β-Arrestin 2 and ERK1/2 Are Important Mediators Engaged in Close Cooperation between TRPV1 and µ-Opioid Receptors in the Plasma Membrane

. 2020 Jun 29 ; 21 (13) : . [epub] 20200629

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32610605

Grantová podpora
790217 Grantová Agentura, Univerzita Karlova
1196120 Grantová Agentura, Univerzita Karlova
SVV-260434/2020 Charles University, Faculty of Science
CZ.1.05/4.1.00/16.0347 European Regional Development Fund
CZ.2.16/3.1.00/21515 State Budget of the Czech Republic

The interactions between TRPV1 and µ-opioid receptors (MOR) have recently attracted much attention because these two receptors play important roles in pain pathways and can apparently modulate each other's functioning. However, the knowledge about signaling interactions and crosstalk between these two receptors is still limited. In this study, we investigated the mutual interactions between MOR and TRPV1 shortly after their activation in HEK293 cells expressing these two receptors. After activation of one receptor we observed significant changes in the other receptor's lateral mobility and vice versa. However, the changes in receptor movement within the plasma membrane were not connected with activation of the other receptor. We also observed that plasma membrane β-arrestin 2 levels were altered after treatment with agonists of both these receptors. Knockdown of β-arrestin 2 blocked all changes in the lateral mobility of both receptors. Furthermore, we found that β-arrestin 2 can play an important role in modulating the effectiveness of ERK1/2 phosphorylation after activation of MOR in the presence of TRPV1. These data suggest that β-arrestin 2 and ERK1/2 are important mediators between these two receptors and their signaling pathways. Collectively, MOR and TRPV1 can mutually affect each other's behavior and β-arrestin 2 apparently plays a key role in the bidirectional crosstalk between these two receptors in the plasma membrane.

Zobrazit více v PubMed

Spetea M., Asim M.F., Wolber G., Schmidhammer H. The µ opioid receptor and ligands acting at the µ opioid receptor, as therapeutics and potential therapeutics. Curr. Pharm. Des. 2013;19:7415–7434. doi: 10.2174/13816128113199990362. PubMed DOI

Pergolizzi J.V., LeQuang J.A., Taylor R., Ossipov M.H., Colucci D., Raffa R.B. Designing safer analgesics: A focus on μ-opioid receptor pathways. Expert Opin. Drug Discov. 2018;13:965–972. doi: 10.1080/17460441.2018.1511539. PubMed DOI

Lopez-Gimenez J.F., Milligan G. Opioid regulation of mu receptor internalisation: Relevance to the development of tolerance and dependence. CNS Neurol. Disord. Drug Targets. 2010;9:616–626. doi: 10.2174/187152710793361522. PubMed DOI

Mizoguchi H., Watanabe C., Sakurada T., Sakurada S. New vistas in opioid control of pain. Curr. Opin. Pharmacol. 2012;12:87–91. doi: 10.1016/j.coph.2011.10.020. PubMed DOI

Burford N.T., Traynor J.R., Alt A. Positive allosteric modulators of the μ-opioid receptor: A novel approach for future pain medications. Br. J. Pharmacol. 2015;172:277–286. doi: 10.1111/bph.12599. PubMed DOI PMC

Vetter I., Wyse B.D., Monteith G.R., Roberts-Thomson S.J., Cabot P.J. The mu opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway. Mol. Pain. 2006;2:22. doi: 10.1186/1744-8069-2-22. PubMed DOI PMC

Endres-Becker J., Heppenstall P.A., Mousa S.A., Labuz D., Oksche A., Schäfer M., Stein C., Zöllner C. Mu-opioid receptor activation modulates transient receptor potential vanilloid 1 (TRPV1) currents in sensory neurons in a model of inflammatory pain. Mol. Pharmacol. 2007;71:12–18. doi: 10.1124/mol.106.026740. PubMed DOI

Premkumar L.S., Abooj M. TRP channels and analgesia. Life Sci. 2013;92:415–424. doi: 10.1016/j.lfs.2012.08.010. PubMed DOI PMC

Roberts J.C., Davis J.B., Benham C.D. [3H] Resiniferatoxin autoradiography in the CNS of wild-type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution. Brain Res. 2004;995:176–183. doi: 10.1016/j.brainres.2003.10.001. PubMed DOI

