Morphine as a Potential Oxidative Stress-Causing Agent

. 2013 Nov ; 10 (4) : 367-372.

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené arabské emiráty Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24376392

Morphine exhibits important pharmacological effects for which it has been used in medical practice for quite a long time. However, it has a high addictive potential and can be abused. Long-term use of this drug can be connected with some pathological consequences including neurotoxicity and neuronal dysfunction, hepatotoxicity, kidney dysfunction, oxidative stress and apoptosis. Therefore, most studies examining the impact of morphine have been aimed at determining the effects induced by chronic morphine exposure in the brain, liver, cardiovascular system and macrophages. It appears that different tissues may respond to morphine diversely and are distinctly susceptible to oxidative stress and subsequent oxidative damage of biomolecules. Importantly, production of reactive oxygen/nitrogen species induced by morphine, which have been observed under different experimental conditions, can contribute to some pathological processes, degenerative diseases and organ dysfunctions occurring in morphine abusers or morphine-treated patients. This review attempts to provide insights into the possible relationship between morphine actions and oxidative stress.

Zobrazit více v PubMed

Vallejo R, Barkin RL, Wang VC. Pharmacology of opioids in the treatment of chronic pain syndromes. Pain Phys. 2011;14(4):E343–E360. PubMed

Ueda H, Ueda M. Mechanisms underlying morphine analgesic tolerance and dependence. Front. Biosci. 2009;14:5260–5272. PubMed

Flemming K. The use of morphine to treat cancer related pain a synthesis of quantitative and qualitative research. J. Pain Sympt. Man. 2010;39(1):139–154. PubMed

Asgary S, Sarrafzadegan N, Naderi GA, Rozbehani R. Effect of opium addiction on new and traditional cardi-ovascular risk factors do duration of addiction and route of administration matter. Lipids Health Dis. 2008;7:42. PubMed PMC

Sultan P, Gutierrez MC, Carvalho B. Neuraxial morphine and respiratory depression: finding the right balance. Drugs. 2011;71(14):1807–1819. PubMed

Miaskowski C. A review of the incidence causes consequences and management of gastrointestinal effects associated with postoperative opioid administration. J. Perianesth. Nurs. 2009;24(4):222–228. PubMed

Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anes-thesiology. 2011;115(6):1363–1381. PubMed PMC

Jacoby E, Bouhelal R, Gerspacher M, Seuwen K. The 7 TM G-protein-coupled receptor target family. ChemMedChem. 2006;1(8):761–782. PubMed

Insel PA, Snead A, Murray F, Zhang L, Yokouchi H, Katakia T, Kwon O, Dimucci D, Wilderman A. GPCR expression in tissues and cells are the optimal receptors being used as drug targets. Br. J. Pharmacol. 2012;165(6):1613–1616. PubMed PMC

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39(1):44–84. PubMed

Patel VP, Chu CT. Nuclear transport oxidative stress and neurodegeneration. Int. J. Clin. Exp. Pathol. 2011;4(3):215–229. PubMed PMC

Zhu H, Jia Z, Misra H, Li YR. Oxidative stress and redox signaling mechanisms of alcoholic liver disease updated experimental and clinical evidence. J. Dig. Dis. 2012;13(3):133–142. PubMed PMC

Jimenez-Del-Rio M, Velez-Pardo C. The bad the good and the ugly about oxidative stress. Oxid. Med. Cell Longev. 2012;2012:163913. PubMed PMC

Braenden OJ, Eddy NB, Halbach H. Synthetic substances with morphine-like effect relationship between chemical structure and analgesic action. Bull. World Health Organ. 1955;13(6):937–998. PubMed PMC

Andersen G, Christrup L, Sjogren P. Relationships among morphine metabolism, pain and side effects during long-term treatment an update. J. Pain Symptom Manag. 2003;25(1):74–91. PubMed

Janecka A, Fichna J, Janecki T. Opioid receptors and their ligands. Curr. Top. Med. Chem. 2004;4(1):1–17. PubMed

Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function. Curr. Drug Targets. 2012;13(2):230–246. PubMed PMC

