Global changes in the rat heart proteome induced by prolonged morphine treatment and withdrawal

. 2012 ; 7 (10) : e47167. [epub] 20121009

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23056601

Morphine belongs among the most commonly used opioids in medical practice due to its strong analgesic effects. However, sustained administration of morphine leads to the development of tolerance and dependence and may cause long-lasting alterations in nervous tissue. Although proteomic approaches enabled to reveal changes in multiple gene expression in the brain as a consequence of morphine treatment, there is lack of information about the effect of this drug on heart tissue. Here we studied the effect of 10-day morphine exposure and subsequent drug withdrawal (3 or 6 days) on the rat heart proteome. Using the iTRAQ technique, we identified 541 proteins in the cytosol, 595 proteins in the plasma membrane-enriched fraction and 538 proteins in the mitochondria-enriched fraction derived from the left ventricles. Altogether, the expression levels of 237 proteins were altered by morphine treatment or withdrawal. The majority of changes (58 proteins) occurred in the cytosol after a 3-day abstinence period. Significant alterations were found in the expression of heat shock proteins (HSP27, α-B crystallin, HSP70, HSP10 and HSP60), whose levels were markedly up-regulated after morphine treatment or withdrawal. Besides that morphine exposure up-regulated MAPK p38 (isoform CRA_b) which is a well-known up-stream mediator of phosphorylation and activation of HSP27 and α-B crystallin. Whereas there were no alterations in the levels of proteins involved in oxidative stress, several changes were determined in the levels of pro- and anti-apoptotic proteins. These data provide a complex view on quantitative changes in the cardiac proteome induced by morphine treatment or withdrawal and demonstrate great sensitivity of this organ to morphine.

Zobrazit více v PubMed

Flemming K (2010) The use of morphine to treat cancer-related pain: a synthesis of quantitative and qualitative research. J Pain Symptom Manage 39: 139–154. PubMed

Vallejo R, Barkin RL, Wang VC (2011) Pharmacology of opioids in the treatment of chronic pain syndromes. Pain Physician 14: E343–360. PubMed

Gregori SD, Gregori MD, Ranzani GN, Allegri M, Minella C, et al. (2012) Morphine metabolism, transport and brain disposition. Metab Brain Dis 27: 1–5. PubMed PMC

Kieffer BL, Evans CJ (2009) Opioid receptors: from binding sites to visible molecules in vivo. Neuropharmacology 56 Suppl 1205–212. PubMed PMC

Mansour A, Fox CA, Burke S, Meng F, Thompson RC, et al. (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350: 412–438. PubMed

Mansour A, Fox CA, Akil H, Watson SJ (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 18: 22–29. PubMed

Narita M, Funada M, Suzuki T (2001) Regulations of opioid dependence by opioid receptor types. Pharmacol Ther 89: 1–15. PubMed

Manchikanti L, Atluri S, Trescot AM, Giordano J (2008) Monitoring opioid adherence in chronic pain patients: tools, techniques, and utility. Pain Physician 11: S155–180. PubMed

Wang J, Yuan W, Li MD (2011) Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 44: 269–286. PubMed

Gintzler AR, Chakrabarti S (2006) Post-opioid receptor adaptations to chronic morphine; altered functionality and associations of signaling molecules. Life Sci 79: 717–722. PubMed

Christie MJ (2008) Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 154: 384–396. PubMed PMC

Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47 Suppl 124–32. PubMed

Fan LW, Tien LT, Tanaka S, Ma T, Chudapongse N, et al. (2003) Changes in the brain kappa-opioid receptor levels of rats in withdrawal from physical dependence upon butorphanol. Neuroscience 121: 1063–1074. PubMed

Murray F, Harrison NJ, Grimwood S, Bristow LJ, Hutson PH (2007) Nucleus accumbens NMDA receptor subunit expression and function is enhanced in morphine-dependent rats. Eur J Pharmacol 562: 191–197. PubMed

