.J., Dietrich D., Schoch S., Graham M.E. The temporal profile of activity-dependent presynaptic phospho-signalling reveals long-lasting patterns of poststimulus regulation. PLoS Biol. 2019;17:e3000170. doi: 10.1371/journal.pbio.3000170. PubMed DOI PMC
Binotti B., Jahn R., Chua J.J.E. Functions of Rab Proteins at Presynaptic Sites. Cells. 2016;5:7. doi: 10.3390/cells5010007. PubMed DOI PMC
Boda B., Dubos A., Muller D. Signaling mechanisms regulating synapse formation and function in mental retardation. Curr. Opin. Neurobiol. 2010;20:519–527. doi: 10.1016/j.conb.2010.03.012. PubMed DOI
Gerber K.J., Squires K.E., Hepler J.R. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity. Mol. Pharmacol. 2016;89:273–286. doi: 10.1124/mol.115.102210. PubMed DOI PMC
Mignogna M.L., D’Adamo P. Critical importance of RAB proteins for synaptic function. Small GTPases. 2018;9:145–157. doi: 10.1080/21541248.2016.1277001. PubMed DOI PMC
Stornetta R.L., Zhu J.J. Ras and Rap signaling in synaptic plasticity and mental disorders. Neuroscientist. 2011;17:54–78. doi: 10.1177/1073858410365562. PubMed DOI PMC
Shen W., Wu B., Zhang Z., Dou Y., Rao Z.R., Chen Y.R., Duan S. Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron. 2006;50:401–414. doi: 10.1016/j.neuron.2006.03.017. PubMed DOI
Halbedl S., Schoen M., Feiler M.S., Boeckers T.M., Schmeisser M.J. Shank3 is localized in axons and presynaptic specializations of developing hippocampal neurons and involved in the modulation of NMDA receptor levels at axon terminals. J. Neurochem. 2016;137:26–32. doi: 10.1111/jnc.13523. PubMed DOI
Vyas Y., Montgomery J.M. The role of postsynaptic density proteins in neural degeneration and regeneration. Neural Regen. Res. 2016;11:906–907. doi: 10.4103/1673-5374.184481. PubMed DOI PMC
Brigidi G.S., Bamji S.X. Cadherin-catenin adhesion complexes at the synapse. Curr. Opin. Neurobiol. 2011;21:208–214. doi: 10.1016/j.conb.2010.12.004. PubMed DOI
Pozzi D., Menna E., Canzi A., Desiato G., Mantovani C., Matteoli M. The Communication Between the Immune and Nervous Systems: The Role of IL-1 beta in Synaptopathies. Front. Mol. Neurosci. 2018;11:111. doi: 10.3389/fnmol.2018.00111. PubMed DOI PMC
Park E., Na M., Choi J.H., Kim S., Lee J.R., Yoon J.Y., Park D., Sheng M., Kim E. The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc42. J. Biol. Chem. 2003;278:19220–19229. doi: 10.1074/jbc.M301052200. PubMed DOI
Soisson S.M., Nimnual A.S., Uy M., Bar-Sagi D., Kuriyan J. Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein. Cell. 1998;95:259–268. doi: 10.1016/S0092-8674(00)81756-0. PubMed DOI
Sarowar T., Grabrucker A.M. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies. Neural Plast. 2016;2016:8051861. doi: 10.1155/2016/8051861. PubMed DOI PMC
Unsain N., Stefani F.D., Caceres A. The Actin/Spectrin Membrane-Associated Periodic Skeleton in Neurons. Front. Synaptic. Neurosci. 2018;10:10. doi: 10.3389/fnsyn.2018.00010. PubMed DOI PMC
Li Y.C., Kavalali E.T. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol. Rev. 2017;69:141–160. doi: 10.1124/pr.116.013342. PubMed DOI PMC
Mishima T., Fujiwara T., Sanada M., Kofuji T., Kanai-Azuma M., Akagawa K. Syntaxin 1B, but not syntaxin 1A, is necessary for the regulation of synaptic vesicle exocytosis and of the readily releasable pool at central synapses. PLoS ONE. 2014;9:e90004. doi: 10.1371/journal.pone.0090004. PubMed DOI PMC
Wong M.Y., Liu C., Wang S.S.H., Roquas A.C.F., Fowler S.C., Kaeser P.S. Liprin-alpha3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses. Proc. Natl. Acad. Sci. USA. 2018;115:2234–2239. doi: 10.1073/pnas.1719012115. PubMed DOI PMC
Spence E.F., Soderling S.H. Actin Out: Regulation of the Synaptic Cytoskeleton. J. Biol. Chem. 2015;290:28613–28622. doi: 10.1074/jbc.R115.655118. PubMed DOI PMC