Messeguer A., Planells-Cases R., Ferrer-Montiel A. Physiology and pharmacology of the vanilloid receptor. Curr. Neuropharmacol. 2006;4:1–15. doi: 10.2174/157015906775202995. PubMed DOI PMC

Studer M., McNaughton P.A. Modulation of single-channel properties of TRPV1 by phosphorylation. J. Physiol. 2010;588:3743–3756. doi: 10.1113/jphysiol.2010.190611. PubMed DOI PMC

Maione S., Starowicz K., Cristino L., Guida F., Palazzo E., Luongo L., Rossi F., Marabese I., de Novellis V., Di Marzo V. Functional interaction between TRPV1 and mu-opioid receptors in the descending antinociceptive pathway activates glutamate transmission and induces analgesia. J. Neurophysiol. 2009;101:2411–2422. doi: 10.1152/jn.91225.2008. PubMed DOI

Bao Y., Gao Y., Yang L., Kong X., Yu J., Hou W., Hua B. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels. 2015;9:235–243. doi: 10.1080/19336950.2015.1069450. PubMed DOI PMC

Melkes B., Hejnova L., Novotny J. Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins. Naunyn Schmiedebergs Arch. Pharmacol. 2016;389:1289–1300. doi: 10.1007/s00210-016-1293-8. PubMed DOI

Ho K.W., Ward N.J., Calkins D.J. TRPV1: A stress response protein in the central nervous system. Am. J. Neurodegener. Dis. 2012;1:1–14. PubMed PMC

McPherson J., Rivero G., Baptist M., Llorente J., Al-Sabah S., Krasel C., Dewey W.L., Bailey C.P., Rosethorne E.M., Charlton S.J., et al. mu-Opioid Receptors: Correlation of Agonist Efficacy for Signalling with Ability to Activate Internalization. Mol. Pharmacol. 2010;78:756–766. doi: 10.1124/mol.110.066613. PubMed DOI PMC

Rivero G., Llorente J., McPherson J., Cooke A., Mundell S.J., McArdle C.A., Rosethorne E.M., Charlton S.J., Krasel C., Bailey C.P., et al. Endomorphin-2: A Biased Agonist at the mu-Opioid Receptor. Mol. Pharmacol. 2012;82:178–188. doi: 10.1124/mol.112.078659. PubMed DOI PMC

Senning E.N., Gordon S.E. Activity and Ca2+ regulate the mobility of TRPV1 channels in the plasma membrane of sensory neurons. Elife. 2015;4:e03819. doi: 10.7554/eLife.03819. PubMed DOI PMC

Smith J.S., Rajagopal S. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors. J. Biol. Chem. 2016;291:8969–8977. doi: 10.1074/jbc.R115.713313. PubMed DOI PMC

Lohse M.J., Benovic J.L., Codina J., Caron M.G., Lefkowitz R.J. beta-Arrestin: A protein that regulates beta-adrenergic receptor function. Science. 1990;248:1547–1550. doi: 10.1126/science.2163110. PubMed DOI

Por E.D., Bierbower S.M., Berg K.A., Gomez R., Akopian A.N., Wetsel W.C., Jeske N.A. β-Arrestin-2 desensitizes the transient receptor potential vanilloid 1 (TRPV1) channel. J. Biol. Chem. 2012;287:37552–37563. doi: 10.1074/jbc.M112.391847. PubMed DOI PMC

Scherer P.C., Zaccor N.W., Neumann N.M., Vasavda C., Barrow R., Ewald A.J., Rao F., Sumner C.J., Snyder S.H. TRPV1 is a physiological regulator of μ-opioid receptors. Proc. Natl. Acad. Sci. USA. 2017;114:13561–13566. doi: 10.1073/pnas.1717005114. PubMed DOI PMC

Por E.D., Gomez R., Akopian A.N., Jeske N.A. Phosphorylation regulates TRPV1 association with β-arrestin-2. Biochem. J. 2013;451:101–109. doi: 10.1042/BJ20121637. PubMed DOI

Williams J.T., Ingram S.L., Henderson G., Chavkin C., von Zastrow M., Schulz S., Koch T., Evans C.J., Christie M.J. Regulation of μ-opioid receptors: Desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev. 2013;65:223–254. doi: 10.1124/pr.112.005942. PubMed DOI PMC

Widmann C., Gibson S., Jarpe M.B., Johnson G.L. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol. Rev. 1999;79:143–180. doi: 10.1152/physrev.1999.79.1.143. PubMed DOI

Obata K., Noguchi K. MAPK activation in nociceptive neurons and pain hypersensitivity. Life Sci. 2004;74:2643–2653. doi: 10.1016/j.lfs.2004.01.007. PubMed DOI

Ma W., Quirion R. The ERK/MAPK pathway, as a target for the treatment of neuropathic pain. Expert Opin. Ther. Targets. 2005;9:699–713. doi: 10.1517/14728222.9.4.699. PubMed DOI

Backes T.M., Rössler O.G., Hui X., Grötzinger C., Lipp P., Thiel G. Stimulation of TRPV1 channels activates the AP-1 transcription factor. Biochem. Pharmacol. 2018;150:160–169. doi: 10.1016/j.bcp.2018.02.008. PubMed DOI

Li L.Y., Chang K.J. The stimulatory effect of opioids on mitogen-activated protein kinase in Chinese hamster ovary cells transfected to express mu-opioid receptors. Mol. Pharmacol. 1996;50:599–602. PubMed

Zheng H., Loh H.H., Law P.Y. beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) translocate to nucleus in contrast to G protein-dependent ERK activation. Mol. Pharmacol. 2008;73:178–190. doi: 10.1124/mol.107.039842. PubMed DOI PMC

Jin M., Min C., Zheng M., Cho D.I., Cheong S.J., Kurose H., Kim K.M. Multiple signaling routes involved in the regulation of adenylyl cyclase and extracellular regulated kinase by dopamine D-2 and D-3 receptors. Pharmacol. Res. 2013;67:31–41. doi: 10.1016/j.phrs.2012.09.012. PubMed DOI

Jain R., Watson U., Saini D.K. ERK activated by Histamine H1 receptor is anti-proliferative through spatial restriction in the cytosol. Eur. J. Cell Biol. 2016;95:623–634. doi: 10.1016/j.ejcb.2016.10.007. PubMed DOI

Popiolek-Barczyk K., Makuch W., Rojewska E., Pilat D., Mika J. Inhibition of intracellular signaling pathways NF-kappa B and MEK1/2 attenuates neuropathic pain development and enhances morphine analgesia. Pharmacol. Rep. 2014;66:845–851. doi: 10.1016/j.pharep.2014.05.001. PubMed DOI

Yamdeu R.S., Shaqura M., Mousa S.A., Schafer M., Droese J. p38 Mitogen-activated Protein Kinase Activation by Nerve Growth Factor in Primary Sensory Neurons Upregulates mu-Opioid Receptors to Enhance Opioid Responsiveness Toward Better Pain Control. Anesthesiology. 2011;114:150–161. doi: 10.1097/ALN.0b013e318201c88c. PubMed DOI

De-la-Rosa V., Rangel-Yescas G.E., Ladrón-de-Guevara E., Rosenbaum T., Islas L.D. Coarse architecture of the transient receptor potential vanilloid 1 (TRPV1) ion channel determined by fluorescence resonance energy transfer. J. Biol. Chem. 2013;288:29506–29517. doi: 10.1074/jbc.M113.479618. PubMed DOI PMC

Rapsomaniki M.A., Kotsantis P., Symeonidou I.-E., Giakoumakis N.-N., Taraviras S., Lygerou Z. easyFRAP: An interactive, easy-to-use tool for qualitative and quantitative analysis of FRAP data. Bioinformatics. 2012;28:1800–1801. doi: 10.1093/bioinformatics/bts241. PubMed DOI

Soumpasis D.M. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J. 1983;41:95–97. doi: 10.1016/S0006-3495(83)84410-5. PubMed DOI PMC

Hejnova L., Skrabalova J., Novotny J. Prolonged Morphine Treatment Alters Expression and Plasma Membrane Distribution of β-Adrenergic Receptors and Some Other Components of Their Signaling System in Rat Cerebral Cortex. J. Mol. Neurosci. 2017;63:364–376. doi: 10.1007/s12031-017-0987-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...