Chen Y, Jiang Y, Yue W, Zhou Y, Lu L, et al. (2008) Chronic, but not acute morphine treatment, up-regulates alpha-Ca2+/calmodulin dependent protein kinase II gene expression in rat brain. Neurochem Res 33: 2092–2098. PubMed

Mickiewicz AL, Napier TC (2011) Repeated exposure to morphine alters surface expression of AMPA receptors in the rat medial prefrontal cortex. Eur J Neurosci 33: 259–265. PubMed

Hamlin AS, McNally GP, Osborne PB (2007) Induction of c-Fos and zif268 in the nociceptive amygdala parallel abstinence hyperalgesia in rats briefly exposed to morphine. Neuropharmacology 53: 330–343. PubMed

Kaplan GB, Leite-Morris KA, Fan W, Young AJ, Guy MD (2011) Opiate sensitization induces FosB/DeltaFosB expression in prefrontal cortical, striatal and amygdala brain regions. PLoS One 6: e23574. PubMed PMC

Boronat MA, Garcia-Fuster MJ, Garcia-Sevilla JA (2001) Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain. Br J Pharmacol 134: 1263–1270. PubMed PMC

Emeterio EP, Tramullas M, Hurle MA (2006) Modulation of apoptosis in the mouse brain after morphine treatments and morphine withdrawal. J Neurosci Res 83: 1352–1361. PubMed

Marie-Claire C, Courtin C, Roques BP, Noble F (2004) Cytoskeletal genes regulation by chronic morphine treatment in rat striatum. Neuropsychopharmacology 29: 2208–2215. PubMed

Ammon-Treiber S, Hollt V (2005) Morphine-induced changes of gene expression in the brain. Addict Biol 10: 81–89. PubMed

Prokai L, Zharikova AD, Stevens SM Jr (2005) Effect of chronic morphine exposure on the synaptic plasma-membrane subproteome of rats: a quantitative protein profiling study based on isotope-coded affinity tags and liquid chromatography/mass spectrometry. J Mass Spectrom 40: 169–175. PubMed

Bierczynska-Krzysik A, Bonar E, Drabik A, Noga M, Suder P, et al. (2006) Rat brain proteome in morphine dependence. Neurochem Int 49: 401–406. PubMed

Bierczynska-Krzysik A, Pradeep John JP, Silberring J, Kotlinska J, Dylag T, et al. (2006) Proteomic analysis of rat cerebral cortex, hippocampus and striatum after exposure to morphine. Int J Mol Med 18: 775–784. PubMed

Li KW, Jimenez CR, van der Schors RC, Hornshaw MP, Schoffelmeer AN, et al. (2006) Intermittent administration of morphine alters protein expression in rat nucleus accumbens. Proteomics 6: 2003–2008. PubMed

Moron JA, Abul-Husn NS, Rozenfeld R, Dolios G, Wang R, et al. (2007) Morphine administration alters the profile of hippocampal postsynaptic density-associated proteins: a proteomics study focusing on endocytic proteins. Mol Cell Proteomics 6: 29–42. PubMed

Yang L, Sun ZS, Zhu YP (2007) Proteomic analysis of rat prefrontal cortex in three phases of morphine-induced conditioned place preference. J Proteome Res 6: 2239–2247. PubMed

Bodzon-Kulakowska A, Suder P, Mak P, Bierczynska-Krzysik A, Lubec G, et al. (2009) Proteomic analysis of striatal neuronal cell cultures after morphine administration. J Sep Sci 32: 1200–1210. PubMed

Abul-Husn NS, Annangudi SP, Ma'ayan A, Ramos-Ortolaza DL, Stockton SD Jr, et al. (2011) Chronic morphine alters the presynaptic protein profile: identification of novel molecular targets using proteomics and network analysis. PLoS One 6: e25535. PubMed PMC

Bu Q, Yang Y, Yan G, Hu Z, Hu C, et al. (2012) Proteomic analysis of the nucleus accumbens in rhesus monkeys of morphine dependence and withdrawal intervention. J Proteomics 75: 1330–1342. PubMed