Tolias K.F., Duman J.G., Um K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog. Neurobiol. 2011;94:133–148. doi: 10.1016/j.pneurobio.2011.04.011. PubMed DOI PMC
Hlavanda E., Klement E., Kokai E., Kovacs J., Vincze O., Tokesi N., Orosz F., Medzihradszky K.F., Dombradi V., Ovadi J. Phosphorylation blocks the activity of tubulin polymerization-promoting protein (TPPP): Identification of sites targeted by different kinases. J. Biol. Chem. 2007;282:29531–29539. doi: 10.1074/jbc.M703466200. PubMed DOI
Hensley K., Kursula P. Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer’s Disease: Comparison and Contrast with Microtubule-Associated Protein Tau. J. Alzheimers Dis. 2016;53:1–14. doi: 10.3233/JAD-160076. PubMed DOI PMC
Lin P.C., Chan P.M., Hall C., Manser E. Collapsin Response Mediator Proteins (CRMPs) Are a New Class of Microtubule-associated Protein (MAP) That Selectively Interacts with Assembled Microtubules via a Taxol-sensitive Binding Interaction. J. Biol. Chem. 2011;286:41466–41478. doi: 10.1074/jbc.M111.283580. PubMed DOI PMC
Scales T.M.E., Lin S., Kraus M., Goold R.G., Gordon-Weeks P.R. Nonprimed and DYRK1A-primed GSK3 beta-phosphorylation sites on MAP1B regulate microtubule dynamics in growing axons. J. Cell Sci. 2009;122:2424–2435. doi: 10.1242/jcs.040162. PubMed DOI PMC
Villarroel-Campos D., Gonzalez-Billault C. The MAP1B Case: An Old MAP That is New Again. Dev. Neurobiol. 2014;74:953–971. doi: 10.1002/dneu.22178. PubMed DOI
Grubisha M.J., Sun X., MacDonald M.L., Garver M., Sun Z., Paris K.A., Patel D.S., DeGiosio R.A., Lewis D.A., Yates N.A., et al. MAP2 is differentially phosphorylated in schizophrenia, altering its function. Mol. Psychiatry. 2021 doi: 10.1038/s41380-021-01034-z. PubMed DOI PMC
Stock M.F., Chu J., Hackney D.D. The kinesin family member BimC contains a second microtubule binding region attached to the N terminus of the motor domain. J. Biol. Chem. 2003;278:52315–52322. doi: 10.1074/jbc.M309419200. PubMed DOI
Illenberger S., Drewes G., Trinczek B., Biernat J., Meyer H.E., Olmsted J.B., Mandelkow E.M., Mandelkow E. Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110(mark)—Phosphorylation sites and regulation of microtubule dynamics. J. Biol. Chem. 1996;271:10834–10843. doi: 10.1074/jbc.271.18.10834. PubMed DOI
Kimura T., Sharma G., Ishiguro K., Hisanaga S. Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy. Front. Neurosci. 2018;12:44. doi: 10.3389/fnins.2018.00044. PubMed DOI PMC
Simic G., Babic Leko M., Wray S., Harrington C., Delalle I., Jovanov-Milosevic N., Bazadona D., Buee L., de Silva R., Di Giovanni G., et al. Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules. 2016;6:6. doi: 10.3390/biom6010006. PubMed DOI PMC
Duka V., Lee J.H., Credle J., Wills J., Oaks A., Smolinsky C., Shah K., Mash D.C., Masliah E., Sidhu A. Identification of the sites of tau hyperphosphorylation and activation of tau kinases in synucleinopathies and Alzheimer’s diseases. PLoS ONE. 2013;8:e75025. doi: 10.1371/journal.pone.0075025. PubMed DOI PMC
He H.J., Wang X.S., Pan R., Wang D.L., Liu M.N., He R.Q. The proline-rich domain of tau plays a role in interactions with actin. BMC Cell Biol. 2009;10:81. doi: 10.1186/1471-2121-10-81. PubMed DOI PMC
McKibben K.M., Rhoades E. Independent tubulin binding and polymerization by the proline-rich region of tau is regulated by tau’s N-terminal domain. J. Biol. Chem. 2019;294:19381–19394. doi: 10.1074/jbc.RA119.010172. PubMed DOI PMC
Abraha A., Ghoshal N., Gamblin T.C., Cryns V., Berry R.W., Kuret J., Binder L.I. C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. J. Cell Sci. 2000;113 Pt 21:3737–3745. doi: 10.1242/jcs.113.21.3737. PubMed DOI
Gundelfinger E.D., Reissner C., Garner C.C. Role of Bassoon and Piccolo in Assembly and Molecular Organization of the Active Zone. Front. Synaptic. Neurosci. 2015;7:19. doi: 10.3389/fnsyn.2015.00019. PubMed DOI PMC
Griffith L.C. Regulation of calcium/calmodulin-dependent protein kinase II activation by intramolecular and intermolecular interactions. J. Neurosci. 2004;24:8394–8398. doi: 10.1523/JNEUROSCI.3604-04.2004. PubMed DOI PMC
Melkova K., Zapletal V., Narasimhan S., Jansen S., Hritz J., Skrabana R., Zweckstetter M., Ringkjobing Jensen M., Blackledge M., Zidek L. Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences. Biomolecules. 2019;9:105. doi: 10.3390/biom9030105. PubMed DOI PMC
Shimada T., Fournier A.E., Yamagata K. Neuroprotective function of 14-3-3 proteins in neurodegeneration. Biomed. Res. Int. 2013;2013:564534. doi: 10.1155/2013/564534. PubMed DOI PMC
Ovadi J., Orosz F. An unstructured protein with destructive potential: TPPP/p25 in neurodegeneration. Bioessays. 2009;31:676–686. doi: 10.1002/bies.200900008. PubMed DOI
Schofield A.V., Steel R., Bernard O. Rho-associated Coiled-coil Kinase (ROCK) Protein Controls Microtubule Dynamics in a Novel Signaling Pathway That Regulates Cell Migration. J. Biol. Chem. 2012;287:43620–43629. doi: 10.1074/jbc.M112.394965. PubMed DOI PMC
Sudhof T.C., Czernik A.J., Kao H.T., Takei K., Johnston P.A., Horiuchi A., Kanazir S.D., Wagner M.A., Perin M.S., De Camilli P., et al. Synapsins: Mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science. 1989;245:1474–1480. doi: 10.1126/science.2506642. PubMed DOI
Barbier P., Zejneli O., Martinho M., Lasorsa A., Belle V., Smet-Nocca C., Tsvetkov P.O., Devred F., Landrieu I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front. Aging Neurosci. 2019;11:204. doi: 10.3389/fnagi.2019.00204. PubMed DOI PMC
Webb D.J., Mayhew M.W., Kovalenko M., Schroeder M.J., Jeffery E.D., Whitmore L., Shabanowitz J., Hunt D.F., Horwitz A.F. Identification of phosphorylation sites in GIT1. J. Cell Sci. 2006;119:2847–2850. doi: 10.1242/jcs.03044. PubMed DOI
Tokesi N., Lehotzky A., Horvath I., Szabo B., Olah J., Lau P., Ovadi J. TPPP/p25 promotes tubulin acetylation by inhibiting histone deacetylase 6. J. Biol. Chem. 2010;285:17896–17906. doi: 10.1074/jbc.M109.096578. PubMed DOI PMC
Nakamura F., Ohshima T., Goshima Y. Collapsin Response Mediator Proteins: Their Biological Functions and Pathophysiology in Neuronal Development and Regeneration. Front. Cell. Neurosci. 2020;14:188. doi: 10.3389/fncel.2020.00188. PubMed DOI PMC
Le Merrer J., Befort K., Gardon O., Filliol D., Darcq E., Dembele D., Becker J.A.J., Kieffer B.L. Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network. Addict. Biol. 2012;17:1–12. doi: 10.1111/j.1369-1600.2011.00365.x. PubMed DOI
Goeldner C., Lutz P.E., Darcq E., Halter T., Clesse D., Ouagazzal A.M., Kieffer B.L. Impaired emotional-like behavior and serotonergic function during protracted abstinence from chronic morphine. Biol. Psychiatry. 2011;69:236–244. doi: 10.1016/j.biopsych.2010.08.021. PubMed DOI PMC
Lull M.E., Erwin M.S., Morgan D., Roberts D.C.S., Vrana K.E., Freeman W.M. Persistent proteomic alterations in the medial prefrontal cortex with abstinence from cocaine self-administration. Proteomics Clin. Appl. 2009;3:462–472. doi: 10.1002/prca.200800055. PubMed DOI PMC
Sun W.L., Eisenstein S.A., Zelek-Molik A., McGinty J.F. A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal. Int. J. Neuropsychopharmacol. 2015;18:pyu049. doi: 10.1093/ijnp/pyu049. PubMed DOI PMC
Jackson K.J., Imad Damaj M. Beta2-containing nicotinic acetylcholine receptors mediate calcium/calmodulin-dependent protein kinase-II and synapsin I protein levels in the nucleus accumbens after nicotine withdrawal in mice. Eur. J. Pharmacol. 2013;701:1–6. doi: 10.1016/j.ejphar.2012.12.005. PubMed DOI PMC
Zhang M., Augustine G.J. Synapsins and the Synaptic Vesicle Reserve Pool: Floats or Anchors? Cells. 2021;10:658. doi: 10.3390/cells10030658. PubMed DOI PMC
Milovanovic D., Wu Y., Bian X., De Camilli P. A liquid phase of synapsin and lipid vesicles. Science. 2018;361:604–607. doi: 10.1126/science.aat5671. PubMed DOI PMC
Denker A., Krohnert K., Buckers J., Neher E., Rizzoli S.O. The reserve pool of synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle recycling. Proc. Natl. Acad. Sci. USA. 2011;108:17183–17188. doi: 10.1073/pnas.1112690108. PubMed DOI PMC
Guo B., Huang Y., Gao Q., Zhou Q. Stabilization of microtubules improves cognitive functions and axonal transport of mitochondria in Alzheimer’s disease model mice. Neurobiol. Aging. 2020;96:223–232. doi: 10.1016/j.neurobiolaging.2020.09.011. PubMed DOI
Fernandez-Valenzuela J.J., Sanchez-Varo R., Munoz-Castro C., De Castro V., Sanchez-Mejias E., Navarro V., Jimenez S., Nunez-Diaz C., Gomez-Arboledas A., Moreno-Gonzalez I., et al. Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer’s disease model. Sci. Rep. 2020;10:14776. doi: 10.1038/s41598-020-71767-4. PubMed DOI PMC
Goodson H.V., Jonasson E.M. Microtubules and Microtubule-Associated Proteins. Cold Spring Harb. Perspect. Biol. 2018;10:a022608. doi: 10.1101/cshperspect.a022608. PubMed DOI PMC
Uchida S., Martel G., Pavlowsky A., Takizawa S., Hevi C., Watanabe Y., Kandel E.R., Alarcon J.M., Shumyatsky G.P. Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing. Nat. Commun. 2014;5:4389. doi: 10.1038/ncomms5389. PubMed DOI PMC
Calipari E.S., Godino A., Salery M., Damez-Werno D.M., Cahill M.E., Werner C.T., Gancarz A.M., Peck E.G., Jlayer Z., Rabkin J., et al. Synaptic Microtubule-Associated Protein EB3 and SRC Phosphorylation Mediate Structural and Behavioral Adaptations During Withdrawal From Cocaine Self-Administration. J. Neurosci. 2019;39:5634–5646. doi: 10.1523/JNEUROSCI.0024-19.2019. PubMed DOI PMC
Beltran-Campos V., Silva-Vera M., Garcia-Campos M.L., Diaz-Cintra S. Effects of morphine on brain plasticity. Neurologia. 2015;30:176–180. doi: 10.1016/j.nrleng.2014.08.001. PubMed DOI
Miller E.C., Zhang L., Dummer B.W., Cariveau D.R., Loh H., Law P.Y., Liao D. Differential modulation of drug-induced structural and functional plasticity of dendritic spines. Mol. Pharmacol. 2012;82:333–343. doi: 10.1124/mol.112.078162. PubMed DOI PMC
Russo S.J., Dietz D.M., Dumitriu D., Morrison J.H., Malenka R.C., Nestler E.J. The addicted synapse: Mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 2010;33:267–276. doi: 10.1016/j.tins.2010.02.002. PubMed DOI PMC
Chidambaram S.B., Rathipriya A.G., Bolla S.R., Bhat A., Ray B., Mahalakshmi A.M., Manivasagam T., Thenmozhi A.J., Essa M.M., Guillemin G.J., et al. Dendritic spines: Revisiting the physiological role. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2019;92:161–193. doi: 10.1016/j.pnpbp.2019.01.005. PubMed DOI
Lee S., Zhang H.Y., Webb D.J. Dendritic spine morphology and dynamics in health and disease. Cell Health Cytoskelet. 2015;7:121–131.
Rich M.T., Abbott T.B., Chung L., Gulcicek E.E., Stone K.L., Colangelo C.M., Lam T.T., Nairn A.C., Taylor J.R., Torregrossa M.M. Phosphoproteomic Analysis Reveals a Novel Mechanism of CaMKIIalpha Regulation Inversely Induced by Cocaine Memory Extinction versus Reconsolidation. J. Neurosci. 2016;36:7613–7627. doi: 10.1523/JNEUROSCI.1108-16.2016. PubMed DOI PMC
Sun N., Chi N., Lauzon N., Bishop S., Tan H., Laviolette S.R. Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex. Cereb. Cortex. 2011;21:2665–2680. doi: 10.1093/cercor/bhr031. PubMed DOI