The Role of miRNAs in Virus-Mediated Oncogenesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29673190
PubMed Central
PMC5979478
DOI
10.3390/ijms19041217
PII: ijms19041217
Knihovny.cz E-zdroje
- Klíčová slova
- EBV, HBV, HCV, HHV-8, HPV, MCPyV, microRNA, retroviruses, viral miRNA, virus-mediated oncogenesis,
- MeSH
- karcinogeneze genetika patologie MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- nádory genetika patologie virologie MeSH
- onkogenní viry genetika MeSH
- regulace genové exprese u nádorů * MeSH
- RNA virová genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA MeSH
- RNA virová MeSH
To date, viruses are reported to be responsible for more than 15% of all tumors worldwide. The oncogenesis could be influenced directly by the activity of viral oncoproteins or by the chronic infection or inflammation. The group of human oncoviruses includes Epstein–Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), human herpesvirus 8 (HHV-8) or polyomaviruses, and transregulating retroviruses such as HIV or HTLV-1. Most of these viruses express short noncoding RNAs called miRNAs to regulate their own gene expression or to influence host gene expression and thus contribute to the carcinogenic processes. In this review, we will focus on oncogenic viruses and summarize the role of both types of miRNAs, viral as well as host’s, in the oncogenesis.
Zobrazit více v PubMed
Plummer M., de Martel C., Vignat J., Ferlay J., Bray F., Franceschi S. Global burdenf cancers attributable tonfectionsn 2012: A synthetic analysis. Lancet Glob. Health. 2016;4:e609–e616. doi: 10.1016/S2214-109X(16)30143-7. PubMed DOI
Hanahan D., Weinberg R.A. The hallmarksf cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. PubMed DOI
Hanahan D., Weinberg R.A. Hallmarksf cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Bouvard V., Baan R., Straif K., Grosse Y., Secretan B., El Ghissassi F., Benbrahim-Tallaa L., Guha N., Freeman C., Galichet L., et al. A reviewf human carcinogens—Part B: Biological agents. Lancet Oncol. 2009;10:321–322. doi: 10.1016/S1470-2045(09)70096-8. PubMed DOI
Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. doi: 10.1016/j.cell.2004.12.035. PubMed DOI
Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702. PubMed DOI
Anastasiadou E., Jacob L.S., Slack F.J. Non-coding RNA networksn cancer. Nat. Rev. Cancer. 2018;18:5–18. doi: 10.1038/nrc.2017.99. PubMed DOI PMC
Cullen B.R. Viruses and microRNAs: RISCynteractions with serious consequences. Genes Dev. 2011;25:1881–1894. doi: 10.1101/gad.17352611. PubMed DOI PMC
Epstein M.A., Achong B.G., Barr Y.M. Virus Particlesn Cultured Lymphoblasts from Burkitt’s Lymphoma. Lancet. 1964;1:702–703. doi: 10.1016/S0140-6736(64)91524-7. PubMed DOI
Mui U.N., Haley C.T., Tyring S.K. Viral Oncology: Molecular Biology and Pathogenesis. J. Clin. Med. 2017;6 doi: 10.3390/jcm6120111. PubMed DOI PMC
Pavlovic A., Glavina Durdov M., Capkun V., Jakelic Pitesa J., Bozic Sakic M. Classical Hodgkin Lymphoma with Positive Epstein-Barr Virus Statuss Associated with More FOXP3 Regulatory T Cells. Med. Sci. Monit. 2016;22:2340–2346. doi: 10.12659/MSM.896629. PubMed DOI PMC
Carbone A., Gloghini A., Dotti G. EBV-associated lymphoproliferativeisorders: Classification and treatment. Oncologist. 2008;13:577–585. doi: 10.1634/theoncologist.2008-0036. PubMed DOI
Jacome A.A., Lima E.M., Kazzi A.I., Chaves G.F., Mendonca D.C., Maciel M.M., Santos J.S. Epstein-Barr virus-positive gastric cancer: Aistinct molecular subtypef theisease? Rev. Soc. Bras. Med. Trop. 2016;49:150–157. doi: 10.1590/0037-8682-0270-2015. PubMed DOI
Cai Q., Chen K., Young K.H. Epstein-Barr virus-positive T/NK-cell lymphoproliferativeisorders. Exp. Mol. Med. 2015;47:e133. doi: 10.1038/emm.2014.105. PubMed DOI PMC
Mancao C., Hammerschmidt W. Epstein-Barr virus latent membrane protein 2As a B-cell receptor mimic and essential for B-cell survival. Blood. 2007;110:3715–3721. doi: 10.1182/blood-2007-05-090142. PubMed DOI PMC
Swanson-Mungerson M., Bultema R., Longnecker R. Epstein-Barr virus LMP2Amposes sensitivity to apoptosis. J. Gen. Virol. 2010;91:2197–2202. doi: 10.1099/vir.0.021444-0. PubMed DOI PMC
Incrocci R., Barse L., Stone A., Vagvala S., Montesano M., Subramaniam V., Swanson-Mungerson M. Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) enhances IL-10 production through the activationf Bruton’s tyrosine kinase and STAT3. Virology. 2017;500:96–102. doi: 10.1016/j.virol.2016.10.015. PubMed DOI PMC
Sivachandran N., Wang X., Frappier L. Functionsf the Epstein-Barr virus EBNA1 proteinn viral reactivation and lyticnfection. J. Virol. 2012;86:6146–6158. doi: 10.1128/JVI.00013-12. PubMed DOI PMC
Sivachandran N., Sarkari F., Frappier L. Epstein-Barr nuclear antigen 1 contributes to nasopharyngeal carcinoma throughisruptionf PML nuclear bodies. PLoS Pathog. 2008;4:e1000170. doi: 10.1371/journal.ppat.1000170. PubMed DOI PMC
Kaiser C., Laux G., Eick D., Jochner N., Bornkamm G.W., Kempkes B. The proto-oncogene c-mycs airect target genef Epstein-Barr virus nuclear antigen 2. J. Virol. 1999;73:4481–4484. PubMed PMC
Bhattacharjee S., Ghosh Roy S., Bose P., Saha A. Rolef EBNA-3 Family Proteinsn EBV Associated B-cell Lymphomagenesis. Front. Microbiol. 2016;7:457. doi: 10.3389/fmicb.2016.00457. PubMed DOI PMC
Pfeffer S., Zavolan M., Grasser F.A., Chien M., Russo J.J., Ju J., John B., Enright A.J., Marks D., Sander C., et al. Identificationf virus-encoded microRNAs. Science. 2004;304:734–736. doi: 10.1126/science.1096781. PubMed DOI
Kincaid R.P., Sullivan C.S. Virus-encoded microRNAs: Anverview and a look to the future. PLoS Pathog. 2012;8:e1003018. doi: 10.1371/journal.ppat.1003018. PubMed DOI PMC
Lo A.K., To K.F., Lo K.W., Lung R.W., Hui J.W., Liao G., Hayward S.D. Modulationf LMP1 protein expression by EBV-encoded microRNAs. Proc. Natl. Acad. Sci. USA. 2007;104:16164–16169. doi: 10.1073/pnas.0702896104. PubMed DOI PMC
Lung R.W., Tong J.H., Sung Y.M., Leung P.S., Ng D.C., Chau S.L., Chan A.W., Ng E.K., Lo K.W., To K.F. Modulationf LMP2A expression by a newlydentified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia. 2009;11:1174–1184. doi: 10.1593/neo.09888. PubMed DOI PMC
Barth S., Pfuhl T., Mamiani A., Ehses C., Roemer K., Kremmer E., Jaker C., Hock J., Meister G., Grasser F.A. Epstein-Barr virus-encoded microRNA miR-BART2own-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 2008;36:666–675. doi: 10.1093/nar/gkm1080. PubMed DOI PMC
Iizasa H., Wulff B.E., Alla N.R., Maragkakis M., Megraw M., Hatzigeorgiou A., Iwakiri D., Takada K., Wiedmer A., Showe L., et al. Editingf Epstein-Barr virus-encoded BART6 microRNAs controls theiricer targeting and consequently affects viral latency. J. Biol. Chem. 2010;285:33358–33370. doi: 10.1074/jbc.M110.138362. PubMed DOI PMC
Choy E.Y., Siu K.L., Kok K.H., Lung R.W., Tsang C.M., To K.F., Kwong D.L., Tsao S.W., Jin D.Y. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med. 2008;205:2551–2560. doi: 10.1084/jem.20072581. PubMed DOI PMC
Cai L.M., Lyu X.M., Luo W.R., Cui X.F., Ye Y.F., Yuan C.C., Peng Q.X., Wu D.H., Liu T.F., Wang E., et al. EBV-miR-BART7-3p promotes the EMT and metastasisf nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN. Oncogene. 2015;34:2156–2166. doi: 10.1038/onc.2014.341. PubMed DOI
Vereide D.T., Seto E., Chiu Y.F., Hayes M., Tagawa T., Grundhoff A., Hammerschmidt W., Sugden B. Epstein-Barr virus maintains lymphomas viats miRNAs. Oncogene. 2014;33:1258–1264. doi: 10.1038/onc.2013.71. PubMed DOI PMC
Lei T., Yuen K.S., Tsao S.W., Chen H., Kok K.H., Jin D.Y. Perturbationf biogenesis and targetingf Epstein-Barr virus-encoded miR-BART3 microRNA by adenosine-to-inosine editing. J. Gen. Virol. 2013;94:2739–2744. doi: 10.1099/vir.0.056226-0. PubMed DOI
Xia T., O’Hara A., Araujo I., Barreto J., Carvalho E., Sapucaia J.B., Ramos J.C., Luz E., Pedroso C., Manrique M., et al. EBV microRNAsn primary lymphomas and targetingf CXCL-11 by ebv-mir-BHRF1-3. Cancer Res. 2008;68:1436–1442. doi: 10.1158/0008-5472.CAN-07-5126. PubMed DOI PMC
Feederle R., Haar J., Bernhardt K., Linnstaedt S.D., Bannert H., Lips H., Cullen B.R., Delecluse H.J. The membersf an Epstein-Barr virus microRNA cluster cooperate to transform B lymphocytes. J. Virol. 2011;85:9801–9810. doi: 10.1128/JVI.05100-11. PubMed DOI PMC
Wahl A., Linnstaedt S.D., Esoda C., Krisko J.F., Martinez-Torres F., Delecluse H.J., Cullen B.R., Garcia J.V. A clusterf virus-encoded microRNAs accelerates acute systemic Epstein-Barr virusnfection butoes not significantly enhance virus-inducedncogenesisn vivo. J. Virol. 2013;87:5437–5446. doi: 10.1128/JVI.00281-13. PubMed DOI PMC
Nachmani D., Stern-Ginossar N., Sarid R., Mandelboim O. Diverse herpesvirus microRNAs target the stress-inducedmmune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe. 2009;5:376–385. doi: 10.1016/j.chom.2009.03.003. PubMed DOI
Kang B.W., Choi Y., Kwon O.K., Lee S.S., Chung H.Y., Yu W., Bae H.I., Seo A.N., Kang H., Lee S.K., et al. High levelf viral microRNA-BART20-5p expressions associated with worse survivalf patients with Epstein-Barr virus-associated gastric cancer. Oncotarget. 2017;8:14988–14994. doi: 10.18632/oncotarget.14744. PubMed DOI PMC
Gao W., Li Z.H., Chen S., Chan J.Y., Yin M., Zhang M.J., Wong T.S. Epstein-Barr virus encoded microRNA BART7 regulates radiation sensitivityf nasopharyngeal carcinoma. Oncotarget. 2017;8:20297–20308. doi: 10.18632/oncotarget.15526. PubMed DOI PMC
Godshalk S.E., Bhaduri-McIntosh S., Slack F.J. Epstein-Barr virus-mediatedysregulationf human microRNA expression. Cell Cycle. 2008;7:3595–3600. doi: 10.4161/cc.7.22.7120. PubMed DOI
Cheung C.C., Chung G.T., Lun S.W., To K.F., Choy K.W., Lau K.M., Siu S.P., Guan X.Y., Ngan R.K., Yip T.T., et al. miR-31s consistentlynactivatedn EBV-associated nasopharyngeal carcinoma and contributes tots tumorigenesis. Mol. Cancer. 2014;13 doi: 10.1186/1476-4598-13-184. PubMed DOI PMC
Zhu X., Wang Y., Sun Y., Zheng J., Zhu D. MiR-155 up-regulation by LMP1 DNA contributes toncreased nasopharyngeal carcinoma cell proliferation and migration. Eur. Arch. Otorhinolaryngol. 2014;271:1939–1945. doi: 10.1007/s00405-013-2818-0. PubMed DOI
Linnstaedt S.D., Gottwein E., Skalsky R.L., Luftig M.A., Cullen B.R. Virallynduced cellular microRNA miR-155 plays a key rolen B-cellmmortalization by Epstein-Barr virus. J. Virol. 2010;84:11670–11678. doi: 10.1128/JVI.01248-10. PubMed DOI PMC
Yang F., Liu Q., Hu C.M. Epstein-Barr virus-encoded LMP1ncreases miR-155 expression, which promotes radioresistancef nasopharyngeal carcinoma via suppressing UBQLN1. Eur. Rev. Med. Pharmacol. Sci. 2015;19:4507–4515. PubMed
Du Z.M., Hu L.F., Wang H.Y., Yan L.X., Zeng Y.X., Shao J.Y., Ernberg I. Upregulationf MiR-155n nasopharyngeal carcinomas partlyriven by LMP1 and LMP2A andownregulates a negative prognostic marker JMJD1A. PLoS ONE. 2011;6:e19137. doi: 10.1371/journal.pone.0019137. PubMed DOI PMC
Sakamoto K., Sekizuka T., Uehara T., Hishima T., Mine S., Fukumoto H., Sato Y., Hasegawa H., Kuroda M., Katano H. Next-generation sequencingf miRNAsn clinical samplesf Epstein-Barr virus-associated B-cell lymphomas. Cancer Med. 2017;6:605–618. doi: 10.1002/cam4.1006. PubMed DOI PMC
Leucci E., Onnis A., Cocco M., De Falco G., Imperatore F., Giuseppina A., Costanzo V., Cerino G., Mannucci S., Cantisani R., et al. B-cellifferentiationn EBV-positive Burkitt lymphomasmpaired at posttranscriptional level by miRNA-altered expression. Int. J. Cancer. 2010;126:1316–1326. doi: 10.1002/ijc.24655. PubMed DOI
Rosato P., Anastasiadou E., Garg N., Lenze D., Boccellato F., Vincenti S., Severa M., Coccia E.M., Bigi R., Cirone M., et al. Differential regulationf miR-21 and miR-146a by Epstein-Barr virus-encoded EBNA2. Leukemia. 2012;26:2343–2352. doi: 10.1038/leu.2012.108. PubMed DOI PMC
Oussaief L., Fendri A., Chane-Woon-Ming B., Poirey R., Delecluse H.J., Joab I., Pfeffer S. Modulationf MicroRNA Cluster miR-183-96-182 Expression by Epstein-Barr Virus Latent Membrane Protein 1. J. Virol. 2015;89:12178–12188. doi: 10.1128/JVI.01757-15. PubMed DOI PMC
Chen X., Shi J., Zhong J., Huang Z., Luo X., Huang Y., Feng S., Shao J., Liu D. miR-1, regulated by LMP1, suppresses tumour growth and metastasis by targeting K-rasn nasopharyngeal carcinoma. Int. J. Exp. Pathol. 2015;96:427–432. doi: 10.1111/iep.12162. PubMed DOI PMC
Chang Y., Cesarman E., Pessin M.S., Lee F., Culpepper J., Knowles D.M., Moore P.S. Identificationf herpesvirus-like DNA sequencesn AIDS-associated Kaposi’s sarcoma. Science. 1994;266:1865–1869. doi: 10.1126/science.7997879. PubMed DOI
Nador R.G., Cesarman E., Chadburn A., Dawson D.B., Ansari M.Q., Sald J., Knowles D.M. Primary effusion lymphoma: Aistinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood. 1996;88:645–656. PubMed
Soulier J., Grollet L., Oksenhendler E., Cacoub P., Cazals-Hatem D., Babinet P., Agay M.F., Clauvel J.P., Raphael M., Degos L. Kaposi’s sarcoma-associated herpesvirus-like DNA sequencesn multicentric Castleman’s disease. Blood. 1995;86:1276–1280. PubMed
Cai X., Lu S., Zhang Z., Gonzalez C.M., Damania B., Cullen B.R. Kaposi’s sarcoma-associated herpesvirus expresses an arrayf viral microRNAsn latentlynfected cells. Proc. Natl. Acad. Sci. USA. 2005;102:5570–5575. doi: 10.1073/pnas.0408192102. PubMed DOI PMC
Bellare P., Ganem D. Regulationf KSHV lytic switch protein expression by a virus-encoded microRNA: An evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe. 2009;6:570–575. doi: 10.1016/j.chom.2009.11.008. PubMed DOI PMC