Neasta J, Uttenweiler-Joseph S, Chaoui K, Monsarrat B, Meunier JC, et al. (2006) Effect of long-term exposure of SH-SY5Y cells to morphine: a whole cell proteomic analysis. Proteome Sci 4: 23. PubMed PMC

Xu H, Wang X, Zimmerman D, Boja ES, Wang J, et al. (2005) Chronic morphine up-regulates G alpha12 and cytoskeletal proteins in Chinese hamster ovary cells expressing the cloned mu opioid receptor. J Pharmacol Exp Ther 315: 248–255. PubMed

Suder P, Bodzon-Kulakowska A, Mak P, Bierczynska-Krzysik A, Daszykowski M, et al. (2009) The proteomic analysis of primary cortical astrocyte cell culture after morphine administration. J Proteome Res 8: 4633–4640. PubMed

Shanazari AA, Aslani Z, Ramshini E, Alaei H (2011) Acute and chronic effects of morphine on cardiovascular system and the baroreflexes sensitivity during severe increase in blood pressure in rats. ARYA Atheroscler 7: 111–117. PubMed PMC

Pang PS, Komajda M, Gheorghiade M (2010) The current and future management of acute heart failure syndromes. Eur Heart J 31: 784–793. PubMed

Murphy GS, Szokol JW, Marymont JH, Avram MJ, Vender JS (2006) Opioids and cardioprotection: the impact of morphine and fentanyl on recovery of ventricular function after cardiopulmonary bypass. J Cardiothorac Vasc Anesth 20: 493–502. PubMed

Li R, Wong GT, Wong TM, Zhang Y, Xia Z, et al. (2009) Intrathecal morphine preconditioning induces cardioprotection via activation of delta, kappa, and mu opioid receptors in rats. Anesth Analg 108: 23–29. PubMed

Peart JN, Hoe LE, Gross GJ, Headrick JP (2011) Sustained ligand-activated preconditioning via delta-opioid receptors. J Pharmacol Exp Ther 336: 274–281. PubMed PMC

Skrabalova J, Neckar J, Hejnova L, Bartonova I, Kolar F, et al. (2012) Antiarrhythmic effect of prolonged morphine exposure is accompanied by altered myocardial adenylyl cyclase signaling in rats. Pharmacol Rep 64: 351–359. PubMed

Drastichova Z, Skrabalova J, Neckar J, Kolar F, Novotny J (2011) Prolonged morphine administration alters protein expression in the rat myocardium. J Biomed Sci 18: 89. PubMed PMC

Yan W, Chen SS (2005) Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic 4: 27–38. PubMed

Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3: 1154–1169. PubMed

Wu WW, Wang G, Baek SJ, Shen RF (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5: 651–658. PubMed

Shadforth IP, Dunkley TP, Lilley KS, Bessant C (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6: 145. PubMed PMC

Ernoult E, Gamelin E, Guette C (2008) Improved proteome coverage by using iTRAQ labelling and peptide OFFGEL fractionation. Proteome Sci 6: 27. PubMed PMC

Polisetty RV, Gautam P, Sharma R, Harsha HC, Nair SC, et al... (2012) LC-MS/MS analysis of differentially expressed glioblastoma membrane proteome reveals altered calcium signaling and other protein groups of regulatory functions. Mol Cell Proteomics 11: M111 013565. PubMed PMC

Molloy MP (2000) Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem 280: 1–10. PubMed

Rabilloud T (2009) Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 30 Suppl 1S174–180. PubMed

Chung JH, Choi HJ, Kim SY, Hong KS, Min SK, et al. (2011) Proteomic and biochemical analyses reveal the activation of unfolded protein response, ERK-1/2 and ribosomal protein S6 signaling in experimental autoimmune myocarditis rat model. BMC Genomics 12: 520. PubMed PMC

Huang QY, Fang CW, Huang HQ (2011) Alteration of heart tissue protein profiles in acute cadmium-treated scallops Patinopecten yessoensis. Arch Environ Contam Toxicol 60: 90–98. PubMed

Seabra MC, Wasmeier C (2004) Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol 16: 451–457. PubMed

