Long-term administration of morphine specifically alters the level of protein expression in different brain regions and affects the redox state

. 2024 ; 19 (1) : 20220858. [epub] 20240420

Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38681734

We investigated the changes in redox state and protein expression in selected parts of the rat brain induced by a 4 week administration of morphine (10 mg/kg/day). We found a significant reduction in lipid peroxidation that mostly persisted for 1 week after morphine withdrawal. Morphine treatment led to a significant increase in complex II in the cerebral cortex (Crt), which was accompanied by increased protein carbonylation, in contrast to the other brain regions studied. Glutathione levels were altered differently in the different brain regions after morphine treatment. Using label-free quantitative proteomic analysis, we found some specific changes in protein expression profiles in the Crt, hippocampus, striatum, and cerebellum on the day after morphine withdrawal and 1 week later. A common feature was the upregulation of anti-apoptotic proteins and dysregulation of the extracellular matrix. Our results indicate that the tested protocol of morphine administration has no significant toxic effect on the rat brain. On the contrary, it led to a decrease in lipid peroxidation and activation of anti-apoptotic proteins. Furthermore, our data suggest that long-term treatment with morphine acts specifically on different brain regions and that a 1 week drug withdrawal is not sufficient to normalize cellular redox state and protein levels.

Zobrazit více v PubMed

Zhang Y, Chen QY, Yu LC. Morphine: A protective or destructive role in neurons? Neuroscientist. 2008;14(6):561–70. PubMed

Skrabalova J, Karlovska I, Hejnova L, Novotny J. Protective effect of morphine against the oxidant-induced injury in H9c2 cells. Cardiovasc Toxicol. 2018;18(4):374–85. PubMed

Lu S, Liao LS, Zhang B, Yan WT, Chen LP, Yan H, et al. Antioxidant cascades confer neuroprotection in ethanol, morphine, and methamphetamine preconditioning. Neurochem Int. 2019;131:104540. PubMed

Shibani F, Sahamsizadeh A, Fatemi I, Allahtavakoli M, Hasanshahi J, Rahmani M, et al. Effect of oleuropein on morphine-induced hippocampus neurotoxicity and memory impairments in rats. Naunyn-Schmiedebergs Arch Pharmacol. 2019;392(11):1383–91. PubMed

Ujcikova H, Dlouha K, Roubalova L, Vosahlikova M, Kagan D, Svoboda P. Up-regulation of adenylylcyclases I and II induced by long-term adaptation of rats to morphine fades away 20 days after morphine withdrawal. Biochimica Et Biophysica Acta-General Subj. 2011;1810(12):1220–9. PubMed

Neugebauer NM, Einstein EB, Lopez MB, McClure-Begley TD, Mineur YS, Picciotto MR. Morphine dependence and withdrawal induced changes in cholinergic signaling. Pharmacol Biochem Behav. 2013;109:77–83. PubMed PMC

Ujcikova H, Brejchova J, Vosahlikova M, Kagan D, Dlouha K, Sykora J, et al. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure. Physiol Res. 2014;63:S165–76. PubMed

Garcia-Perez D, Lopez-Bellido R, Rodriguez RE, Laorden ML, Nunez C, Milanes MV. Dysregulation of dopaminergic regulatory mechanisms in the mesolimbic pathway induced by morphine and morphine withdrawal. Brain Struct Funct. 2015;220(4):1901–19. PubMed

Drastichova Z, Hejnova L, Moravcova R, Novotny J. Proteomic analysis unveils expressional changes in cytoskeleton- and synaptic plasticity-associated proteins in rat brain six months after withdrawal from morphine. Life-Basel. 2021;11(7):683. PubMed PMC

Ujcikova H, Eckhardt A, Hejnova L, Novotny J, Svoboda P. Alterations in the proteome and phosphoproteome profiles of rat hippocampus after six months of morphine withdrawal: comparison with the forebrain cortex. Biomedicines. 2022;10(1):80. PubMed PMC

Abdel-Zaher AO, Abdel-Rahman MS, Elwasei FM. Blockade of nitric oxide overproduction and oxidative stress by nigella sativa oil attenuates morphine-induced tolerance and dependence in mice. Neurochem Res. 2010;35(10):1557–65. PubMed

Abdel-Zaher AO, Mostafa MG, Farghaly HSM, Hamdy MM, Abdel-Hady RH. Role of oxidative stress and inducible nitric oxide synthase in morphine-induced tolerance and dependence in mice. Effect of alpha-lipoic acid. Behav Brain Res. 2013;247:17–26. PubMed

Abdel-Zaher AO, Mostafa MG, Farghly HM, Hamdy MM, Omran GA, Al-Shaibani NKM. Inhibition of brain oxidative stress and inducible nitric oxide synthase expression by thymoquinone attenuates the development of morphine tolerance and dependence in mice. Eur J Pharmacol. 2013;702(1-3):62–70. PubMed

Sumathi T, Nathiya VC, Sakthikumar M. Protective effect of bacoside-A against morphine-induced oxidative stress in rats. Ind J Pharm Sci. 2011;73(4):409–15. PubMed PMC

Motaghinejad M, Karimian M, Motaghinejad O, Shabab B, Yazdani I, Fatima S. Protective effects of various dosage of curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol Rep. 2015;67(2):230–5. PubMed

Tong JC, Fitzmaurice PS, Moszczynska A, Rathitharan G, Ang LC, Meyer JH, et al. Normal glutathione levels in autopsied brain of chronic users of heroin and of cocaine. Drug Alcohol Depend. 2018;190:20–8. PubMed PMC

Skrabalova J, Neckar J, Hejnova L, Bartonova I, Kolar F, Novotny J. Antiarrhythmic effect of prolonged morphine exposure is accompanied by altered myocardial adenylyl cyclase signaling in rats. Pharmacol Rep. 2012;64(2):351–9. PubMed

Tanaka K, Kersten JR, Riess ML. Opioid-induced cardioprotection. Curr Pharm Des. 2014;20(36):5696–705. PubMed PMC

Headrick JP, Hoe LES, Du Toit EF, Peart JN. Opioid receptors and cardioprotection - ‘opioidergic conditioning’ of the heart. Br J Pharmacol. 2015;172(8):2026–50. PubMed PMC

Pak T, Cadet P, Mantione KJ, Stefano GB. Morphine via nitric oxide modulates beta-amyloid metabolism: a novel protective mechanism for Alzheimer’s disease. Med Sci Monit. 2005;11(10):BR357–BR66. PubMed

Stetler RA, Leak RK, Gan Y, Li PY, Zhang F, Hu XM, et al. Preconditioning provides neuroprotection in models of CNS disease: Paradigms and clinical significance. Prog Neurobiol. 2014;114:58–83. PubMed PMC

Arabian M, Aboutaleb N, Soleimani M, Ajami M, Habibey R, Pazoki-Toroudi H. Activation of mitochondrial KATP channels mediates neuroprotection induced by chronic morphine preconditioning in hippocampal CA-1 neurons following cerebral ischemia. Adv Med Sci. 2018;63(2):213–9. PubMed

Huang JZ, Ren Y, Xu Y, Chen T, Xia TC, Li ZR, et al. The delta-opioid receptor and Parkinson’s disease. CNS Neurosci Ther. 2018;24(12):1089–99. PubMed PMC

Zhao XY, Li JF, Li TZ, Pan CX, Xue FS, Wang GY. Morphine pretreatment protects against cerebral ischemic injury via a cPKC gamma-mediated anti-apoptosis pathway. Exp Ther Med. 2021;22(3):1016. PubMed PMC

Arabian M, Aboutaleb N, Soleimani M, Ajami M, Habibey R, Rezaei Y, et al. Preconditioning with morphine protects hippocampal CA1 neurons from ischemia-reperfusion injury via activation of the mTOR pathway. Can J Physiol Pharmacol. 2018;96(1):80–7. PubMed

Morris G, Berk M. The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med. 2015;13:1016. PubMed PMC

Tan SH, Karri V, Tay NWR, Chang KH, Ah HY, Ng PQ, et al. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed Pharmacother. 2019;111:765–77. PubMed

Wang B, Su CJ, Liu TT, Zhou Y, Feng Y, Huang Y, et al. The neuroprotection of low-dose morphine in cellular and animal models of Parkinson’s disease through ameliorating endoplasmic reticulum (ER) stress and activating autophagy. Front Mol Neurosci. 2018;11:120. PubMed PMC

Bodzon-Kulakowska A, Padrtova T, Drabik A, Ner-Kluza J, Antolak A, Kulakowski K, et al. Morphinome Database - The database of proteins altered by morphine administration - An update. J Proteom. 2019;190:21–6. PubMed

Ujcikova H, Cechova K, Jagr M, Roubalova L, Vosahlikova M, Svoboda P. Proteomic analysis of protein composition of rat hippocampus exposed to morphine for 10 days; comparison with animals after 20 days of morphine withdrawal. PLoS One. 2020;15(4):e0231721. PubMed PMC

Dozio V, Daali Y, Desmeules J, Sanchez JC. Deep proteomics and phosphoproteomics reveal novel biological pathways perturbed by morphine, morphine-3-glucuronide and morphine-6-glucuronide in human astrocytes. J Neurosci Res. 2022;100(1):220–36. PubMed

Drastichova Z, Skrabalova J, Neckar J, Kolar F, Novotny J. Prolonged morphine administration alters protein expression in the rat myocardium. J Biomed Sci. 2011;30:18. PubMed PMC

Drastichova Z, Skrabalova J, Jedelsky P, Neckar J, Kolar F, Novotny J. Global changes in the rat heart proteome induced by prolonged morphine treatment and withdrawal. PLoS One. 2012;7(10):e47167. PubMed PMC

Adams JU, Holtzman SG. Tolerance and dependence after continuous morphine infusion from osmotic pumps measured by operant responding in rats. Psychopharmacol. 1990;100(4):451–8. PubMed

Wolgin DL, Benson HD. Role of associative and nonassociative mechanisms in tolerance to morphine anorexia. Pharmacol Biochem Behav. 1991;39(2):279–86. PubMed

Kálmán J, Bjelik A, Hugyecz M, Tímár J, Gyarmati Z, Zana M, et al. 3,4-Methylenedioxymethamphetamine (MDMA), but not morphine, alters APP processing in the rat brain. Int J Neuropsychopharmacol. 2007;10(2):183–90. PubMed

Taracha E, Chrapusta SJ, Lehner M, Skórzewska A, Plaznik A. Methadone is substantially less effective than morphine in modifying locomotor and brain Fos responses to subsequent methadone challenge in rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33(6):1032–9. PubMed

Tschacher W, Haemming R, Jacobshagen N. Time series modeling of heroin and morphine drug action. Psychopharmacol. 2003;165(2):188–93. PubMed

Hejnova L, Skrabalova J, Novotny J. Prolonged morphine treatment alters expression and plasma membrane distribution of beta-adrenergic receptors and some other components of their signaling system in rat cerebral cortex. J Mol Neurosci. 2017;63(3–4):364–76. PubMed

Stöhr J, Novotny J, Bourova L, Svoboda P. Modulation of adenylyl cyclase activity in young and adult rat brain cortex: Identification of suramin as a direct inhibitor of adenylyl cyclase. J Cell Mol Med. 2005;9(4):940–52. PubMed PMC

Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509. PubMed

Cheng YS, Zheng Y, VanderGheynst JS. Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids. 2011;46(1):95–103. PubMed

Mesquita CS, Oliveira R, Bento F, Geraldo D, Rodrigues JV, Marcos JC. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Anal Biochem. 2014;458:69–71. PubMed

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7. PubMed

Ihnatovych I, Hejnova L, Kostrnova A, Mares P, Svoboda P, Novotny J. Maturation of rat brain is accompanied by differential expression of the long and short splice variants of G(s)alpha protein: identification of cytosolic forms of G(s)alpha. J Neurochem. 2001;79(1):88–97. PubMed

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteom. 2014;13(9):2513–26. PubMed PMC

Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl Acids Res. 2009;37(1):1–13. PubMed PMC

Motaghinejad M, Karimian SM, Motaghinejad O, Shabab B, Asadighaleni M, Fatima S. The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fund Clin Pharmacol. 2015;29(3):299–309. PubMed

Singh P, Sharma B, Gupta S, Sharma BM. In vivo and in vitro attenuation of naloxone-precipitated experimental opioid withdrawal syndrome by insulin and selective K-ATP channel modulator. Psychopharmacol. 2015;232(2):465–75. PubMed

Joshi JC, Ray A, Gulati K. Differential modulatory effects of morphine on acute and chronic stress induced neurobehavioral and cellular markers in rats. Eur J Pharmacol. 2014;729:17–21. PubMed

Gutowicz M, Kazmierczak B, Baranczyk-Kuzma A. The influence of heroin abuse on glutathione-dependent enzymes in human brain. Drug Alcohol Depend. 2011;113(1):8–12. PubMed

Arabian M, Aboutaleb N, Ajami M, Habibey R. Interaction of mTOR and iNOS pathways in protection against Ischemia/Reperfusion injury. Iran J Pharm Res. 2019;18(2):785–92. PubMed PMC

Almeida MB, Costa-Malaquias A, Nascimento JLM, Oliveira KR, Herculano AM, Crespo-Lopez ME. Therapeutic concentration of morphine reduces oxidative stress in glioma cell line. Braz J Med Biol Res. 2014;47(5):398–402. PubMed PMC

Tjon GHK, Devries TJ, Ronken E, Hogenboom F, Wardeh G, Mulder AH, et al. Repeated and chtonix morphine administration causes differential long-lasting changes in dopaminergic neurotransmission in rat striatum without changing its delta-opioid andkappa-opioid receptor regulation. Eur J Pharmacol. 1994;252(2):205–12. PubMed

Haleem DJ, Nawaz S, Salman T. Dopamine and serotonin metabolism associated with morphine reward and its inhibition with buspirone: A study in the rat striatum. Pharmacol Biochem Behav. 2018;170:71–8. PubMed

Spina MB, Cohen G. Dopamine turnover and glutathione oxidation – implicationds for Parkinson disease. Proc Nat Acad Sci U S A. 1989;86(4):1398–400. PubMed PMC

Wang H, Du YS, Xu WS, Li CJ, Sun H, Hu KR, et al. Exogenous glutathione exerts a therapeutic effect in ischemic stroke rats by interacting with intrastriatal dopamine. Acta Pharmacol Sin. 2022;43(3):541–1. PubMed PMC

Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019;44(1):3–15. PubMed PMC

Grivennikova VG, Kozlovsky VS, Vinogradov AD. Respiratory complex II: ROS production and the kinetics of ubiquinone reduction. Biochim Biophys Acta-Bioenergetics. 2017;1858(2):109–17. PubMed

Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12(11):652–69. PubMed PMC

Korostynski M, Piechota M, Kaminska D, Solecki W, Przewlocki R. Morphine effects on striatal transcriptome in mice. Gen Biol. 2007;8(6):R128. PubMed PMC

Yang HY, Pu XP, Liu Y. Chronic morphine treatment induces over-expression of HSP70 in mice striatum related with abnormal ubiquitin-proteasome degradation. Drug Alcohol Depend. 2014;139:53–9. PubMed

Qin WJ, Zhang L, Tang K, Zhao L, Mao M, Wang YT, et al. Effect of heat shock protein 70 modulators on the development of morphine analgesic tolerance in rats. Behav Pharmacol. 2020;31(2–3):179–85. PubMed PMC

Ammon S, Mayer P, Riechert U, Tischmeyer H, Hollt V. Microarray analysis of genes expressed in the frontal cortex of rats chronically treated with morphine and after naloxone precipitated withdrawal. Mol Brain Res. 2003;112(1-2):113–25. PubMed

Ammon-Treiber S, Grecksch G, Stumm R, Riechert U, Tischmeyer H, Reichenauer A, et al. Rapid, transient, and dose-dependent expression of Hsp70 messenger RNA in the rat brain after morphine treatment. Cell Stress Chaperones. 2004;9(2):182–97. PubMed PMC

Parkitna JMR, Bilecki W, Mierzejewski P, Stefanski R, Ligeza A, Bargiela A, et al. Effects of morphine on gene expression in the rat amygdala. J Neurochem. 2004;91(1):38–48. PubMed

Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperth. 2005;21(5):379–92. PubMed

Behdarvandy M, Karimian M, Atlasi MA, Tameh AA. Heat shock protein 27 as a neuroprotective biomarker and a suitable target for stem cell therapy and pharmacotherapy in ischemic stroke. Cell Biol Int. 2020;44(2):356–67. PubMed

Kim JY, Kim JW, Yenari MA. Heat shock protein signaling in brain ischemia and injury. Neurosci Lett. 2020;715:134642. PubMed PMC

Guo SH, Wharton W, Moseley P, Shi HL. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones. 2007;12(3):245–54. PubMed PMC

Kim W, Kwon HJ, Jung HY, Yoo DY, Moon SM, Kim DW, et al. Tat-HSP70 protects neurons from oxidative damage in the NSC34 cells and ischemic damage in the ventral horn of rabbit spinal cord. Neurochem Int. 2019;129:104477. PubMed

Guo QM, Du XF, Zhao YL, Zhang D, Yue LH, Wang ZX. Ischemic postconditioning prevents renal ischemia reperfusion injury through the induction of heat shock proteins in rats. Mol Med Rep. 2014;10(6):2875–81. PubMed PMC

Witalison EE, Thompson PR, Hofseth LJ. Protein arginine deiminases and associated citrullination: physiological functions and diseases associated with dysregulation. Curr Drug Targets. 2015;16(7):700–10. PubMed PMC

Lange S, Rocha-Ferreira E, Thei L, Mawjee P, Bennett K, Thompson PR, et al. Peptidylariginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. J Neurochem. 2014;130(4):555–62. PubMed PMC

Beato M, Sharma P. Peptidyl arginine deiminase 2 (PADI2)-mediated arginine citrullination modulates transcription in cancer. Int J Mol Sci. 2020;21(4):1351. PubMed PMC

Shimohama S, Perry G, Richey P, Takenawa T, Whitehouse PJ, Miyoshi K, et al. Abnormal accumulation of phospholipase C-delta in filamentous inclusions of human neurodegenerative diseases. Neurosci Lett. 1993;162(1–2):183–6. PubMed

Tanino H, Shimohama S, Sasaki Y, Sumida Y, Fujimoto S. Increase in phospholipase C-delta 1 protein levels in aluminum-treated rat brains. Biochem Biophys Res Commun. 2000;271(3):620–5. PubMed

Tanino H, Kusuda T, Nagasawa K, Shimohama S, Fujimoto S. Alterations of phospholipase C isozymes in rat cerebral cortex through hyperoxia. Biol Pharma Bull. 2001;24(11):1241–5. PubMed

Murthy KS, Zhou HP, Huang J, Pentyala SN. Activation of PLC-delta 1 by G(i/o)-coupled receptor agonists. Am J Physiol-Cell Physiol. 2004;287(6):C1679–C87. PubMed

Kwiatkowska K, Matveichuk OV, Fronk J, Ciesielska A. Flotillins: at the intersection of protein s-palmitoylation and lipid-mediated signaling. Int J Mol Sci. 2020;21(7):2283. PubMed PMC

Van Acker ZP, Luyckx E, Dewilde S. Neuroglobin expression in the brain: a story of tissue homeostasis preservation. Mol Neurobiol. 2019;56(3):2101–22. PubMed

Watanabe S, Takahashi N, Uchida H, Wakasugi K. Human neuroglobin functions as an oxidative stress-responsive sensor for neuroprotection. J Biol Chem. 2012;287(36):30128–38. PubMed PMC

Bratek E, Ziembowicz A, Bronisz A, Salinska E. The activation of group II metabotropic glutamate receptors protects neonatal rat brains from oxidative stress injury after hypoxia-ischemia. PLoS One. 2018;13(7):e0200933. PubMed PMC

Qian ZQ, Wu XJ, Qiao YN, Shi MM, Liu ZQ, Ren W, et al. Downregulation of mGluR2/3 receptors during morphine withdrawal in rats impairs mGluR2/3-and NMDA receptor-dependent long-term depression in the nucleus accumbens. Neurosci Lett. 2019;690:76–82. PubMed

Qian L, Tan KS, Wei SJ, Wu HM, Xu ZL, Wilson B, et al. Microglia-mediated neurotoxicity is inhibited by morphine through an opioid receptor-independent reduction of NADPH oxidase activity. J Immunol. 2007;179(2):1198–209. PubMed

Gao JT, Jordan CJ, Bi GH, He Y, Yang HJ, Gardner EL, et al. Deletion of the type 2 metabotropic glutamate receptor increases heroin abuse vulnerability in transgenic rats. Neuropsychopharmacol. 2018;43(13):2615–26. PubMed PMC

Toda N, Kishioka S, Hatano Y, Toda H. Modulation of opioid actions by nitric oxide signaling. Anesthesiology. 2009;110(1):166–81. PubMed

Poderoso JJ, Helfenberger K, Poderoso C. The effect of nitric oxide on mitochondrial respiration. Nitric Oxide-Biol Chem. 2019;88:61–72. PubMed

Kory N, Wyant GA, Prakash G, de Bos JU, Bottanelli F, Pacold ME, et al. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science. 2018;362(6416):eaat9528. PubMed PMC

Fan J, Ye JB, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014;510(7504):298–302. PubMed PMC

Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25(1):27–42. PubMed PMC

Pradhan LK, Das SK. The Regulatory Role of Reticulons in Neurodegeneration: Insights Underpinning Therapeutic Potential for Neurodegenerative Diseases. Cell Mol Neurobiol. 2020;41(6):1157–74. PubMed

Halpain S, Dehmelt L. The MAPI family of microtubule-associated proteins. Gen. Biol. 2006;7(6):224. PubMed PMC

Takei Y, Kikkawa YS, Atapour N, Hensch TK, Hirokawa N. Defects in synaptic plasticity, reduced NMDA-receptor transport, and instability of postsynaptic density proteins in mice lacking microtubule-associated protein 1A. J Neurosci. 2015;35(47):15539–54. PubMed PMC

Liu Y, Lee JW, Ackerman SL. Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration. J Neurosci. 2015;35(11):4587–98. PubMed PMC

Evans CG, Chang L, Gestwicki JE. Heat shock protein 70 (Hsp70) as an emerging drug target. J Med Chem. 2010;53(12):4585–602. PubMed PMC

Vidyasagar A, Wilson NA, Djamali A. Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair. 2012;5(1):7. PubMed PMC

Venugopal A, Sundaramoorthy K, Vellingiri B. Therapeutic potential of Hsp27 in neurological diseases. Egyptian. J Med Hum Genet. 2019;20(1):21.

Zhang J, Zheng XX, Wang PY, Wang JX, Ding W. Role of apoptosis repressor with caspase recruitment domain (ARC) in cell death and cardiovascular disease. Apoptosis. 2021;26(1–2):24–37. PubMed

Ghosh S, Vashisth K, Ghosh S, Han SS, Bhaskar R, Sinha JK. From sleep to cancer to neurodegenerative disease: the crucial role of Hsp70 in maintaining cellular homeostasis and potential therapeutic implications. J Biomol Struct Dyn. 2023;1–12. PubMed

Zhou ZB, Huang GX, Lu JJ, Ma J, Yuan QJ, Cao Y, et al. Up-regulation of heat shock protein 27 inhibits apoptosis in lumbosacral nerve root avulsion-induced neurons. Sci Rep. 2019;9(1):11468. PubMed PMC

Wang N, Liu XH, Liu K, Wang KK, Zhang HL. Homo-oxidized HSPB1 protects H9c2 cells against oxidative stress via activation of KEAP1/NRF2 signaling pathway. Iscience. 2023;26(8):107443. PubMed PMC

Sohn EJ, Shin MJ, Eum WS, Kim DW, Yong JI, Ryu EJ, et al. Tat-NOL3 protects against hippocampal neuronal cell death induced by oxidative stress through the regulation of apoptotic pathways. Int J Mol Med. 2016;38(1):225–35. PubMed

Bekheet SH, Saker SA, Abdel-Kader AM, Younis AEA. Histopathological and biochemical changes of morphine sulphate administration on the cerebellum of albino rats. Tissue Cell. 2010;42(3):165–75. PubMed

Ray MH, Williams BR, Kuppe MK, Bryant CD, Logan RW. A Glitch in the matrix: the role of extracellular matrix remodeling in opioid use disorder. Front Integr Neurosci. 2022;16:899637. PubMed PMC

Vujic T, Schvartz D, Furlani IL, Meister I, González-Ruiz V, Rudaz S, et al. Oxidative stress and extracellular matrix remodeling are signature pathways of extracellular vesicles released upon morphine exposure on human brain microvascular endothelial cells. Cells. 2022;11(23):3926. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...