Eguchi M. Recent advances in selective opioid receptor agonists and antagonists. Med. Res. Rev. 2004;24(2):182–212. PubMed

Piros ET, Hales TG, Evans CJ. Functional analysis of cloned opioid receptors in transfected cell lines. Neurochem. Res. 1996;21(11):1277–1285. PubMed

Standifer KM, Pasternak GW. G proteins and opioid receptor-mediated signalling. Cell Signal. 1997;9(3-4):237–248. PubMed

Wojcikiewicz RJ. Regulated ubiquitination of proteins in GPCR-initiated signaling pathways. Trends Pharmacol. Sci. 2004;25(1):35–41. PubMed

Marchese A, Paing MM, Temple BR, Trejo J. G protein-coupled receptor sorting to endosomes and lysosomes. Annu. Rev. Pharmacol. Toxicol. 2008;48:601–629. PubMed PMC

Mohan ML, Vasudevan NT, Gupta MK, Martelli EE, NagaPrasad SV. G-protein coupled receptor resensitization-appreciating the balancing act of receptor function. Curr. Mol. Pharmacol. 2012;0 PubMed PMC

vonZastrow M. Role of endocytosis in signalling and regulation of G-protein-coupled receptors. Biochem. Soc. Trans. 2001;29 (Pt 4):500–504. PubMed

vonZastrow M. A cell biologist's perspective on physiological adaptation to opiate drugs. Neuropharmacology. 2004;47 (Suppl 1 ):286–292. PubMed

Keith DE, Murray SR, Zaki PA, Chu PC, Lissin DV, Kang L, Evans CJ, vonZastrow M. Morphine activates opioid receptors without causing their rapid internalization. J. Biol. Chem. 1996;271(32):19021–19024. PubMed

Dang VC, Williams JT. Morphine-Induced mu-opioid receptor desensitization. Mol. Pharmacol. 2005;68(4):1127–1132. PubMed

Svoboda P, Novotny J. Hormone-induced subcellular redistribution of trimeric G proteins. Cell Mol. Life Sci. 2002;59(3):501–512. PubMed PMC

Gintzler AR, Chakrabarti S. Post-opioid receptor adaptations to chronic morphine altered functionality and associations of signaling molecules. Life Sci. 2006;79(8):717–722. PubMed

Chakrabarti S, Rivera M, Yan SZ, Tang WJ, Gintzler AR. Chronic morphine augments G(beta)(gamma)/Gs(alpha) stimulation of adenylyl cyclase relevance to opioid tolerance. Mol. Pharmacol. 1998;54(4):655–662. PubMed

Kaewsuk S, Hutamekalin P, Ketterman AJ, Khotchabhakdi N, Govitrapong P, Casalotti SO. Morphine induces short-lived changes in G-protein gene expression in rat prefrontal cortex. Eur. J. Pharmacol. 2001;411(1-2):11–16. PubMed

Fabian G, Bozo B, Szikszay M, Horvath G, Coscia CJ, Szucs M. Chronic morphine-induced changes in mu-opioid receptors and G proteins of different subcellular loci in rat brain. J. Pharmacol. Exp. Ther. 2002;302(2):774–780. PubMed

Xu H, Wang X, Zimmerman D, Boja ES, Wang J, Bilsky EJ, Rothman RB. Chronic morphine up-regulates G alpha12 and cytoskeletal proteins in Chinese hamster ovary cells expressing the cloned mu opioid receptor. J. Pharmacol. Exp. Ther. 2005;315(1):248–255. PubMed

Nalepa I, Zelek-Molik A, Bielawski A, Roman A, Vetulani J. Does the presence of morphine counteract adaptive changes in expression of G-protein alpha subunits mRNA induced by chronic morphine treatment? Pharmacol. Rep. 2007;59(1):34–45. PubMed

Skrabalova J, Neckar J, Hejnova L, Bartonova I, Kolar F, Novotny J. Antiarrhythmic effect of prolonged morphine exposure is accompanied by altered myocardial adenylyl cyclase signaling in rats. Pharmacol. Rep. 2012;64(2):351–359. PubMed

Chakrabarti S, Regec A, Gintzler AR. Chronic morphine acts via a protein kinase Cgamma-G(beta)-adenylyl cyclase complex to augment phosphorylation of G(beta) and G(betagamma) stimulatory adenylyl cyclase signaling. Brain Res. Mol. Brain Res. 2005;138(1):94–103. PubMed

Avidor-Reiss T, Nevo I, Saya D, Bayewitch M, Vogel Z. Opiate-induced adenylyl cyclase superactivation is isozyme-specific. J. Biol. Chem. 1997;272(8):5040–5047. PubMed

Nevo I, Avidor-Reiss T, Levy R, Bayewitch M, Heldman E, Vogel Z. Regulation of adenylyl cyclase iso-zymes on acute and chronic activation of inhibitory receptors. Mol. Pharmacol. 1998;54(2):419–426. PubMed

Ammer H, Christ TE. Identity of adenylyl cyclase isoform determines the G protein mediating chronic opioid-induced adenylyl cyclase supersensitivity. J. Neurochem. 2002;83(4):818–827. PubMed

Watts VJ, Neve KA. Sensitization of adenylate cyclase by Galpha i/o-coupled receptors. Pharmacol. Ther. 2005;106(3):405–421. PubMed

Schallmach E, Steiner D, Vogel Z. Inhibition of AC-II activity following chronic agonist exposure is modulated by phosphorylation. J. Mol. Neurosci. 2006;29(2):115–122. PubMed

Bergendi L, Benes L, Durackova Z, Ferencik M. Chemistry physiology and pathology of free radicals. Life Sci. 1999;65(18-19):1865–1874. PubMed

Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxid. Redox. Signal. 2008;10(8):1343–1374. PubMed PMC

Yung LM, Leung FP, Yao X, Chen ZY, Huang Y. Reactive oxygen species in vascular wall. Cardiovasc. Hematol. Disord. Drug Targets. 2006;6(1):1–19. PubMed

Afonso V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide dismutases role in joint diseases. Joint Bone Spine. 2007;74(4):324–329. PubMed

Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 2011;301(6):H2181–H2190. PubMed

Wang Y, Qiao M, Mieyal JJ, Asmis LM, Asmis R. Molecular mechanism of glutathione-mediated protection from oxidized low-density lipoprotein-induced cell injury in human macrophages role of glutathione reductase and glutaredoxin. Free Radic. Biol. Med. 2006;41(5):775–785. PubMed

Yang L, Chen JH, Xu T, Zhou AS, Yang HK. Rice protein improves oxidative stress by regulating glutathione metabolism and attenuating oxidative damage to lipids and proteins in rats. Life Sci. 2012;91(11-12):389–394. PubMed

Goudas LC, Langlade A, Serrie A, Matson W, Milbury P, Thurel C, Sandouk P, Carr DB. Acute decreases in cerebrospinal fluid glutathione levels after intracerebroventricular morphine for cancer pain. Anesth. An-alg. 1999;89(5):1209–1215. PubMed

Zhang YT, Zheng QS, Pan J, Zheng RL. Oxidative damage of biomolecules in mouse liver induced by morphine and protected by antioxidants. Basic Clin. Pharmacol. Toxicol. 2004;95(2):53–58. PubMed

Guzman DC, Vazquez IE, Brizuela NO, Alvarez RG, Mejia GB, Garcia EH, Santamaria D, deApreza M, Olguin HJ. Assessment of oxidative damage induced by acute doses of morphine sulfate in postnatal and adult rat brain. Neurochem. Res. 2006;31(4):549–554. PubMed

Payabvash S, Beheshtian A, Salmasi AH, Kiumehr S, Ghahremani MH, Tavangar SM, Sabzevari O, Dehpour AR. Chronic morphine treatment induces oxidant and apoptotic damage in the mice liver. Life Sci. 2006;79(10):972–980. PubMed

Ozmen I, Naziroglu M, Alici HA, Sahin F, Cengiz M, Eren I. Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neurochem. Res. 2007;32(1):19–25. PubMed

Abdel-Zaher AO, Abdel-Rahman MS, FM EL. Blockade of nitric oxide overproduction and oxidative stress by Nigella sativa oil attenuates morphine-induced tolerance and dependence in mice. Neurochem. Res. 2010;35(10):1557–1565. PubMed

Sumathi T, Nathiya VC, Sakthikumar M. Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats. Ind. J. Pharm. Sci. 2011;73(4):409–415. PubMed PMC

Perez-Casanova A, Husain K, Noel RJJr, Rivera-Amill V, Kumar A. Interaction of SIV/SHIV infection and morphine on plasma oxidant/antioxidant balance in macaque. Mol. Cell Biochem. 2008;308(1-2):169–175. PubMed

Zhou J, Li Y, Yan G, Bu Q, Lv L, Yang Y, Zhao J, Shao X, Deng Y, Zhu R, Zhao Y, Cen X. Protective role of taurine against morphine induced neurotoxicity in C6 cells via inhibition of oxidative stress. Neurotox. Res. 2011;20(4):334–342. PubMed

Rozisky JR, Laste G, deMacedo IC, Santos VS, Krolow R, Noschang C, Vanzella C, Bertoldi K, Lovatel GA, deSouza IC, Siqueira IR, Dalmaz C, Caumo W, Torres IL. Neonatal morphine administration leads to changes in hippocampal BDNF levels and antioxidant enzyme activity in the adult life of rats. Neurochem. Res. 2013;38(3):494–503. PubMed

Hsiao PN, Chang MC, Cheng WF, Chen CA, Lin HW, Hsieh CY, Sun WZ. Morphine induces apoptosis of human endothelial cells through nitric oxide and reactive oxygen species pathways. Toxicology. 2009;256(1-2):83–91. PubMed

Lam CF, Liu YC, Tseng FL, Sung YH, Huang CC, Jiang MJ, Tsai YC. High-dose morphine impairs vascular endothelial function by increased production of superoxide anions. Anesthesiology. 2007;106(3):532–537. PubMed

Bhat RS, Bhaskaran M, Mongia A, Hitosugi N, Singhal PC. Morphine-induced macrophage apoptosis oxidative stress and strategies for modulation. J. Leukoc. Biol. 2004;75(6):1131–1138. PubMed

Koch T, Seifert A, Wu DF, Rankovic M, Kraus J, Borner C, Brandenburg LO, Schroder H, Hollt V. mu-opioid receptor-stimulated synthesis of reactive oxygen species is mediated via phospholipase D2. J. Neurochem. 2009;110(4):1288–1296. PubMed

Lin X, Li Q, Wang YJ, Ju YW, Chi ZQ, Wang MW, Liu JG. Morphine inhibits doxorubicin-induced reactive oxygen species generation and nuclear factor kappaB transcriptional activation in neuroblastoma SH-SY5Y cells. Biochem. J. 2007;406(2):215–221. PubMed PMC

Salvemini D, Neumann WL. Peroxynitrite a strategic linchpin of opioid analgesic tolerance. Trends Pharmacol. Sci. 2009;30(4):194–202. PubMed

Muscoli C, Cuzzocrea S, Ndengele MM, Mollace V, Porreca F, Fabrizi F, Esposito E, Masini E, Matuschak GM, Salvemini D. Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. J. Clin. Invest. 2007;117(11):3530–3539. PubMed PMC

Kolesnikov YA, Pick CG, Ciszewska G, Pasternak GW. Blockade of tolerance to morphine but not to kappa opioids by a nitric oxide synthase inhibitor. Proc. Natl. Acad. Sci. USA. 1993;90(11):5162–5166. PubMed PMC

Heinzen EL, Pollack GM. The development of morphine antinociceptive tolerance in nitric oxide synthase-deficient mice. Biochem. Pharmacol. 2004;67(4):735–741. PubMed

Batinic-Haberle I, Ndengele MM, Cuzzocrea S, Reboucas JS, Spasojevic I, Salvemini D. Lipophilicity is a critical parameter that dominates the efficacy of metalloporphyrins in blocking the development of morphine antinociceptive tolerance through peroxynitrite-mediated pathways. Free Radic. Biol. Med. 2009;46(2):212–219. PubMed PMC

Doyle T, Bryant L, Batinic-Haberle I, Little J, Cuzzocrea S, Masini E, Spasojevic I, Salvemini D. Supraspinal inactivation of mitochondrial superoxide dismutase is a source of peroxynitrite in the development of morphine antinociceptive tolerance. Neuroscience. 2009;164(2):702–710. PubMed PMC

Murray F, Harrison NJ, Grimwood S, Bristow LJ, Hutson PH. Nucleus accumbens NMDA receptor subunit expression and function is enhanced in morphine dependent rats. Eur. J. Pharmacol. 2007;562(3):191–197. PubMed

Ndengele MM, Cuzzocrea S, Masini E, Vinci MC, Esposito E, Muscoli C, Petrusca DN, Mollace V, Mazzon E, Li D, Petrache I, Matuschak GM, Salvemini D. Spinal ceramide modulates the development of morphine antinociceptive tolerance via peroxynitrite-mediated nitroxidative stress and neuroimmune activation. J. Pharmacol. Exp. Ther. 2009;329(1):64–75. PubMed PMC

Peterson PK, Gekker G, Hu S, Anderson WR, Kravitz F, Portoghese PS, Balfour HHJr, Chao CC. Morphine amplifies HIV-1 expression in chronically infected promonocytes cocultured with human brain cells. J. Neuroimmunol. 1994;50(2):167–175. PubMed

Schweitzer C, Keller F, Schmitt MP, Jaeck D, Adloff M, Schmitt C, Royer C, Kirn A, Aubertin AM. Morphine stimulates HIV replication in primary cultures of human Kupffer cells. Res. Virol. 1991;142(2-3):189–195. PubMed

Turchan-Cholewo J, Dimayuga FO, Gupta S, Keller JN, Knapp PE, Hauser KF, Bruce-Keller AJ. Morphine and HIV-Tat increase microglial-free radical production and oxidative stress possible role in cytokine regulation. J. Neurochem. 2009;108(1):202–215. PubMed PMC

Dave RS, Khalili K. Morphine treatment of human monocyte-derived macrophages induces differential miRNA and protein expression impact on inflammation and oxidative stress in the central nervous system. J. Cell Biochem. 2010;110(4):834–845. PubMed PMC

Podhaizer EM, Zou S, Fitting S, Samano KL, El-Hage N, Knapp PE, Hauser KF. Morphine and gp120 toxic interactions in striatal neurons are dependent on HIV-1 strain. J. Neuroimmune Pharmacol. 2012;7(4):877–891. PubMed PMC

Bierczynska-Krzysik A, Bonar E, Drabik A, Noga M, Suder P, Dylag T, Dubin A, Kotlinska J, Silberring J. Rat brain proteome in morphine dependence. Neurochem. Int. 2006;49(4):401–406. PubMed

Bierczynska-Krzysik A, PradeepJohn JP, Silberring J, Kotlinska J, Dylag T, Cabatic M, Lubec G. Proteomic analysis of rat cerebral cortex hippocampus and striatum after exposure to morphine. Int. J. Mol. Med. 2006;18(4):775–784. PubMed

Bu Q, Yang Y, Yan G, Hu Z, Hu C, Duan J, Lv L, Zhou J, Zhao J, Shao X, Deng Y, Li Y, Li H, Zhu R, Zhao Y, Cen X. Proteomic analysis of the nucleus accumbens in rhesus monkeys of morphine dependence and withdrawal intervention. J. Proteomics. 2012;75(4):1330–1342. PubMed

Drastichova Z, Skrabalova J, Jedelsky P, Neckar J, Kolar F, Novotny J. Global changes in the rat heart pro-teome induced by prolonged morphine treatment and withdrawal. PLoS One. 2012;7(10):e47167. PubMed PMC

Chen JC, Smith ER, Cahill M, Cohen R, Fishman JB. The opioid receptor binding of dezocine morphine fentanyl butorphanol and nalbuphine. Life Sci. 1993;52(4):389–396. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace