β-Arrestin 2 and ERK1/2 Are Important Mediators Engaged in Close Cooperation between TRPV1 and µ-Opioid Receptors in the Plasma Membrane
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
790217
Grantová Agentura, Univerzita Karlova
1196120
Grantová Agentura, Univerzita Karlova
SVV-260434/2020
Charles University, Faculty of Science
CZ.1.05/4.1.00/16.0347
European Regional Development Fund
CZ.2.16/3.1.00/21515
State Budget of the Czech Republic
PubMed
32610605
PubMed Central
PMC7370190
DOI
10.3390/ijms21134626
PII: ijms21134626
Knihovny.cz E-zdroje
- Klíčová slova
- ERK1/2, TRPV1, biased signaling, receptor lateral mobility, β-arrestin 2, μ-opioid receptor,
- MeSH
- arrestiny metabolismus MeSH
- beta arrestin 2 metabolismus fyziologie MeSH
- beta arrestiny metabolismus MeSH
- buněčná membrána metabolismus fyziologie MeSH
- fosforylace MeSH
- HEK293 buňky MeSH
- kationtové kanály TRPV metabolismus fyziologie MeSH
- lidé MeSH
- MAP kinasový signální systém fyziologie MeSH
- morfin metabolismus MeSH
- opioidní analgetika metabolismus MeSH
- receptory opiátové mu metabolismus fyziologie MeSH
- receptory opiátové metabolismus MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arrestiny MeSH
- beta arrestin 2 MeSH
- beta arrestiny MeSH
- kationtové kanály TRPV MeSH
- morfin MeSH
- opioidní analgetika MeSH
- receptory opiátové mu MeSH
- receptory opiátové MeSH
- TRPV1 protein, human MeSH Prohlížeč
The interactions between TRPV1 and µ-opioid receptors (MOR) have recently attracted much attention because these two receptors play important roles in pain pathways and can apparently modulate each other's functioning. However, the knowledge about signaling interactions and crosstalk between these two receptors is still limited. In this study, we investigated the mutual interactions between MOR and TRPV1 shortly after their activation in HEK293 cells expressing these two receptors. After activation of one receptor we observed significant changes in the other receptor's lateral mobility and vice versa. However, the changes in receptor movement within the plasma membrane were not connected with activation of the other receptor. We also observed that plasma membrane β-arrestin 2 levels were altered after treatment with agonists of both these receptors. Knockdown of β-arrestin 2 blocked all changes in the lateral mobility of both receptors. Furthermore, we found that β-arrestin 2 can play an important role in modulating the effectiveness of ERK1/2 phosphorylation after activation of MOR in the presence of TRPV1. These data suggest that β-arrestin 2 and ERK1/2 are important mediators between these two receptors and their signaling pathways. Collectively, MOR and TRPV1 can mutually affect each other's behavior and β-arrestin 2 apparently plays a key role in the bidirectional crosstalk between these two receptors in the plasma membrane.
Zobrazit více v PubMed
Spetea M., Asim M.F., Wolber G., Schmidhammer H. The µ opioid receptor and ligands acting at the µ opioid receptor, as therapeutics and potential therapeutics. Curr. Pharm. Des. 2013;19:7415–7434. doi: 10.2174/13816128113199990362. PubMed DOI
Pergolizzi J.V., LeQuang J.A., Taylor R., Ossipov M.H., Colucci D., Raffa R.B. Designing safer analgesics: A focus on μ-opioid receptor pathways. Expert Opin. Drug Discov. 2018;13:965–972. doi: 10.1080/17460441.2018.1511539. PubMed DOI
Lopez-Gimenez J.F., Milligan G. Opioid regulation of mu receptor internalisation: Relevance to the development of tolerance and dependence. CNS Neurol. Disord. Drug Targets. 2010;9:616–626. doi: 10.2174/187152710793361522. PubMed DOI
Mizoguchi H., Watanabe C., Sakurada T., Sakurada S. New vistas in opioid control of pain. Curr. Opin. Pharmacol. 2012;12:87–91. doi: 10.1016/j.coph.2011.10.020. PubMed DOI
Burford N.T., Traynor J.R., Alt A. Positive allosteric modulators of the μ-opioid receptor: A novel approach for future pain medications. Br. J. Pharmacol. 2015;172:277–286. doi: 10.1111/bph.12599. PubMed DOI PMC
Vetter I., Wyse B.D., Monteith G.R., Roberts-Thomson S.J., Cabot P.J. The mu opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway. Mol. Pain. 2006;2:22. doi: 10.1186/1744-8069-2-22. PubMed DOI PMC
Endres-Becker J., Heppenstall P.A., Mousa S.A., Labuz D., Oksche A., Schäfer M., Stein C., Zöllner C. Mu-opioid receptor activation modulates transient receptor potential vanilloid 1 (TRPV1) currents in sensory neurons in a model of inflammatory pain. Mol. Pharmacol. 2007;71:12–18. doi: 10.1124/mol.106.026740. PubMed DOI
Premkumar L.S., Abooj M. TRP channels and analgesia. Life Sci. 2013;92:415–424. doi: 10.1016/j.lfs.2012.08.010. PubMed DOI PMC
Roberts J.C., Davis J.B., Benham C.D. [3H] Resiniferatoxin autoradiography in the CNS of wild-type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution. Brain Res. 2004;995:176–183. doi: 10.1016/j.brainres.2003.10.001. PubMed DOI
Messeguer A., Planells-Cases R., Ferrer-Montiel A. Physiology and pharmacology of the vanilloid receptor. Curr. Neuropharmacol. 2006;4:1–15. doi: 10.2174/157015906775202995. PubMed DOI PMC
Studer M., McNaughton P.A. Modulation of single-channel properties of TRPV1 by phosphorylation. J. Physiol. 2010;588:3743–3756. doi: 10.1113/jphysiol.2010.190611. PubMed DOI PMC
Maione S., Starowicz K., Cristino L., Guida F., Palazzo E., Luongo L., Rossi F., Marabese I., de Novellis V., Di Marzo V. Functional interaction between TRPV1 and mu-opioid receptors in the descending antinociceptive pathway activates glutamate transmission and induces analgesia. J. Neurophysiol. 2009;101:2411–2422. doi: 10.1152/jn.91225.2008. PubMed DOI
Bao Y., Gao Y., Yang L., Kong X., Yu J., Hou W., Hua B. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels. 2015;9:235–243. doi: 10.1080/19336950.2015.1069450. PubMed DOI PMC
Melkes B., Hejnova L., Novotny J. Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins. Naunyn Schmiedebergs Arch. Pharmacol. 2016;389:1289–1300. doi: 10.1007/s00210-016-1293-8. PubMed DOI
Ho K.W., Ward N.J., Calkins D.J. TRPV1: A stress response protein in the central nervous system. Am. J. Neurodegener. Dis. 2012;1:1–14. PubMed PMC
McPherson J., Rivero G., Baptist M., Llorente J., Al-Sabah S., Krasel C., Dewey W.L., Bailey C.P., Rosethorne E.M., Charlton S.J., et al. mu-Opioid Receptors: Correlation of Agonist Efficacy for Signalling with Ability to Activate Internalization. Mol. Pharmacol. 2010;78:756–766. doi: 10.1124/mol.110.066613. PubMed DOI PMC
Rivero G., Llorente J., McPherson J., Cooke A., Mundell S.J., McArdle C.A., Rosethorne E.M., Charlton S.J., Krasel C., Bailey C.P., et al. Endomorphin-2: A Biased Agonist at the mu-Opioid Receptor. Mol. Pharmacol. 2012;82:178–188. doi: 10.1124/mol.112.078659. PubMed DOI PMC
Senning E.N., Gordon S.E. Activity and Ca2+ regulate the mobility of TRPV1 channels in the plasma membrane of sensory neurons. Elife. 2015;4:e03819. doi: 10.7554/eLife.03819. PubMed DOI PMC
Smith J.S., Rajagopal S. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors. J. Biol. Chem. 2016;291:8969–8977. doi: 10.1074/jbc.R115.713313. PubMed DOI PMC
Lohse M.J., Benovic J.L., Codina J., Caron M.G., Lefkowitz R.J. beta-Arrestin: A protein that regulates beta-adrenergic receptor function. Science. 1990;248:1547–1550. doi: 10.1126/science.2163110. PubMed DOI
Por E.D., Bierbower S.M., Berg K.A., Gomez R., Akopian A.N., Wetsel W.C., Jeske N.A. β-Arrestin-2 desensitizes the transient receptor potential vanilloid 1 (TRPV1) channel. J. Biol. Chem. 2012;287:37552–37563. doi: 10.1074/jbc.M112.391847. PubMed DOI PMC
Scherer P.C., Zaccor N.W., Neumann N.M., Vasavda C., Barrow R., Ewald A.J., Rao F., Sumner C.J., Snyder S.H. TRPV1 is a physiological regulator of μ-opioid receptors. Proc. Natl. Acad. Sci. USA. 2017;114:13561–13566. doi: 10.1073/pnas.1717005114. PubMed DOI PMC
Por E.D., Gomez R., Akopian A.N., Jeske N.A. Phosphorylation regulates TRPV1 association with β-arrestin-2. Biochem. J. 2013;451:101–109. doi: 10.1042/BJ20121637. PubMed DOI
Williams J.T., Ingram S.L., Henderson G., Chavkin C., von Zastrow M., Schulz S., Koch T., Evans C.J., Christie M.J. Regulation of μ-opioid receptors: Desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev. 2013;65:223–254. doi: 10.1124/pr.112.005942. PubMed DOI PMC
Widmann C., Gibson S., Jarpe M.B., Johnson G.L. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol. Rev. 1999;79:143–180. doi: 10.1152/physrev.1999.79.1.143. PubMed DOI
Obata K., Noguchi K. MAPK activation in nociceptive neurons and pain hypersensitivity. Life Sci. 2004;74:2643–2653. doi: 10.1016/j.lfs.2004.01.007. PubMed DOI
Ma W., Quirion R. The ERK/MAPK pathway, as a target for the treatment of neuropathic pain. Expert Opin. Ther. Targets. 2005;9:699–713. doi: 10.1517/14728222.9.4.699. PubMed DOI
Backes T.M., Rössler O.G., Hui X., Grötzinger C., Lipp P., Thiel G. Stimulation of TRPV1 channels activates the AP-1 transcription factor. Biochem. Pharmacol. 2018;150:160–169. doi: 10.1016/j.bcp.2018.02.008. PubMed DOI
Li L.Y., Chang K.J. The stimulatory effect of opioids on mitogen-activated protein kinase in Chinese hamster ovary cells transfected to express mu-opioid receptors. Mol. Pharmacol. 1996;50:599–602. PubMed
Zheng H., Loh H.H., Law P.Y. beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) translocate to nucleus in contrast to G protein-dependent ERK activation. Mol. Pharmacol. 2008;73:178–190. doi: 10.1124/mol.107.039842. PubMed DOI PMC
Jin M., Min C., Zheng M., Cho D.I., Cheong S.J., Kurose H., Kim K.M. Multiple signaling routes involved in the regulation of adenylyl cyclase and extracellular regulated kinase by dopamine D-2 and D-3 receptors. Pharmacol. Res. 2013;67:31–41. doi: 10.1016/j.phrs.2012.09.012. PubMed DOI
Jain R., Watson U., Saini D.K. ERK activated by Histamine H1 receptor is anti-proliferative through spatial restriction in the cytosol. Eur. J. Cell Biol. 2016;95:623–634. doi: 10.1016/j.ejcb.2016.10.007. PubMed DOI
Popiolek-Barczyk K., Makuch W., Rojewska E., Pilat D., Mika J. Inhibition of intracellular signaling pathways NF-kappa B and MEK1/2 attenuates neuropathic pain development and enhances morphine analgesia. Pharmacol. Rep. 2014;66:845–851. doi: 10.1016/j.pharep.2014.05.001. PubMed DOI
Yamdeu R.S., Shaqura M., Mousa S.A., Schafer M., Droese J. p38 Mitogen-activated Protein Kinase Activation by Nerve Growth Factor in Primary Sensory Neurons Upregulates mu-Opioid Receptors to Enhance Opioid Responsiveness Toward Better Pain Control. Anesthesiology. 2011;114:150–161. doi: 10.1097/ALN.0b013e318201c88c. PubMed DOI
De-la-Rosa V., Rangel-Yescas G.E., Ladrón-de-Guevara E., Rosenbaum T., Islas L.D. Coarse architecture of the transient receptor potential vanilloid 1 (TRPV1) ion channel determined by fluorescence resonance energy transfer. J. Biol. Chem. 2013;288:29506–29517. doi: 10.1074/jbc.M113.479618. PubMed DOI PMC
Rapsomaniki M.A., Kotsantis P., Symeonidou I.-E., Giakoumakis N.-N., Taraviras S., Lygerou Z. easyFRAP: An interactive, easy-to-use tool for qualitative and quantitative analysis of FRAP data. Bioinformatics. 2012;28:1800–1801. doi: 10.1093/bioinformatics/bts241. PubMed DOI
Soumpasis D.M. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J. 1983;41:95–97. doi: 10.1016/S0006-3495(83)84410-5. PubMed DOI PMC
Hejnova L., Skrabalova J., Novotny J. Prolonged Morphine Treatment Alters Expression and Plasma Membrane Distribution of β-Adrenergic Receptors and Some Other Components of Their Signaling System in Rat Cerebral Cortex. J. Mol. Neurosci. 2017;63:364–376. doi: 10.1007/s12031-017-0987-9. PubMed DOI