Shisheva A, Chinni SR, DeMarco C (1999) General role of GDP dissociation inhibitor 2 in membrane release of Rab proteins: modulations of its functional interactions by in vitro and in vivo structural modifications. Biochemistry 38: 11711–11721. PubMed

Quest AF, Leyton L, Parraga M (2004) Caveolins, caveolae, and lipid rafts in cellular transport, signaling, and disease. Biochem Cell Biol 82: 129–144. PubMed

Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 80: 1291–1335. PubMed

Sidhu RS, Clough RR, Bhullar RP (2005) Regulation of phospholipase C-delta1 through direct interactions with the small GTPase Ral and calmodulin. J Biol Chem 280: 21933–21941. PubMed

Baek KJ, Kang S, Damron D, Im M (2001) Phospholipase Cdelta1 is a guanine nucleotide exchanging factor for transglutaminase II (Galpha h) and promotes alpha 1B-adrenoreceptor-mediated GTP binding and intracellular calcium release. J Biol Chem 276: 5591–5597. PubMed

Yagisawa H (2006) Nucleocytoplasmic shuttling of phospholipase C-delta1: a link to Ca2+. J Cell Biochem 97: 233–243. PubMed

Hodson EA, Ashley CC, Hughes AD, Lymn JS (1998) Regulation of phospholipase C-delta by GTP-binding proteins-rhoA as an inhibitory modulator. Biochim Biophys Acta 1403: 97–101. PubMed

Allen V, Swigart P, Cheung R, Cockcroft S, Katan M (1997) Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations. Biochem J 327 (Pt 2): 545–552. PubMed PMC

Lien YC, Noel T, Liu H, Stromberg AJ, Chen KC, et al. (2006) Phospholipase C-delta1 is a critical target for tumor necrosis factor receptor-mediated protection against adriamycin-induced cardiac injury. Cancer Res 66: 4329–4338. PubMed

Quillan JM, Carlson KW, Song C, Wang D, Sadee W (2002) Differential effects of mu-opioid receptor ligands on Ca(2+) signaling. J Pharmacol Exp Ther 302: 1002–1012. PubMed

Chakrabarti S, Liu NJ, Gintzler AR (2003) Reciprocal modulation of phospholipase Cbeta isoforms: adaptation to chronic morphine. Proc Natl Acad Sci U S A 100: 13686–13691. PubMed PMC

Barrere-Lemaire S, Combes N, Sportouch-Dukhan C, Richard S, Nargeot J, et al. (2005) Morphine mimics the antiapoptotic effect of preconditioning via an Ins(1,4,5)P3 signaling pathway in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 288: H83–88. PubMed

Bhat RS, Bhaskaran M, Mongia A, Hitosugi N, Singhal PC (2004) Morphine-induced macrophage apoptosis: oxidative stress and strategies for modulation. J Leukoc Biol 75: 1131–1138. PubMed

Singhal PC, Bhaskaran M, Patel J, Patel K, Kasinath BS, et al. (2002) Role of p38 mitogen-activated protein kinase phosphorylation and Fas-Fas ligand interaction in morphine-induced macrophage apoptosis. J Immunol 168: 4025–4033. PubMed

Lin X, Wang YJ, Li Q, Hou YY, Hong MH, et al. (2009) Chronic high-dose morphine treatment promotes SH-SY5Y cell apoptosis via c-Jun N-terminal kinase-mediated activation of mitochondria-dependent pathway. FEBS J 276: 2022–2036. PubMed

Mao J, Sung B, Ji RR, Lim G (2002) Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci 22: 7650–7661. PubMed PMC

Hu S, Sheng WS, Lokensgard JR, Peterson PK (2002) Morphine induces apoptosis of human microglia and neurons. Neuropharmacology 42: 829–836. PubMed

Ohara T, Itoh T, Takahashi M (2005) Immunosuppression by morphine-induced lymphocyte apoptosis: is it a real issue? Anesth Analg 101: 1117–1122, table of contents. PubMed

Kim MS, Cheong YP, So HS, Lee KM, Kim TY, et al. (2001) Protective effects of morphine in peroxynitrite-induced apoptosis of primary rat neonatal astrocytes: potential involvement of G protein and phosphatidylinositol 3-kinase (PI3 kinase). Biochem Pharmacol 61: 779–786. PubMed

Chen Y, Sun R, Han W, Zhang Y, Song Q, et al. (2001) Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis? FEBS Lett 509: 191–196. PubMed

Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, et al. (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126: 177–189. PubMed

Chen L, Gong Q, Stice JP, Knowlton AA (2009) Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res 84: 91–99. PubMed PMC

John GB, Shang Y, Li L, Renken C, Mannella CA, et al. (2005) The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 16: 1543–1554. PubMed PMC

Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease–a novel therapeutic target? FASEB J 16: 135–146. PubMed

Wu HY, Lynch DR (2006) Calpain and synaptic function. Mol Neurobiol 33: 215–236. PubMed

Chan SL, Mattson MP (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 58: 167–190. PubMed

Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83: 731–801. PubMed

Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, et al. (2001) Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 103: 1787–1792. PubMed

Lau S, Patnaik N, Sayen MR, Mestril R (1997) Simultaneous overexpression of two stress proteins in rat cardiomyocytes and myogenic cells confers protection against ischemia-induced injury. Circulation 96: 2287–2294. PubMed

Kirchhoff SR, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105: 2899–2904. PubMed

Gray CC, Amrani M, Yacoub MH (1999) Heat stress proteins and myocardial protection: experimental model or potential clinical tool? Int J Biochem Cell Biol 31: 559–573. PubMed

Martin JL, Mestril R, Hilal-Dandan R, Brunton LL, Dillmann WH (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96: 4343–4348. PubMed

Ray PS, Martin JL, Swanson EA, Otani H, Dillmann WH, et al. (2001) Transgene overexpression of alphaB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. FASEB J 15: 393–402. PubMed

Dokas LA, Malone AM, Williams FE, Nauli SM, Messer WS Jr (2011) Multiple protein kinases determine the phosphorylated state of the small heat shock protein, HSP27, in SH-SY5Y neuroblastoma cells. Neuropharmacology 61: 12–24. PubMed PMC

Hoover HE, Thuerauf DJ, Martindale JJ, Glembotski CC (2000) alpha B-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for alpha B-crystallin as a target of the p38 branch of the cardiac stress response. J Biol Chem 275: 23825–23833. PubMed

Bitar KN (2002) HSP27 phosphorylation and interaction with actin-myosin in smooth muscle contraction. Am J Physiol Gastrointest Liver Physiol 282: G894–903. PubMed

Almela P, Martinez-Laorden E, Atucha NM, Milanes MV, Laorden ML (2011) Naloxone-precipitated morphine withdrawal evokes phosphorylation of heat shock protein 27 in rat heart through extracellular signal-regulated kinase. J Mol Cell Cardiol 51: 129–139. PubMed

Martinez-Laorden E, Hurle MA, Milanes MV, Laorden ML, Almela P (2012) Morphine withdrawal activates hypothalamic-pituitary adrenal axis and heat shock protein 27 in the left ventricle: Role of extracellular signal-regulated kinase. J Pharmacol Exp Ther. PubMed

Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274: 9378–9385. PubMed

Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J, et al. (1994) Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 269: 20780–20784. PubMed

Robinson AA, Dunn MJ, McCormack A, dos Remedios C, Rose ML (2010) Protective effect of phosphorylated Hsp27 in coronary arteries through actin stabilization. J Mol Cell Cardiol 49: 370–379. PubMed

Shimura H, Miura-Shimura Y, Kosik KS (2004) Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 279: 17957–17962. PubMed

Sahara N, Maeda S, Yoshiike Y, Mizoroki T, Yamashita S, et al. (2007) Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain. J Neurosci Res 85: 3098–3108. PubMed

Bjorkdahl C, Sjogren MJ, Zhou X, Concha H, Avila J, et al. (2008) Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles: tau and neurofilaments. J Neurosci Res 86: 1343–1352. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...