Lin X., Liang D., He Z., Deng Q., Robertson E.S., Lan K. miR-K12-7-5p encoded by Kaposi’s sarcoma-associated herpesvirus stabilizes the latent state by targeting viral ORF50/RTA. PLoS ONE. 2011;6:e16224. doi: 10.1371/journal.pone.0016224. PubMed DOI PMC
Lu C.C., Li Z., Chu C.Y., Feng J., Feng J., Sun R., Rana T.M. MicroRNAs encoded by Kaposi’s sarcoma-associated herpesvirus regulate viral life cycle. EMBO Rep. 2010;11:784–790. doi: 10.1038/embor.2010.132. PubMed DOI PMC
Li W., Jia X., Shen C., Zhang M., Xu J., Shang Y., Zhu K., Hu M., Yan Q., Qin D., et al. A KSHV microRNA enhances viral latency andnduces angiogenesis by targeting GRK2 to activate the CXCR2/AKT pathway. Oncotarget. 2016;7:32286–32305. doi: 10.18632/oncotarget.8591. PubMed DOI PMC
Plaisance-Bonstaff K., Choi H.S., Beals T., Krueger B.J., Boss I.W., Gay L.A., Haecker I., Hu J., Renne R. KSHV miRNAsecrease expressionf lytic genesn latentlynfected PEL and endothelial cells by targeting host transcription factors. Viruses. 2014;6:4005–4023. doi: 10.3390/v6104005. PubMed DOI PMC
Lacoste V., Nicot C., Gessain A., Valensi F., Gabarre J., Matta H., Chaudhary P.M., Mahieux R. In primary effusion lymphoma cells, MYB transcriptional repressions associated with v-FLIP expressionuring latent KSHVnfection while both v-FLIP and v-GPCR becomenvolveduring the lytic cycle. Br. J. Haematol. 2007;138:487–501. doi: 10.1111/j.1365-2141.2007.06697.x. PubMed DOI
Liang D., Gao Y., Lin X., He Z., Zhao Q., Deng Q., Lan K. A human herpesvirus miRNA attenuatesnterferon signaling and contributes to maintenancef viral latency by targeting IKKepsilon. Cell Res. 2011;21:793–806. doi: 10.1038/cr.2011.5. PubMed DOI PMC
Lu F., Stedman W., Yousef M., Renne R., Lieberman P.M. Epigenetic regulationf Kaposi’s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J. Virol. 2010;84:2697–2706. doi: 10.1128/JVI.01997-09. PubMed DOI PMC
Samols M.A., Skalsky R.L., Maldonado A.M., Riva A., Lopez M.C., Baker H.V., Renne R. Identificationf cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog. 2007;3:e65. doi: 10.1371/journal.ppat.0030065. PubMed DOI PMC
Li W., Yan Q., Ding X., Shen C., Hu M., Zhu Y., Qin D., Lu H., Krueger B.J., Renne R., et al. The SH3BGR/STAT3 Pathway Regulates Cell Migration and Angiogenesis Induced by a Gammaherpesvirus MicroRNA. PLoS Pathog. 2016;12:e1005605. doi: 10.1371/journal.ppat.1005605. PubMed DOI PMC
Guo Y., Li W., Qin J., Lu C., Fan W. Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded microRNAs promote matrix metalloproteinases (MMPs) expression and pro-angiogenic cytokine secretionn endothelial cells. J. Med. Virol. 2017;89:1274–1280. doi: 10.1002/jmv.24773. PubMed DOI
Zhu Y., Ramosa Silva S., He M., Liang Q., Lu C., Feng P., Jung J.U., Gao S.J. An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis. PLoS Pathog. 2016;12:e1005648. doi: 10.1371/journal.ppat.1005648. PubMed DOI PMC
Gottwein E., Cullen B.R. A human herpesvirus microRNAnhibits p21 expression and attenuates p21-mediated cell cycle arrest. J. Virol. 2010;84:5229–5237. doi: 10.1128/JVI.00202-10. PubMed DOI PMC
Suffert G., Malterer G., Hausser J., Viiliainen J., Fender A., Contrant M., Ivacevic T., Benes V., Gros F., Voinnet O., et al. Kaposi’s sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis. PLoS Pathog. 2011;7:e1002405. doi: 10.1371/journal.ppat.1002405. PubMed DOI PMC
Skalsky R.L., Samols M.A., Plaisance K.B., Boss I.W., Riva A., Lopez M.C., Baker H.V., Renne R. Kaposi’s sarcoma-associated herpesvirus encodes anrthologf miR-155. J. Virol. 2007;81:12836–12845. doi: 10.1128/JVI.01804-07. PubMed DOI PMC
Gottwein E., Mukherjee N., Sachse C., Frenzel C., Majoros W.H., Chi J.T., Braich R., Manoharan M., Soutschek J., Ohler U., et al. A viral microRNA functions as anrthologuef cellular miR-155. Nature. 2007;450:1096–1099. doi: 10.1038/nature05992. PubMed DOI PMC
Tsai Y.H., Wu M.F., Wu Y.H., Chang S.J., Lin S.F., Sharp T.V., Wang H.W. The M type K15 proteinf Kaposi’s sarcoma-associated herpesvirus regulates microRNA expression viats SH2-binding motif tonduce cell migration andnvasion. J. Virol. 2009;83:622–632. doi: 10.1128/JVI.00869-08. PubMed DOI PMC
Punj V., Matta H., Schamus S., Tamewitz A., Anyang B., Chaudhary P.M. Kaposi’s sarcoma-associated herpesvirus-encoded viral FLICEnhibitory protein (vFLIP) K13 suppresses CXCR4 expression by upregulating miR-146a. Oncogene. 2010;29:1835–1844. doi: 10.1038/onc.2009.460. PubMed DOI PMC
Hussein H.A.M., Akula S.M. Profilingf cellular microRNA responsesuring the early stagesf KSHVnfection. Arch. Virol. 2017;162:3293–3303. doi: 10.1007/s00705-017-3478-y. PubMed DOI
Marcucci F., Spada E., Mele A., Caserta C.A., Pulsoni A. The associationf hepatitis B virusnfection with B-cell non-Hodgkin lymphoma—A review. Am. J. Blood Res. 2012;2:18–28. PubMed PMC
Ye Y.F., Xiang Y.Q., Fang F., Gao R., Zhang L.F., Xie S.H., Liu Z., Du J.L., Chen S.H., Hong M.H., et al. Hepatitis B virusnfection and riskf nasopharyngeal carcinoman southern China. Cancer Epidemiol. Biomark. Prev. 2015;24:1766–1773. doi: 10.1158/1055-9965.EPI-15-0344. PubMed DOI
Ghosh A., Ghosh S., Dasgupta D., Ghosh A., Datta S., Sikdar N., Datta S., Chowdhury A., Banerjee S. Hepatitis B Virus X Protein Upregulates hELG1/ ATAD5 Expression through E2F1n Hepatocellular Carcinoma. Int. J. Biol. Sci. 2016;12:30–41. doi: 10.7150/ijbs.12310. PubMed DOI PMC
Geng M., Xin X., Bi L.Q., Zhou L.T., Liu X.H. Molecular mechanismf hepatitis B virus X protein functionn hepatocarcinogenesis. World J. Gastroenterol. 2015;21:10732–10738. doi: 10.3748/wjg.v21.i38.10732. PubMed DOI PMC
Lamontagne J., Steel L.F., Bouchard M.J. Hepatitis B virus and microRNAs: Complexnteractions affecting hepatitis B virus replication and hepatitis B virus-associatediseases. World J. Gastroenterol. 2015;21:7375–7399. doi: 10.3748/wjg.v21.i24.7375. PubMed DOI PMC
Pollicino T., Cacciola I., Saffioti F., Raimondo G. Hepatitis B virus PreS/S gene variants: Pathobiology and clinicalmplications. J. Hepatol. 2014;61:408–417. doi: 10.1016/j.jhep.2014.04.041. PubMed DOI
Feitelson M.A., Lee J. Hepatitis B virusntegration, fragile sites, and hepatocarcinogenesis. Cancer Lett. 2007;252:157–170. doi: 10.1016/j.canlet.2006.11.010. PubMed DOI
Lau C.C., Sun T., Ching A.K., He M., Li J.W., Wong A.M., Co N.N., Chan A.W., Li P.S., Lung R.W., et al. Viral-human chimeric transcript predisposes risk to liver cancerevelopment and progression. Cancer Cell. 2014;25:335–349. doi: 10.1016/j.ccr.2014.01.030. PubMed DOI
Levrero M., Zucman-Rossi J. Mechanismsf HBV-induced hepatocellular carcinoma. J. Hepatol. 2016;64:S84–S101. doi: 10.1016/j.jhep.2016.02.021. PubMed DOI
Fan C.G., Wang C.M., Tian C., Wang Y., Li L., Sun W.S., Li R.F., Liu Y.G. miR-122nhibits viral replication and cell proliferationn hepatitis B virus-related hepatocellular carcinoma and targets NDRG3. Oncol. Rep. 2011;26:1281–1286. doi: 10.3892/or.2011.1375. PubMed DOI
Li C., Wang Y., Wang S., Wu B., Hao J., Fan H., Ju Y., Ding Y., Chen L., Chu X., et al. Hepatitis B virus mRNA-mediated miR-122nhibition upregulates PTTG1-binding protein, which promotes hepatocellular carcinoma tumor growth and cellnvasion. J. Virol. 2013;87:2193–2205. doi: 10.1128/JVI.02831-12. PubMed DOI PMC
Fornari F., Gramantieri L., Giovannini C., Veronese A., Ferracin M., Sabbioni S., Calin G.A., Grazi G.L., Croce C.M., Tavolari S., et al. MiR-122/cyclin G1nteraction modulates p53 activity and affectsoxorubicin sensitivityf human hepatocarcinoma cells. Cancer Res. 2009;69:5761–5767. doi: 10.1158/0008-5472.CAN-08-4797. PubMed DOI
Song K., Han C., Zhang J., Lu D., Dash S., Feitelson M., Lim K., Wu T. Epigenetic regulationf MicroRNA-122 by peroxisome proliferator activated receptor-gamma and hepatitis b virus X proteinn hepatocellular carcinoma cells. Hepatology. 2013;58:1681–1692. doi: 10.1002/hep.26514. PubMed DOI PMC
Kong G., Zhang J., Zhang S., Shan C., Ye L., Zhang X. Upregulated microRNA-29a by hepatitis B virus X protein enhances hepatoma cell migration by targeting PTENn cell culture model. PLoS ONE. 2011;6:e19518. doi: 10.1371/journal.pone.0019518. PubMed DOI PMC
Wu J., Zhang X.J., Shi K.Q., Chen Y.P., Ren Y.F., Song Y.J., Li G., Xue Y.F., Fang Y.X., Deng Z.J., et al. Hepatitis B surface antigennhibits MICA and MICB expression vianductionf cellular miRNAsn hepatocellular carcinoma cells. Carcinogenesis. 2014;35:155–163. doi: 10.1093/carcin/bgt268. PubMed DOI
Wei X., Xiang T., Ren G., Tan C., Liu R., Xu X., Wu Z. miR-101sown-regulated by the hepatitis B virus x protein andnduces aberrant DNA methylation by targeting DNA methyltransferase 3A. Cell Signal. 2013;25:439–446. doi: 10.1016/j.cellsig.2012.10.013. PubMed DOI
Huang J., Wang Y., Guo Y., Sun S. Down-regulated microRNA-152nduces aberrant DNA methylationn hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52:60–70. doi: 10.1002/hep.23660. PubMed DOI
Wei X., Tan C., Tang C., Ren G., Xiang T., Qiu Z., Liu R., Wu Z. Epigenetic repressionf miR-132 expression by the hepatitis B virus x proteinn hepatitis B virus-related hepatocellular carcinoma. Cell Signal. 2013;25:1037–1043. doi: 10.1016/j.cellsig.2013.01.019. PubMed DOI
Wang Y., Lu Y., Toh S.T., Sung W.K., Tan P., Chow P., Chung A.Y., Jooi L.L., Lee C.G. Lethal-7sown-regulated by the hepatitis B virus x protein and targets signal transducer and activatorf transcription 3. J. Hepatol. 2010;53:57–66. doi: 10.1016/j.jhep.2009.12.043. PubMed DOI
Johnson S.M., Grosshans H., Shingara J., Byrom M., Jarvis R., Cheng A., Labourier E., Reinert K.L., Brown D., Slack F.J. RASs regulated by the let-7 microRNA family. Cell. 2005;120:635–647. doi: 10.1016/j.cell.2005.01.014. PubMed DOI
Sampson V.B., Rong N.H., Han J., Yang Q., Aris V., Soteropoulos P., Petrelli N.J., Dunn S.P., Krueger L.J. MicroRNA let-7aown-regulates MYC and reverts MYC-induced growthn Burkitt lymphoma cells. Cancer Res. 2007;67:9762–9770. doi: 10.1158/0008-5472.CAN-07-2462. PubMed DOI
You X., Liu F., Zhang T., Lv N., Liu Q., Shan C., Du Y., Kong G., Wang T., Ye L., et al. Hepatitis B virus X protein upregulates Lin28A/Lin28B through Sp-1/c-Myc to enhance the proliferationf hepatoma cells. Oncogene. 2014;33:449–460. doi: 10.1038/onc.2012.618. PubMed DOI
Piskounova E., Polytarchou C., Thornton J.E., LaPierre R.J., Pothoulakis C., Hagan J.P., Iliopoulos D., Gregory R.I. Lin28A and Lin28Bnhibit let-7 microRNA biogenesis byistinct mechanisms. Cell. 2011;147:1066–1079. doi: 10.1016/j.cell.2011.10.039. PubMed DOI PMC
Mizuguchi Y., Mishima T., Yokomuro S., Arima Y., Kawahigashi Y., Shigehara K., Kanda T., Yoshida H., Uchida E., Tajiri T., et al. Sequencing and bioinformatics-based analysesf the microRNA transcriptomen hepatitis B-related hepatocellular carcinoma. PLoS ONE. 2011;6:e15304. doi: 10.1371/journal.pone.0015304. PubMed DOI PMC
Wang G., Dong F., Xu Z., Sharma S., Hu X., Chen D., Zhang L., Zhang J., Dong Q. MicroRNA profilen HBV-inducednfection and hepatocellular carcinoma. BMC Cancer. 2017;17:805. doi: 10.1186/s12885-017-3816-1. PubMed DOI PMC
Wang Y., Jiang L., Ji X., Yang B., Zhang Y., Fu X.D. Hepatitis B viral RNAirectly mediatesown-regulationf the tumor suppressor microRNA miR-15a/miR-16-1n hepatocytes. J. Biol. Chem. 2013;288:18484–18493. doi: 10.1074/jbc.M113.458158. PubMed DOI PMC
Jung Y.J., Kim J.W., Park S.J., Min B.Y., Jang E.S., Kim N.Y., Jeong S.H., Shin C.M., Lee S.H., Park Y.S., et al. c-Myc-mediatedverexpressionf miR-17-92 suppresses replicationf hepatitis B virusn human hepatoma cells. J. Med. Virol. 2013;85:969–978. doi: 10.1002/jmv.23534. PubMed DOI
Chen Y., Shen A., Rider P.J., Yu Y., Wu K., Mu Y., Hao Q., Liu Y., Gong H., Zhu Y., et al. A liver-specific microRNA binds to a highly conserved RNA sequencef hepatitis B virus and negatively regulates viral gene expression and replication. FASEB J. 2011;25:4511–4521. doi: 10.1096/fj.11-187781. PubMed DOI PMC
Stubenrauch F., Hummel M., Iftner T., Laimins L.A. The E8E2C protein, a negative regulatorf viral transcription and replication, is required for extrachromosomal maintenancef human papillomavirus type 31n keratinocytes. J. Virol. 2000;74:1178–1186. doi: 10.1128/JVI.74.3.1178-1186.2000. PubMed DOI PMC
Wang X., Meyers C., Wang H.K., Chow L.T., Zheng Z.M. Constructionf a full transcription mapf human papillomavirus type 18uring productive viralnfection. J. Virol. 2011;85:8080–8092. doi: 10.1128/JVI.00670-11. PubMed DOI PMC
Lace M.J., Anson J.R., Thomas G.S., Turek L.P., Haugen T.H. The E8–E2 gene productf human papillomavirus type 16 represses early transcription and replication butsispensable for viral plasmid persistencen keratinocytes. J. Virol. 2008;82:10841–10853. doi: 10.1128/JVI.01481-08. PubMed DOI PMC
Petti L., Nilson L.A., DiMaio D. Activationf the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO J. 1991;10:845–855. PubMed PMC
Bravo I.G., Alonso A. Mucosal human papillomaviruses encode fourifferent E5 proteins whose chemistry and phylogeny correlate with malignantr benign growth. J. Virol. 2004;78:13613–13626. doi: 10.1128/JVI.78.24.13613-13626.2004. PubMed DOI PMC
Schiffman M., Herrero R., Desalle R., Hildesheim A., Wacholder S., Rodriguez A.C., Bratti M.C., Sherman M.E., Morales J., Guillen D., et al. The carcinogenicityf human papillomavirus types reflects viral evolution. Virology. 2005;337:76–84. doi: 10.1016/j.virol.2005.04.002. PubMed DOI
Scheffner M., Werness B.A., Huibregtse J.M., Levine A.J., Howley P.M. The E6ncoprotein encoded by human papillomavirus types 16 and 18 promotes theegradationf p53. Cell. 1990;63:1129–1136. doi: 10.1016/0092-8674(90)90409-8. PubMed DOI
Mortensen F., Schneider D., Barbic T., Sladewska-Marquardt A., Kuhnle S., Marx A., Scheffner M. Rolef ubiquitin and the HPV E6ncoproteinn E6AP-mediated ubiquitination. Proc. Natl. Acad. Sci. USA. 2015;112:9872–9877. doi: 10.1073/pnas.1505923112. PubMed DOI PMC
Munger K., Howley P.M. Human papillomavirusmmortalization and transformation functions. Virus Res. 2002;89:213–228. doi: 10.1016/S0168-1702(02)00190-9. PubMed DOI
Vinokurova S., Wentzensen N., Kraus I., Klaes R., Driesch C., Melsheimer P., Kisseljov F., Durst M., Schneider A., von Knebel Doeberitz M. Type-dependentntegration frequencyf human papillomavirus genomesn cervical lesions. Cancer Res. 2008;68:307–313. doi: 10.1158/0008-5472.CAN-07-2754. PubMed DOI
Wan Y., Vagenas D., Salazar C., Kenny L., Perry C., Calvopina D., Punyadeera C. Salivary miRNA panel toetect HPV-positive and HPV-negative head and neck cancer patients. Oncotarget. 2017;8:99990–100001. doi: 10.18632/oncotarget.21725. PubMed DOI PMC
Pereira P.M., Marques J.P., Soares A.R., Carreto L., Santos M.A. MicroRNA expression variabilityn human cervical tissues. PLoS ONE. 2010;5:e11780. doi: 10.1371/journal.pone.0011780. PubMed DOI PMC
Li Y., Wang F., Xu J., Ye F., Shen Y., Zhou J., Lu W., Wan X., Ma D., Xie X. Progressive miRNA expression profilesn cervical carcinogenesis anddentificationf HPV-related target genes for miR-29. J. Pathol. 2011;224:484–495. doi: 10.1002/path.2873. PubMed DOI
Wang X., Wang H.K., Li Y., Hafner M., Banerjee N.S., Tang S., Briskin D., Meyers C., Chow L.T., Xie X., et al. microRNAs are biomarkersfncogenic human papillomavirusnfections. Proc. Natl. Acad. Sci. USA. 2014;111:4262–4267. doi: 10.1073/pnas.1401430111. PubMed DOI PMC
Gao D., Zhang Y., Zhu M., Liu S., Wang X. miRNA Expression Profilesf HPV-Infected Patients with Cervical Cancern the Uyghur Populationn China. PLoS ONE. 2016;11:e0164701. doi: 10.1371/journal.pone.0164701. PubMed DOI PMC
Wald A.I., Hoskins E.E., Wells S.I., Ferris R.L., Khan S.A. Alterationf microRNA profilesn squamous cell carcinomaf the head and neck cell lines by human papillomavirus. Head Neck. 2011;33:504–512. doi: 10.1002/hed.21475. PubMed DOI PMC
Lajer C.B., Nielsen F.C., Friis-Hansen L., Norrild B., Borup R., Garnaes E., Rossing M., Specht L., Therkildsen M.H., Nauntofte B., et al. Different miRNA signaturesfral and pharyngeal squamous cell carcinomas: A prospective translational study. Br. J. Cancer. 2011;104:830–840. doi: 10.1038/bjc.2011.29. PubMed DOI PMC
Lajer C.B., Garnaes E., Friis-Hansen L., Norrild B., Therkildsen M.H., Glud M., Rossing M., Lajer H., Svane D., Skotte L., et al. The rolef miRNAsn human papilloma virus (HPV)-associated cancers: Bridging between HPV-related head and neck cancer and cervical cancer. Br. J. Cancer. 2012;106:1526–1534. doi: 10.1038/bjc.2012.109. PubMed DOI PMC
Hui A.B., Lin A., Xu W., Waldron L., Perez-Ordonez B., Weinreb I., Shi W., Bruce J., Huang S.H., O’Sullivan B., et al. Potentially prognostic miRNAsn HPV-associatedropharyngeal carcinoma. Clin. Cancer Res. 2013;19:2154–2162. doi: 10.1158/1078-0432.CCR-12-3572. PubMed DOI
Miller D.L., Davis J.W., Taylor K.H., Johnson J., Shi Z., Williams R., Atasoy U., Lewis J.S., Jr., Stack M.S. Identificationf a human papillomavirus-associatedncogenic miRNA paneln humanropharyngeal squamous cell carcinoma validated by bioinformatics analysisf the Cancer Genome Atlas. Am. J. Pathol. 2015;185:679–692. doi: 10.1016/j.ajpath.2014.11.018. PubMed DOI PMC
Vojtechova Z., Sabol I., Salakova M., Smahelova J., Zavadil J., Turek L., Grega M., Klozar J., Prochazka B., Tachezy R. Comparisonf the miRNA profilesn HPV-positive and HPV-negative tonsillar tumors and a model systemf human keratinocyte clones. BMC Cancer. 2016;16 doi: 10.1186/s12885-016-2430-y. PubMed DOI PMC
Marur S., D’Souza G., Westra W.H., Forastiere A.A. HPV-associated head and neck cancer: A virus-related cancer epidemic. Lancet Oncol. 2010;11:781–789. doi: 10.1016/S1470-2045(10)70017-6. PubMed DOI PMC
Nasman A., Attner P., Hammarstedt L., Du J., Eriksson M., Giraud G., Ahrlund-Richter S., Marklund L., Romanitan M., Lindquist D., et al. Incidencef human papillomavirus (HPV) positive tonsillar carcinoman Stockholm, Sweden: An epidemicf viral-induced carcinoma? Int. J. Cancer. 2009;125:362–366. doi: 10.1002/ijc.24339. PubMed DOI
Harden M.E., Prasad N., Griffiths A., Munger K. Modulationf microRNA-mRNA Target Pairs by Human Papillomavirus 16 Oncoproteins. mBio. 2017;8 doi: 10.1128/mBio.02170-16. PubMed DOI PMC
Emmrich S., Putzer B.M. Checks and balances: E2F-microRNA crosstalkn cancer control. Cell Cycle. 2010;9:2555–2567. doi: 10.4161/cc.9.13.12061. PubMed DOI
Myklebust M.P., Bruland O., Fluge O., Skarstein A., Balteskard L., Dahl O. MicroRNA-15bsnduced with E2F-controlled genesn HPV-related cancer. Br. J. Cancer. 2011;105:1719–1725. doi: 10.1038/bjc.2011.457. PubMed DOI PMC
Wang X., Wang H.K., McCoy J.P., Banerjee N.S., Rader J.S., Broker T.R., Meyers C., Chow L.T., Zheng Z.M. Oncogenic HPVnfectionnterrupts the expressionf tumor-suppressive miR-34a through viralncoprotein E6. RNA. 2009;15:637–647. doi: 10.1261/rna.1442309. PubMed DOI PMC
Au Yeung C.L., Tsang T.Y., Yau P.L., Kwok T.T. Human papillomavirus type 16 E6nduces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene. 2011;30:2401–2410. doi: 10.1038/onc.2010.613. PubMed DOI
Zhu L., Chen H., Zhou D., Li D., Bai R., Zheng S., Ge W. MicroRNA-9 up-regulationsnvolvedn colorectal cancer metastasis via promoting cell motility. Med. Oncol. 2012;29:1037–1043. doi: 10.1007/s12032-011-9975-z. PubMed DOI
Liu W., Gao G., Hu X., Wang Y., Schwarz J.K., Chen J.J., Grigsby P.W., Wang X. Activationf miR-9 by human papillomavirusn cervical cancer. Oncotarget. 2014;5:11620–11630. PubMed PMC
Yamamoto N., Kinoshita T., Nohata N., Itesako T., Yoshino H., Enokida H., Nakagawa M., Shozu M., Seki N. Tumor suppressive microRNA-218nhibits cancer cell migration andnvasion by targeting focal adhesion pathwaysn cervical squamous cell carcinoma. Int. J. Oncol. 2013;42:1523–1532. doi: 10.3892/ijo.2013.1851. PubMed DOI PMC
Kinoshita T., Hanazawa T., Nohata N., Kikkawa N., Enokida H., Yoshino H., Yamasaki T., Hidaka H., Nakagawa M., Okamoto Y., et al. Tumor suppressive microRNA-218nhibits cancer cell migration andnvasion through targeting laminin-332n head and neck squamous cell carcinoma. Oncotarget. 2012;3:1386–1400. doi: 10.18632/oncotarget.709. PubMed DOI PMC
Jung H.M., Phillips B.L., Chan E.K. miR-375 activates p21 and suppresses telomerase activity by coordinately regulating HPV E6/E7, E6AP, CIP2A, and 14-3-3zeta. Mol. Cancer. 2014;13 doi: 10.1186/1476-4598-13-80. PubMed DOI PMC
Feng H., Shuda M., Chang Y., Moore P.S. Clonalntegrationf a polyomavirusn human Merkel cell carcinoma. Science. 2008;319:1096–1100. doi: 10.1126/science.1152586. PubMed DOI PMC
Alvarez-Arguelles M.E., Melon S., Rojo S., Fernandez-Blazquez A., Boga J.A., Palacio A., Vivanco B., de Oña M. Detection and quantificationf Merkel cell polyomavirus. Analysisf Merkel cell carcinoma cases from 1977 to 2015. J. Med. Virol. 2017;89:2224–2229. doi: 10.1002/jmv.24896. PubMed DOI
Rodig S.J., Cheng J., Wardzala J., DoRosario A., Scanlon J.J., Laga A.C., Martinez-Fernandez A., Barletta J.A., Bellizzi A.M., Sadasivam S., et al. Improvedetection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J. Clin. Investig. 2012;122:4645–4653. doi: 10.1172/JCI64116. PubMed DOI PMC
Moens U., Van Ghelue M., Johannessen M. Oncogenic potentialsf the human polyomavirus regulatory proteins. Cell Mol. Life Sci. 2007;64:1656–1678. doi: 10.1007/s00018-007-7020-3. PubMed DOI PMC
Yin W.Y., Lee M.C., Lai N.S., Lu M.C. BK virus as a potentialncovirus for bladder cancern a renal transplant patient. J. Formos. Med. Assoc. 2015;114:373–374. doi: 10.1016/j.jfma.2012.02.019. PubMed DOI
Polz D., Morshed K., Stec A., Podsiadlo L., Polz-Dacewicz M. Do polyomavirus hominis strains BK and JC play a rolenral squamous cell carcinoma? Ann. Agric. Environ. Med. 2015;22:106–109. doi: 10.5604/12321966.1141378. PubMed DOI
Lin P.Y., Fung C.Y., Chang F.P., Huang W.S., Chen W.C., Wang J.Y., Chang D. Prevalence and genotypedentificationf human JC virusn colon cancern Taiwan. J. Med. Virol. 2008;80:1828–1834. doi: 10.1002/jmv.21296. PubMed DOI
Houben R., Shuda M., Weinkam R., Schrama D., Feng H., Chang Y., Moore P.S., Becker J.C. Merkel cell polyomavirus-infected Merkel cell carcinoma cells require expressionf viral T antigens. J. Virol. 2010;84:7064–7072. doi: 10.1128/JVI.02400-09. PubMed DOI PMC
Sullivan C.S., Grundhoff A.T., Tevethia S., Pipas J.M., Ganem D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature. 2005;435:682–686. doi: 10.1038/nature03576. PubMed DOI
Seo G.J., Fink L.H., O’Hara B., Atwood W.J., Sullivan C.S. Evolutionarily conserved functionf a viral microRNA. J. Virol. 2008;82:9823–9828. doi: 10.1128/JVI.01144-08. PubMed DOI PMC
Bauman Y., Nachmani D., Vitenshtein A., Tsukerman P., Drayman N., Stern-Ginossar N., Lankry D., Gruda R., Mandelboim O. Andentical miRNAf the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escapemmune elimination. Cell Host Microbe. 2011;9:93–102. doi: 10.1016/j.chom.2011.01.008. PubMed DOI
Seo G.J., Chen C.J., Sullivan C.S. Merkel cell polyomavirus encodes a microRNA with the ability to autoregulate viral gene expression. Virology. 2009;383:183–187. doi: 10.1016/j.virol.2008.11.001. PubMed DOI
Lee S., Paulson K.G., Murchison E.P., Afanasiev O.K., Alkan C., Leonard J.H., Byrd D.R., Hannon G.J., Nghiem P. Identification and validationf a novel mature microRNA encoded by the Merkel cell polyomavirusn human Merkel cell carcinomas. J. Clin. Virol. 2011;52:272–275. doi: 10.1016/j.jcv.2011.08.012. PubMed DOI PMC
Renwick N., Cekan P., Masry P.A., McGeary S.E., Miller J.B., Hafner M., Li Z., Mihailovic A., Morozov P., Brown M., et al. Multicolor microRNA FISH effectivelyifferentiates tumor types. J. Clin. Investig. 2013;123:2694–2702. doi: 10.1172/JCI68760. PubMed DOI PMC
Martel-Jantin C., Filippone C., Cassar O., Peter M., Tomasic G., Vielh P., Briere J., Petrella T., Aubriot-Lorton M.H., Mortier L., et al. Genetic variability andntegrationf Merkel cell polyomavirusn Merkel cell carcinoma. Virology. 2012;426:134–142. doi: 10.1016/j.virol.2012.01.018. PubMed DOI
Chen C.J., Cox J.E., Azarm K.D., Wylie K.N., Woolard K.D., Pesavento P.A., Sullivan C.S. Identificationf a polyomavirus microRNA highly expressedn tumors. Virology. 2015;476:43–53. doi: 10.1016/j.virol.2014.11.021. PubMed DOI PMC
Brostoff T., Dela Cruz F.N., Jr., Church M.E., Woolard K.D., Pesavento P.A. The raccoon polyomavirus genome and tumor antigen transcription are stable and abundantn neuroglial tumors. J. Virol. 2014;88:12816–12824. doi: 10.1128/JVI.01912-14. PubMed DOI PMC
Xie H., Lee L., Caramuta S., Hoog A., Browaldh N., Bjornhagen V., Larsson C., Lui W.O. MicroRNA expression patterns related to merkel cell polyomavirusnfectionn human merkel cell carcinoma. J. Investig. Dermatol. 2014;134:507–517. doi: 10.1038/jid.2013.355. PubMed DOI PMC
Chen S.L., Morgan T.R. The natural history of hepatitis C virus (HCV) infection. Int. J. Med. Sci. 2006;3:47–52. doi: 10.7150/ijms.3.47. PubMed DOI PMC
Fiorino S., Bacchi-Reggiani L., de Biase D., Fornelli A., Masetti M., Tura A., Grizzi F., Zanello M., Mastrangelo L., Lombardi R., et al. Possible association between hepatitis C virus and malignanciesifferent from hepatocellular carcinoma: A systematic review. World J. Gastroenterol. 2015;21:12896–12953. doi: 10.3748/wjg.v21.i45.12896. PubMed DOI PMC
Vescovo T., Refolo G., Vitagliano G., Fimia G.M., Piacentini M. Molecular mechanismsf hepatitis C virus-induced hepatocellular carcinoma. Clin. Microbiol. Infect. 2016;22:853–861. doi: 10.1016/j.cmi.2016.07.019. PubMed DOI
Pfeffer S., Sewer A., Lagos-Quintana M., Sheridan R., Sander C., Grasser F.A., van Dyk L.F., Ho C.K., Shuman S., Chien M., et al. Identificationf microRNAsf the herpesvirus family. Nat. Methods. 2005;2:269–276. doi: 10.1038/nmeth746. PubMed DOI
Jopling C.L., Yi M., Lancaster A.M., Lemon S.M., Sarnow P. Modulationf hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309:1577–1581. doi: 10.1126/science.1113329. PubMed DOI
Roberts A.P., Lewis A.P., Jopling C.L. miR-122 activates hepatitis C virus translation by a specialized mechanism requiring particular RNA components. Nucleic Acids Res. 2011;39:7716–7729. doi: 10.1093/nar/gkr426. PubMed DOI PMC
Machlin E.S., Sarnow P., Sagan S.M. Masking the 5′ terminal nucleotidesf the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc. Natl. Acad. Sci. USA. 2011;108:3193–3198. doi: 10.1073/pnas.1012464108. PubMed DOI PMC
Lanford R.E., Hildebrandt-Eriksen E.S., Petri A., Persson R., Lindow M., Munk M.E., Kauppinen S., Orum H. Therapeutic silencingf microRNA-122n primates with chronic hepatitis C virusnfection. Science. 2010;327:198–201. doi: 10.1126/science.1178178. PubMed DOI PMC
Janssen H.L., Reesink H.W., Lawitz E.J., Zeuzem S., Rodriguez-Torres M., Patel K., vaner Meer A.J., Patick A.K., Chen A., Zhou Y., et al. Treatmentf HCVnfection by targeting microRNA. N. Engl. J. Med. 2013;368:1685–1694. doi: 10.1056/NEJMoa1209026. PubMed DOI
Murakami Y., Aly H.H., Tajima A., Inoue I., Shimotohno K. Regulationf the hepatitis C virus genome replication by miR-199a. J. Hepatol. 2009;50:453–460. doi: 10.1016/j.jhep.2008.06.010. PubMed DOI
Hou J., Lin L., Zhou W., Wang Z., Ding G., Dong Q., Qin L., Wu X., Zheng Y., Yang Y., et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell. 2011;19:232–243. doi: 10.1016/j.ccr.2011.01.001. PubMed DOI
Cheng J.C., Yeh Y.J., Tseng C.P., Hsu S.D., Chang Y.L., Sakamoto N., Huang H.D. Let-7bs a novel regulatorf hepatitis C virus replication. Cell Mol. Life Sci. 2012;69:2621–2633. doi: 10.1007/s00018-012-0940-6. PubMed DOI PMC
Mukherjee A., Shrivastava S., Bhanja Chowdhury J., Ray R., Ray R.B. Transcriptional suppressionf miR-181c by hepatitis C virus enhances homeobox A1 expression. J. Virol. 2014;88:7929–7940. doi: 10.1128/JVI.00787-14. PubMed DOI PMC
Mukherjee A., Di Bisceglie A.M., Ray R.B. Hepatitis C virus-mediated enhancementf microRNA miR-373mpairs the JAK/STAT signaling pathway. J. Virol. 2015;89:3356–3365. doi: 10.1128/JVI.03085-14. PubMed DOI PMC
Shirasaki T., Honda M., Shimakami T., Horii R., Yamashita T., Sakai Y., Sakai A., Okada H., Watanabe R., Murakami S., et al. MicroRNA-27a regulates lipid metabolism andnhibits hepatitis C virus replicationn human hepatoma cells. J. Virol. 2013;87:5270–5286. doi: 10.1128/JVI.03022-12. PubMed DOI PMC
Zhang Y., Wei W., Cheng N., Wang K., Li B., Jiang X., Sun S. Hepatitis C virus-induced up-regulationf microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology. 2012;56:1631–1640. doi: 10.1002/hep.25849. PubMed DOI
Huang S., Xie Y., Yang P., Chen P., Zhang L. HCV core protein-inducedown-regulationf microRNA-152 promoted aberrant proliferation by regulating Wnt1n HepG2 cells. PLoS ONE. 2014;9:e81730. doi: 10.1371/journal.pone.0081730. PubMed DOI PMC
Ishida H., Tatsumi T., Hosui A., Nawa T., Kodama T., Shimizu S., Hikita H., Hiramatsu N., Kanto T., Hayashi N., et al. Alterationsn microRNA expression profilen HCV-infected hepatoma cells:nvolvementf miR-491n regulationf HCV replication via the PI3 kinase/Akt pathway. Biochem. Biophys. Res. Commun. 2011;412:92–97. doi: 10.1016/j.bbrc.2011.07.049. PubMed DOI
Banaudha K., Kaliszewski M., Korolnek T., Florea L., Yeung M.L., Jeang K.T., Kumar A. MicroRNA silencingf tumor suppressor DLC-1 promotes efficient hepatitis C virus replicationn primary human hepatocytes. Hepatology. 2011;53:53–61. doi: 10.1002/hep.24016. PubMed DOI
Varnholt H., Drebber U., Schulze F., Wedemeyer I., Schirmacher P., Dienes H.P., Odenthal M. MicroRNA gene expression profilef hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008;47:1223–1232. doi: 10.1002/hep.22158. PubMed DOI
Ura S., Honda M., Yamashita T., Ueda T., Takatori H., Nishino R., Sunakozaka H., Sakai Y., Horimoto K., Kaneko S. Differential microRNA expression between hepatitis B and hepatitis C leadingisease progression to hepatocellular carcinoma. Hepatology. 2009;49:1098–1112. doi: 10.1002/hep.22749. PubMed DOI
Bandiera S., Pernot S., El Saghire H., Durand S.C., Thumann C., Crouchet E., Ye T., Fofana I., Oudot M.A., Barths J., et al. Hepatitis C Virus-Induced Upregulationf MicroRNA miR-146a-5pn Hepatocytes Promotes Viral Infection and Deregulates Metabolic Pathways Associated with Liver Disease Pathogenesis. J. Virol. 2016;90:6387–6400. doi: 10.1128/JVI.00619-16. PubMed DOI PMC
Pineau P., Volinia S., McJunkin K., Marchio A., Battiston C., Terris B., Mazzaferro V., Lowe S.W., Croce C.M., Dejean A. miR-221verexpression contributes to liver tumorigenesis. Proc. Natl. Acad. Sci. USA. 2010;107:264–269. doi: 10.1073/pnas.0907904107. PubMed DOI PMC
Kannian P., Green P.L. Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis. Viruses. 2010;2:2037–2077. doi: 10.3390/v2092037. PubMed DOI PMC
Huang J., Wang F., Argyris E., Chen K., Liang Z., Tian H., Huang W., Squires K., Verlinghieri G., Zhang H. Cellular microRNAs contribute to HIV-1 latencyn resting primary CD4+ T lymphocytes. Nat. Med. 2007;13:1241–1247. doi: 10.1038/nm1639. PubMed DOI
Hakim S.T., Alsayari M., McLean D.C., Saleem S., Addanki K.C., Aggarwal M., Mahalingam K., Bagasra O. A large numberf the human microRNAs target lentiviruses, retroviruses, and endogenous retroviruses. Biochem. Biophys. Res. Commun. 2008;369:357–362. doi: 10.1016/j.bbrc.2008.02.025. PubMed DOI
Ruggero K., Corradin A., Zanovello P., Amadori A., Bronte V., Ciminale V., D’Agostino D.M. Rolef microRNAsn HTLV-1nfection and transformation. Mol. Aspects Med. 2010;31:367–382. doi: 10.1016/j.mam.2010.05.001. PubMed DOI
Bai X.T., Nicot C. miR-28-3ps a cellular restriction factor thatnhibits human T cell leukemia virus, type 1 (HTLV-1) replication and virusnfection. J. Biol. Chem. 2015;290:5381–5390. doi: 10.1074/jbc.M114.626325. PubMed DOI PMC
Piedade D., Azevedo-Pereira J.M. MicroRNAs, HIV and HCV: A complex relation towards pathology. Rev. Med. Virol. 2016;26:197–215. doi: 10.1002/rmv.1881. PubMed DOI
Triboulet R., Mari B., Lin Y.L., Chable-Bessia C., Bennasser Y., Lebrigand K., Cardinaud B., Maurin T., Barbry P., Baillat V., et al. Suppressionf microRNA-silencing pathway by HIV-1uring virus replication. Science. 2007;315:1579–1582. doi: 10.1126/science.1136319. PubMed DOI
Chiang K., Sung T.L., Rice A.P. Regulationf cyclin T1 and HIV-1 Replication by microRNAsn resting CD4+ T lymphocytes. J. Virol. 2012;86:3244–3252. doi: 10.1128/JVI.05065-11. PubMed DOI PMC
Sung T.L., Rice A.P. miR-198nhibits HIV-1 gene expression and replicationn monocytes andts mechanismf action appears tonvolve repressionf cyclin T1. PLoS Pathog. 2009;5:e1000263. doi: 10.1371/journal.ppat.1000263. PubMed DOI PMC
Zhang H.S., Wu T.C., Sang W.W., Ruan Z. MiR-217snvolvedn Tat-induced HIV-1 long terminal repeat (LTR) transactivation byown-regulationf SIRT1. Biochim. Biophys. Acta. 2012;1823:1017–1023. doi: 10.1016/j.bbamcr.2012.02.014. PubMed DOI
Van Duyne R., Guendel I., Klase Z., Narayanan A., Coley W., Jaworski E., Roman J., Popratiloff A., Mahieux R., Kehn-Hall K., et al. Localization and sub-cellular shuttlingf HTLV-1 tax with the miRNA machinery. PLoS ONE. 2012;7:e40662. doi: 10.1371/journal.pone.0040662. PubMed DOI PMC
Pichler K., Schneider G., Grassmann R. MicroRNA miR-146a and furtherncogenesis-related cellular microRNAs areysregulatedn HTLV-1-transformed T lymphocytes. Retrovirology. 2008;5:100. doi: 10.1186/1742-4690-5-100. PubMed DOI PMC
Yeung M.L., Yasunaga J., Bennasser Y., Dusetti N., Harris D., Ahmad N., Matsuoka M., Jeang K.T. Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressorn cell growthysregulation by human T-cell lymphotrophic virus 1. Cancer Res. 2008;68:8976–8985. doi: 10.1158/0008-5472.CAN-08-0769. PubMed DOI PMC
Bellon M., Lepelletier Y., Hermine O., Nicot C. Deregulationf microRNAnvolvedn hematopoiesis and themmune responsen HTLV-I adult T-cell leukemia. Blood. 2009;113:4914–4917. doi: 10.1182/blood-2008-11-189845. PubMed DOI PMC
Yamagishi M., Nakano K., Miyake A., Yamochi T., Kagami Y., Tsutsumi A., Matsuda Y., Sato-Otsubo A., Muto S., Utsunomiya A., et al. Polycomb-mediated lossf miR-31 activates NIK-dependent NF-kappaB pathwayn adult T cell leukemia andther cancers. Cancer Cell. 2012;21:121–135. doi: 10.1016/j.ccr.2011.12.015. PubMed DOI
Vernin C., Thenoz M., Pinatel C., Gessain A., Gout O., Delfau-Larue M.H., Nazaret N., Legras-Lachuer C., Wattel E., Mortreux F. HTLV-1 bZIP factor HBZ promotes cell proliferation and geneticnstability by activating OncomiRs. Cancer Res. 2014;74:6082–6093. doi: 10.1158/0008-5472.CAN-13-3564. PubMed DOI
Jin W.B., Wu F.L., Kong D., Guo A.G. HBV-encoded microRNA candidate andts target. Comput. Biol. Chem. 2007;31:124–126. doi: 10.1016/j.compbiolchem.2007.01.005. PubMed DOI
Yang X., Li H., Sun H., Fan H., Hu Y., Liu M., Li X., Tang H. Hepatitis B Virus-Encoded MicroRNA Controls Viral Replication. J. Virol. 2017;91 doi: 10.1128/JVI.01919-16. PubMed DOI PMC
Wang Y.Q., Ren Y.F., Song Y.J., Xue Y.F., Zhang X.J., Cao S.T., Deng Z.J., Wu J., Chen L., Li G., et al. MicroRNA-581 promotes hepatitis B virus surface antigen expression by targeting Dicer and EDEM1. Carcinogenesis. 2014;35:2127–2133. doi: 10.1093/carcin/bgu128. PubMed DOI
Wang F., Sun Y., Ruan J., Chen R., Chen X., Chen C., Kreuze J.F., Fei Z., Zhu X., Gao S. Using small RNAeep sequencingata toetect human viruses. BioMed. Res. Int. 2016;2016:2596782. doi: 10.1155/2016/2596782. PubMed DOI PMC
Selitsky S.R., Dinh T.A., Toth C.L., Kurtz L., Honda M., Struck B.R., Kaneko S., Vickers K.C., Lemon S.M., Sethupathy P. Transcriptomic analysisf chronic hepatitis B and C and liver cancer reveals microRNA-mediated controlf cholesterol synthesis programs. mBio. 2015;6:e01500-15. doi: 10.1128/mBio.01500-15. PubMed DOI PMC
Selitsky S.R., Baran-Gale J., Honda M., Yamane D., Masaki T., Fannin E.E., Guerra B., Shirasaki T., Shimakami T., Kaneko S., et al. Small tRNA-derived RNAs arencreased and more abundant than microRNAsn chronic hepatitis B and C. Sci. Rep. 2015;5:7675. doi: 10.1038/srep07675. PubMed DOI PMC
Qian K., Pietila T., Ronty M., Michon F., Frilander M.J., Ritari J., Tarkkanen J., Paulin L., Auvinen P., Auvinen E. Identification and validationf human papillomavirus encoded microRNAs. PLoS ONE. 2013;8:e70202. doi: 10.1371/journal.pone.0070202. PubMed DOI PMC
Virtanen E., Pietila T., Nieminen P., Qian K., Auvinen E. Low expression levelsf putative HPV encoded microRNAsn cervical samples. Springerplus. 2016;5 doi: 10.1186/s40064-016-3524-3. PubMed DOI PMC
Weng S.L., Huang K.Y., Weng J.T., Hung F.Y., Chang T.H., Lee T.Y. Genome-wideiscoveryf viral microRNAs basedn phylogenetic analysis and structural evolutionf various human papillomavirus subtypes. Brief Bioinform. 2017 doi: 10.1093/bib/bbx046. PubMed DOI
Klase Z., Kale P., Winograd R., Gupta M.V., Heydarian M., Berro R., McCaffrey T., Kashanchi F. HIV-1 TAR elements processed by Dicer to yield a viral micro-RNAnvolvedn chromatin remodelingf the viral LTR. BMC Mol. Biol. 2007;8:63. doi: 10.1186/1471-2199-8-63. PubMed DOI PMC
Ouellet D.L., Plante I., Landry P., Barat C., Janelle M.E., Flamand L., Tremblay M.J., Provost P. Identificationf functional microRNAs released through asymmetrical processingf HIV-1 TAR element. Nucleic Acids Res. 2008;36:2353–2365. doi: 10.1093/nar/gkn076. PubMed DOI PMC
Rouha H., Thurner C., Mandl C.W. Functional microRNA generated from a cytoplasmic RNA virus. Nucleic Acids Res. 2010;38:8328–8337. doi: 10.1093/nar/gkq681. PubMed DOI PMC
Harwig A., Jongejan A., van Kampen A.H.C., Berkhout B., Das A.T. Tat-dependent productionf an HIV-1 TAR-encoded miRNA-like small RNA. Nucleic Acids Res. 2016;44:4340–4353. doi: 10.1093/nar/gkw167. PubMed DOI PMC
Bernard M.A., Zhao H., Yue S.C., Anandaiah A., Koziel H., Tachado S.D. Novel HIV-1 miRNAs stimulate TNFalpha releasen human macrophages via TLR8 signaling pathway. PLoS ONE. 2014;9:e106006. doi: 10.1371/journal.pone.0106006. PubMed DOI PMC
Li L., Feng H., Da Q., Jiang H., Chen L., Xie L., Huang Q., Xiong H., Luo F., Kang L., et al. Expressionf HIV-encoded microRNA-TAR andtsnhibitory effectn viral replicationn human primary macrophages. Arch. Virol. 2016;161:1115–1123. doi: 10.1007/s00705-016-2755-5. PubMed DOI
Klase Z., Winograd R., Davis J., Carpio L., Hildreth R., Heydarian M., Fu S., McCaffrey T., Meiri E., Ayash-Rashkovsky M., et al. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology. 2009;6 doi: 10.1186/1742-4690-6-18. PubMed DOI PMC
Ouellet D.L., Vigneault-Edwards J., Letourneau K., Gobeil L.A., Plante I., Burnett J.C., Rossi J.J., Provost P. Regulationf host gene expression by HIV-1 TAR microRNAs. Retrovirology. 2013;10 doi: 10.1186/1742-4690-10-86. PubMed DOI PMC
Omoto S., Ito M., Tsutsumi Y., Ichikawa Y., Okuyama H., Brisibe E.A., Saksena N.K., Fujii Y.R. HIV-1 nef suppression by virally encoded microRNA. Retrovirology. 2004;1:44. doi: 10.1186/1742-4690-1-44. PubMed DOI PMC
Swaminathan G., Navas-Martin S., Martin-Garcia J. MicroRNAs and HIV-1nfection: Antiviral activities and beyond. J. Mol. Biol. 2014;426:1178–1197. doi: 10.1016/j.jmb.2013.12.017. PubMed DOI
Kaul D., Ahlawat A., Gupta S.D. HIV-1 genome-encoded hiv1-mir-H1mpairs cellular responses tonfection. Mol. Cell. Biochem. 2009;323:143–148. doi: 10.1007/s11010-008-9973-4. PubMed DOI
Zhang Y., Fan M., Geng G., Liu B., Huang Z., Luo H., Zhou J., Guo X., Cai W., Zhang H. A novel HIV-1-encoded microRNA enhancests viral replication by targeting the TATA box region. Retrovirology. 2014;11:23. doi: 10.1186/1742-4690-11-23. PubMed DOI PMC
Lin J., Cullen B.R. Analysisf thenteractionf primate retroviruses with the human RNAnterference machinery. J. Virol. 2007;81:12218–12226. doi: 10.1128/JVI.01390-07. PubMed DOI PMC
Whisnant A.W., Bogerd H.P., Flores O., Ho P., Powers J.G., Sharova N., Stevenson M., Chen C., Cullen B.R. In-depth analysisf thenteractionf HIV-1 with cellular microRNA biogenesis and effector mechanisms. mBio. 2013;4:e00193-13. doi: 10.1128/mBio.00193-13. PubMed DOI PMC
Schopman N.C., Willemsen M., Liu Y.P., Bradley T., van Kampen A., Baas F., Berkhout B., Haasnoot J. Deep sequencingf virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res. 2012;40:414–427. doi: 10.1093/nar/gkr719. PubMed DOI PMC
Vongrad V., Imig J., Mohammadi P., Kishore S., Jaskiewicz L., Hall J., Günthard H.F., Beerenwinkel N., Metzner K.J. HIV-1 RNAs are not partf the Argonaute 2 associated RNAnterference pathwayn macrophages. PLoS ONE. 2015;10:e0132127. doi: 10.1371/journal.pone.0132127. PubMed DOI PMC
Kincaid R.P., Burke J.M., Sullivan C.S. RNA virus microRNA that mimics a B-cellncomiR. Proc. Natl. Acad. Sci. USA. 2012;109:3077–3082. doi: 10.1073/pnas.1116107109. PubMed DOI PMC
Li Z., Rana T.M. Therapeutic targetingf microRNAs: Current status and future challenges. Nat. Rev. Drug Discov. 2014;13:622–638. doi: 10.1038/nrd4359. PubMed DOI