Alterations in the Proteome and Phosphoproteome Profiles of Rat Hippocampus after Six Months of Morphine Withdrawal: Comparison with the Forebrain Cortex
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-03295S
Czech Science Foundation
RVO:67985823
the Institute of Physiology
PubMed
35052759
PubMed Central
PMC8772819
DOI
10.3390/biomedicines10010080
PII: biomedicines10010080
Knihovny.cz E-zdroje
- Klíčová slova
- energy metabolism, gel-based proteomics, nLC-MS/MS, oxidative stress, protracted morphine withdrawal, rat brain cortex, rat hippocampus,
- Publikační typ
- časopisecké články MeSH
The knowledge about proteome changes proceeding during protracted opioid withdrawal is lacking. Therefore, the aim of this work was to analyze the spectrum of altered proteins in the rat hippocampus in comparison with the forebrain cortex after 6-month morphine withdrawal. We utilized 2D electrophoretic workflow (Pro-Q® Diamond staining and Colloidal Coomassie Blue staining) which was preceded by label-free quantification (MaxLFQ). The phosphoproteomic analysis revealed six significantly altered hippocampal (Calm1, Ywhaz, Tuba1b, Stip1, Pgk1, and Aldoa) and three cortical proteins (Tubb2a, Tuba1a, and Actb). The impact of 6-month morphine withdrawal on the changes in the proteomic profiles was higher in the hippocampus-14 proteins, only three proteins were detected in the forebrain cortex. Gene Ontology (GO) enrichment analysis of differentially expressed hippocampal proteins revealed the most enriched terms related to metabolic changes, cytoskeleton organization and response to oxidative stress. There is increasing evidence that energy metabolism plays an important role in opioid addiction. However, the way how morphine treatment and withdrawal alter energy metabolism is not fully understood. Our results indicate that the rat hippocampus is more susceptible to changes in proteome and phosphoproteome profiles induced by 6-month morphine withdrawal than is the forebrain cortex.
Zobrazit více v PubMed
Azevedo Neto J., Constanzini A., De Giorgio R., Lambert D.G., Ruzza C., Calò G. Biased versus partial agonism in the search for safer opioid analgesics. Molecules. 2020;25:3870. doi: 10.3390/molecules25173870. PubMed DOI PMC
Paul A.K., Gueven N., Dietis N. Profiling the effects of repetitive morphine administration on motor behavior in rats. Molecules. 2021;26:4355. doi: 10.3390/molecules26144355. PubMed DOI PMC
Chen Y., Mestek A., Liu J., Hurley J.A., Yu L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol. Pharmacol. 1993;44:8–12. doi: 10.1016/0167-0115(94)90214-3. PubMed DOI
Pacifici G.M. Metabolism and pharmacokinetics of morphine in neonates: A review. Clinics. 2016;71:474–480. doi: 10.6061/clinics/2016(08)11. PubMed DOI PMC
Bourova L., Vosahlikova M., Kagan D., Dlouha K., Novotny J., Svoboda P. Long-term adaptation to high doses of morphine causes desensitization of µ-OR- and δ-OR-stimulated G-protein response in forebrain cortex but does not decrease the amount of G-protein alpha subunit. Med. Sci. Monit. 2010;16:260–270. PubMed
Sim L.J., Selley D.E., Dworkin S.I., Childers S.R. Effects of chronic morphine administration on mu opioid receptor-stimulated [35S] GTPgammaS autoradiography in rat brain. J. Neurosci. 1996;16:2684–2692. doi: 10.1523/JNEUROSCI.16-08-02684.1996. PubMed DOI PMC
Selley D.E., Liu Q., Childers S.R. Signal transduction correlates of µ opioid agonist intrinsic efficacy: Receptor-stimulated [35S] GTPγS binding in mMOR-CHO cells and rat thalamus. J. Pharm. Exp. Ther. 1998;285:496–505. PubMed
Selley D.E., Cao Q.L., Liu Q., Childers S.R. Effect of sodium on agonist efficacy for G-protein activation in µ-opioid receptor-transfected CHO cells and rat thalamus. Br. J. Pharmacol. 2000;130:987–996. doi: 10.1038/sj.bjp.0703382. PubMed DOI PMC
Sim-Selley L.J., Selley D.E., Vogt L.J., Childers S.R., Martin T.J. Chronic heroin self-administration desensitizes mu opioid receptor-activated G-proteins in specific regions of rat brain. J. Neurosci. 2000;20:4555–4562. doi: 10.1523/JNEUROSCI.20-12-04555.2000. PubMed DOI PMC
Maher C.E., Selley D.E., Childers S.R. Relationship of mu opioid receptor binding to activation of G-proteins in specific rat brain regions. Biochem. Pharmacol. 2000;59:1395–1401. doi: 10.1016/S0006-2952(00)00272-0. PubMed DOI
Maher C.E., Martin T.J., Childers S.R. Mechanisms of mu opioid receptor/G-protein desensitization in brain by chronic heroin administration. Life Sci. 2005;77:1140–1154. doi: 10.1016/j.lfs.2005.03.004. PubMed DOI
Ujcikova H., Dlouha K., Roubalova L., Vosahlikova M., Kagan D., Svoboda P. Up-regulation of adenylylcyclases I and II induced by long-term adaptation of rats to morphine fades away 20 days after morphine withdrawal. Biochim. Et Biophys. Acta. 2011;1810:1220–1229. doi: 10.1016/j.bbagen.2011.09.017. PubMed DOI
Ujcikova H., Brejchova J., Vosahlikova M., Kagan D., Dlouha K., Sykora J., Merta L., Drastichova Z., Novotny J., Ostasov P., et al. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: The role of plasma membrane structure. Physiol. Res. 2014;63:S165–S176. doi: 10.33549/physiolres.932638. PubMed DOI
Ujcikova H., Eckhardt A., Kagan D., Roubalova L., Svoboda P. Proteomic analysis of post-nuclear supernatant and percoll-purified membranes prepared from brain cortex of rats exposed to increasing doses of morphine. Proteome Sci. 2014;12:11. doi: 10.1186/1477-5956-12-11. PubMed DOI PMC
Ujcikova H., Vosahlikova M., Roubalova L., Svoboda P. Proteomic analysis of protein composition of rat forebrain cortex exposed to morphine for 10 days; comparison with animals exposed to morphine and subsequently nurtured for 20 days in the absence of this drug. J. Proteom. 2016;145:11–23. doi: 10.1016/j.jprot.2016.02.019. PubMed DOI
Ujcikova H., Cechova K., Jagr M., Roubalova L., Vosahlikova M., Svoboda P. Proteomic analysis of protein composition of rat hippocampus exposed to morphine for 10 days; comparison with animals after 20 days of morphine withdrawal. PLoS ONE. 2020;15:e0231721. doi: 10.1371/journal.pone.0231721. PubMed DOI PMC
Ujcikova H., Hejnova L., Eckhardt A., Roubalova L., Novotny J., Svoboda P. Impact of three-month morphine withdrawal on rat brain cortex, hippocampus, striatum and cerebellum: Proteomic and phosphoproteomic studies. Neurochem. Int. 2021;144:104975. doi: 10.1016/j.neuint.2021.104975. PubMed DOI
Kim S.Y., Chudapongse N., Lee S.M., Levin M.C., Oh J.T., Park H.J., Ho I.K. Proteomic analysis of phosphotyrosyl proteins in morphine-dependent rat brains. Mol. Brain Res. 2005;133:58–70. doi: 10.1016/j.molbrainres.2004.09.018. PubMed DOI
Bierczynska-Krzysik A., Bonar E., Drabik A., Noga M., Suder P., Dylag T., Dubin A., Kotlinska J., Silberring J. Rat brain proteome in morphine dependence. Neurochem. Int. 2006;49:401–406. doi: 10.1016/j.neuint.2006.01.024. PubMed DOI
Bierczynska-Krzysik A., Pradeep J.J.P., Silberring J., Kotlinska J., Dylag T., Cabatic M., Lubec G. Proteomic analysis of rat cerebral cortex, hippocampus and striatum after exposure to morphine. Int. J. Mol. Med. 2006;18:775–784. doi: 10.3892/ijmm.18.4.775. PubMed DOI
Li K.W., Jimenez C.R., van der Schors R.C., Hornshaw M.P., Schoffelmeer A.N.M., Smit A.B. Intermittent administration of morphine alters protein expression in rat nucleus accumbens. Proteomics. 2006;6:2003–2008. doi: 10.1002/pmic.200500045. PubMed DOI
Chen X.L., Lu G., Gong Y.X., Zhao L.C., Chen J., Chi Z.Q., Yang Y.M., Chen Z., Li Q.L., Liu J.G. Expression changes of hippocampal energy metabolism enzymes contribute to behavioral abnormalities during chronic morphine treatment. Cell Res. 2007;17:689–700. doi: 10.1038/cr.2007.63. PubMed DOI
Jiang X., Li J., Ma L. Metabolic enzymes link morphine withdrawal with metabolic disorder. Cell Res. 2007;17:741–743. doi: 10.1038/cr.2007.75. PubMed DOI
Bodzon-Kułakowska A., Suder P., Mak P., Bierczynska-Krzysik A., Lubec G., Walczak B., Kotlinska J., Lubec G. Proteomic analysis of striatal neuronal cell cultures after morphine administration. J. Sep. Sci. 2009;32:1200–1210. doi: 10.1002/jssc.200800464. PubMed DOI
Bodzon-Kułakowska A., Kułakowski K., Drabik A., Moszczynski A., Silberring J., Suder P. Morphinome—A meta-analysis applied to proteomics. Proteomics. 2011;11:5–21. doi: 10.1002/pmic.200900848. PubMed DOI
Antolak A., Bodzon-Kułakowska A., Cetnarska E., Pietruszka M., Marszałek-Grabska M., Kotlińska J., Suder P. Proteomic data in morphine addiction versus real protein activity: Metabolic enzymes. J. Cell. Biochem. 2017;118:4323–4330. doi: 10.1002/jcb.26085. PubMed DOI
Bodzon-Kułakowska A., Padrtova T., Drabik A., Ner-Kluza J., Antolak A., Kułakowski K., Suder P. Morphinome database—The database of proteins altered by morphine administration—An update. J. Proteom. 2019;190:21–26. doi: 10.1016/j.jprot.2018.04.013. PubMed DOI
Drastichova Z., Hejnova L., Moravcova R., Novotny J. Proteomic analysis unveils expressional changes in cytoskeleton- and synaptic plasticity-associated proteins in rat brain six months after withdrawal from morphine. Life. 2021;11:683. doi: 10.3390/life11070683. PubMed DOI PMC
Marcus K., Lelong C., Rabilloud T. What room for two-dimensional gel-based proteomics in a shotgun proteomics world? Proteomes. 2020;8:17. doi: 10.3390/proteomes8030017. PubMed DOI PMC
Schulenberg B., Goodman T.N., Aggeler R., Capaldi R.A., Patton W.F. Characterization of dynamic and steady-state protein phosphorylation using fluorescent phosphoprotein gel stain and mass spectrometry. Electrophoresis. 2004;25:2526–2532. doi: 10.1002/elps.200406007. PubMed DOI
Eckhardt A., Jagr M., Pataridis S., Miksik I. Proteomic analysis of human tooth pulp: Proteomics of human tooth. J. Endod. 2014;40:1961–1966. doi: 10.1016/j.joen.2014.07.001. PubMed DOI
Jágr M., Eckhardt A., Pataridis S., Foltan R., Mysak J., Miksik I. Proteomic analysis of human tooth pulp proteomes—Comparison of caries-resistant and caries-susceptible persons. J. Proteom. 2016;145:127–136. doi: 10.1016/j.jprot.2016.04.022. PubMed DOI
Dodge P.W., Takemori A.E. Effects of morphine, nalnorphine and pentobarbital alone and combination on cerebral glycolytic substrates and cofactors of rats in vivo. Biochem. Pharmacol. 1972;21:287–294. doi: 10.1016/0006-2952(72)90340-1. PubMed DOI
Sherman A.D., Mitchell C.L. Effects of morphine and pain on brain intermediary metabolism. Neuropharmacology. 1972;11:871–877. doi: 10.1016/0028-3908(72)90046-9. PubMed DOI
Chuang D.M., Hough C., Senatorov V.V. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2005;45:269–290. doi: 10.1146/annurev.pharmtox.45.120403.095902. PubMed DOI
Tristan C., Shahani N., Sedlak T.W., Sawa A. The diverse functions of GAPDH: Views from different subcellular compartments. Cell. Signal. 2011;23:317–323. doi: 10.1016/j.cellsig.2010.08.003. PubMed DOI PMC
Landino L.M., Hagedorn T.D., Kennett K.L. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase. Cytoskeleton. 2014;71:707–718. doi: 10.1002/cm.21204. PubMed DOI
Kunjithapatham R., Geschwind J.F., Devine L., Boronina T.N., O’Meally R.N., Cole R.N., Torbenson R.S., Ganapathy-Kanniappan S. Occurence of a multimer high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum. J. Proteome Res. 2015;14:1645–1656. doi: 10.1021/acs.jproteome.5b00089. PubMed DOI PMC
Tisdale E.J., Talati N.K., Artalejo C.R., Shisheva A. GAPDH binds Akt to facilitate cargo transport in the early secretory pathway. Exp. Cell Res. 2016;349:310–319. doi: 10.1016/j.yexcr.2016.10.025. PubMed DOI PMC
Lazarev V.F., Guzhova I.V., Margulis B.A. Glyceraldehyde-3-phosphate dehydrogenase is a multifaceted therapeutic target. Pharmaceutics. 2020;12:416. doi: 10.3390/pharmaceutics12050416. PubMed DOI PMC
Collel A., Green D.R., Ricci J.E. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 2009;16:1573–1581. doi: 10.1038/cdd.2009.137. PubMed DOI
Goasdoue K., Awabdy D., Bjorkman S.T., Miller S. Standard loading controls are not reliable for Western blot quantification across brain development or in pathological conditions. Electrophoresis. 2016;37:630–634. doi: 10.1002/elps.201500385. PubMed DOI
Repici M., Giorgini M. DJ-1 in Parkinson’s disease: Clinical insights and therapeutic perspectives. J. Clin. Med. 2019;8:1377. doi: 10.3390/jcm8091377. PubMed DOI PMC
Dos Santos M.C.T., Scheller D., Schulte C., Mesa I.R., Colman P., Bujac S.R., Bell R., Berteau C., Perez L.T., Lachmann I., et al. Evaluation of cerebrospinal fluid proteins as potential biomarkers for early stage Parkinson’s disease diagnosis. PLoS ONE. 2018;13:e0206536. doi: 10.1371/journal.pone.0206536. PubMed DOI PMC
Zeng X.S., Geng W.S., Wang Z.Q., Jia J.J. Morphine addiction and oxidative stress: The potential effects of thioredoxin-1. Front. Pharmacol. 2020;11:82. doi: 10.3389/fphar.2020.00082. PubMed DOI PMC
Kurutas E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016;15:71. doi: 10.1186/s12937-016-0186-5. PubMed DOI PMC
Zhang Y.T., Zheng Q.S., Pan J., Zheng R.L. Oxidative damage of biomolecules in mouse liver induced by morphine and protected by antioxidants. Basic Clin. Pharmacol. Toxicol. 2004;95:53–58. doi: 10.1111/j.1742-7843.2004.950202.x. PubMed DOI
Ozmen I., Naziroglu M., Alici H.A., Sahin F., Cengiz M., Eren I. Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neurochem. Res. 2007;32:19–25. doi: 10.1007/s11064-006-9217-5. PubMed DOI
Motaghinejad M., Karimian M., Motaghinejad O., Shabab B., Yazdani I., Fatima S. Protective effects of various dosage of curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol. Rep. 2015;67:230–235. doi: 10.1016/j.pharep.2014.09.006. PubMed DOI
Abdel-Zaher A.O., Mostafa M.G., Farghly H.M., Hamdy M.M., Omran G.A., Al-Shaibani N.K.M. Inhibition of brain oxidative stress and inducible nitric oxide synthase expression by thymoquinone attenuates the development of morphine tolerance and dependence in mice. Eur. J. Pharmacol. 2013;702:62–70. doi: 10.1016/j.ejphar.2013.01.036. PubMed DOI
Skrabalova J., Drastichova Z., Novotny J. Morphine as a potential oxidative stress-causing agent. Mini Rev. Org. Chem. 2013;10:367–372. doi: 10.2174/1570193X113106660031. PubMed DOI PMC
Mattei V., Martellucci S., Santilli F., Manganelli V., Garofalo T., Candelise N., Caruso A., Sorice M., Scaccianoce S., Misasi R. Morphine withdrawal modifies prion protein expression in rat hippocampus. PLoS ONE. 2017;12:e0169571. PubMed PMC
Bodzon-Kulakowska A., Suder P., Drabik A., Kotlinska J.H., Silberring J. Constant activity of glutamine synthetase after morphine administration versus proteomic results. Anal. Bioanal. Chem. 2010;398:2939–2942. doi: 10.1007/s00216-010-4244-0. PubMed DOI PMC
Everitt B.J., Robbins T.W. From the ventral to the dorsal striatum: Devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 2013;37:1946–1954. doi: 10.1016/j.neubiorev.2013.02.010. PubMed DOI
Yager L.M., Garcia A.F., Wunsch A.M., Ferguson S.M. The ins and outs of the striatum: Role in drug addiction. Neuroscience. 2015;301:529–541. doi: 10.1016/j.neuroscience.2015.06.033. PubMed DOI PMC
Shen S., Jiang X., Li J., Straubinger R.M., Suarez M., Tu C., Duan X., Thompson A.C., Qu J. Large-scale, ion-current-based proteomic investigation of the rat striatal proteome in a model of short- and long-term cocaine withdrawal. J. Proteome Res. 2016;15:1702–1716. doi: 10.1021/acs.jproteome.6b00137. PubMed DOI PMC
Miquel M., Vazquez-Sanroman D., Carbo-Gas M., Gil-Miravet I., Sanchis-Sequra C., Carulli D., Manzo J., Coria-Avila G.A. Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci. Biobehav. Rev. 2016;60:1–11. doi: 10.1016/j.neubiorev.2015.11.005. PubMed DOI
Ranjbar H., Soti M., Banazadeh M., Saleki K., Kohlmeier K.A., Shabani M. Addiction and the cerebellum with a focus on actions of opioid receptors. Neurosci. Biobehav. Rev. 2021;131:229–247. doi: 10.1016/j.neubiorev.2021.09.021. PubMed DOI