Prolonged Morphine Treatment Alters Expression and Plasma Membrane Distribution of β-Adrenergic Receptors and Some Other Components of Their Signaling System in Rat Cerebral Cortex

. 2017 Dec ; 63 (3-4) : 364-376. [epub] 20171028

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29081032

Grantová podpora
952214 Grantová Agentura, Univerzita Karlova
SVV-260434/2017 Přírodovědecká Fakulta, Univerzita Karlova

Odkazy

PubMed 29081032
DOI 10.1007/s12031-017-0987-9
PII: 10.1007/s12031-017-0987-9
Knihovny.cz E-zdroje

β-Adrenergic signaling plays an important role in regulating diverse brain functions and alterations in this signaling have been observed in different neuropathological conditions. In this study, we investigated the effect of a 10-day treatment with high doses of morphine (10 mg/kg per day) on major components and functional state of the β-adrenergic receptor (β-AR) signaling system in the rat cerebral cortex. β-ARs were characterized by radioligand binding assays and amounts of various G protein subunits, adenylyl cyclase (AC) isoforms, G protein-coupled receptor kinases (GRKs), and β-arrestin were examined by Western blot analysis. AC activity was determined as a measure of functionality of the signaling system. We also assessed the partitioning of selected signaling proteins between the lipid raft and non-raft fractions prepared from cerebrocortical plasma membranes. Morphine treatment resulted in a significant upregulation of β-ARs, GRK3, and some AC isoforms (AC-I, -II, and -III). There was no change in quantity of G proteins and some other signaling molecules (AC-IV, AC-V/VI, GRK2, GRK5, GRK6, and β-arrestin) compared with controls. Interestingly, morphine exposure caused a partial redistribution of β-ARs, Gsα, Goα, and GRK2 between lipid rafts and bulk plasma membranes. Spatial localization of other signaling molecules within the plasma membrane was not changed. Basal as well as fluoride- and forskolin-stimulated AC activities were not significantly different in membrane preparations from control and morphine-treated animals. However, AC activity stimulated by the beta-AR agonist isoprenaline was markedly increased. This is the first study to demonstrate lipid raft association of key components of the cortical β-AR system and its sensitivity to morphine.

Zobrazit více v PubMed

J Biol Chem. 2000 Dec 29;275(52):41447-57 PubMed

Brain Res Mol Brain Res. 2001 Nov 1;95(1-2):129-37 PubMed

Prog Mol Biol Transl Sci. 2015;132:189-206 PubMed

J Immunol. 2004 Oct 15;173(8):4847-58 PubMed

Neuropharmacology. 2008 Dec;55(8):1265-73 PubMed

Mol Pharmacol. 2006 Apr;69(4):1421-32 PubMed

Neuropeptides. 1984 Dec;5(1-3):29-32 PubMed

J Appl Physiol (1985). 2003 Jun;94(6):2423-32 PubMed

Acta Anaesthesiol Scand. 1997 Jan;41(1 Pt 2):184-6 PubMed

J Neurochem. 2001 Oct;79(1):88-97 PubMed

J Biol Chem. 2001 Nov 9;276(45):42063-9 PubMed

Brain Res. 2007 Dec 12;1184:46-56 PubMed

Neuropsychopharmacology. 1993 Dec;9(4):303-11 PubMed

Proc Natl Acad Sci U S A. 1984 Mar;81(5):1585-9 PubMed

Eur J Pharmacol. 2001 Jan 5;411(1-2):11-16 PubMed

Brain Res. 1987 Jan 1;400(1):110-26 PubMed

Neuroscience. 2003;117(2):383-9 PubMed

Mol Pharmacol. 2011 Jul;80(1):210-8 PubMed

J Heart Lung Transplant. 1994 Jul-Aug;13(4):635-40 PubMed

J Mol Endocrinol. 2004 Apr;32(2):325-38 PubMed

Mol Biol Cell. 2001 Mar;12(3):685-98 PubMed

Neurosignals. 2009;17(1):5-22 PubMed

Mol Cells. 2016 Sep;39(9):645-53 PubMed

Pharmacol Rep. 2012;64(2):351-9 PubMed

Med Sci Monit. 2009 Apr;15(4):BR111-22 PubMed

Pharmacol Rep. 2010 Nov-Dec;62(6):1197-203 PubMed

Annu Rev Biochem. 2004;73:953-90 PubMed

J Pharmacol Exp Ther. 1997 Jan;280(1):512-20 PubMed

Neuropharmacology. 2002 Oct;43(5):809-16 PubMed

J Biol Chem. 2006 Jan 6;281(1):288-94 PubMed

Mol Pharmacol. 1988 Feb;33(2):127-32 PubMed

Peptides. 2002 Dec;23(12):2177-80 PubMed

J Biol Chem. 2006 Sep 8;281(36):26391-9 PubMed

J Neurochem. 1994 Nov;63(5):1983-6 PubMed

J Biol Chem. 2009 Feb 13;284(7):4451-63 PubMed

Neuropharmacology. 2006 Jun;50(8):998-1005 PubMed

Eur J Pharmacol. 1993 Feb 15;244(3):211-22 PubMed

Pharmacol Ther. 2005 Jun;106(3):405-21 PubMed

Mol Endocrinol. 1999 Jul;13(7):1061-70 PubMed

Mol Interv. 2002 Jun;2(3):168-84 PubMed

J Mol Neurosci. 2005;27(2):195-203 PubMed

J Biol Chem. 1996 Aug 30;271(35):21309-15 PubMed

Learn Mem. 2008 Jan 29;15(2):88-92 PubMed

Curr Biol. 2002 Mar 5;12 (5):421-5 PubMed

J Biol Chem. 1997 Feb 21;272(8):5040-7 PubMed

Life Sci. 1994;54(8):PL113-8 PubMed

Circ Res. 2011 Jul 8;109(2):231-44 PubMed

Cell Signal. 2007 Nov;19(11):2247-54 PubMed

Med Sci Monit. 2010 Aug;16(8):BR260-70 PubMed

World J Gastroenterol. 2006 Dec 28;12(48):7753-7 PubMed

Neuroscience. 1994 Dec;63(4):1111-6 PubMed

Eur J Pharmacol. 1993 Mar 15;245(1):23-9 PubMed

J Neurochem. 2002 Nov;83(4):818-27 PubMed

Neuropsychopharmacology. 2005 Jul;30(7):1238-45 PubMed

Prog Mol Biol Transl Sci. 2013;118:93-113 PubMed

Brain Res. 1998 Mar 30;788(1-2):104-10 PubMed

Pharmacol Ther. 2012 Jan;133(1):40-69 PubMed

Neuroreport. 2006 Sep 18;17(13):1443-7 PubMed

Annu Rev Pharmacol Toxicol. 2008;48:359-91 PubMed

Cardiology. 2012;122(2):104-12 PubMed

Cell. 2007 May 4;129(3):511-22 PubMed

Pharmacol Biochem Behav. 1997 Mar;56(3):487-91 PubMed

J Biol Chem. 2005 Sep 2;280(35):31036-44 PubMed

Biochim Biophys Acta. 2011 Dec;1810(12):1220-9 PubMed

J Neurochem. 1998 Mar;70(3):1249-57 PubMed

Jpn J Pharmacol. 1986 Nov;42(3):419-23 PubMed

Cardiovasc Res. 2004 Aug 15;63(3):414-22 PubMed

Am J Physiol Cell Physiol. 2003 Aug;285(2):C377-83 PubMed

Cell Signal. 2011 Apr;23 (4):621-9 PubMed

Neuropsychopharmacology. 2011 Aug;36(9):1912-20 PubMed

Biomed Res Int. 2015;2015:894732 PubMed

Eur J Pharmacol. 1992 Jan 28;211(1):35-8 PubMed

Front Pharmacol. 2015 Jul 17;6:148 PubMed

J Biol Chem. 2000 Nov 10;275(45):35264-75 PubMed

J Biomed Sci. 2011 Nov 30;18:89 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace