Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
PubMed
27600870
DOI
10.1007/s00210-016-1293-8
PII: 10.1007/s00210-016-1293-8
Knihovny.cz E-zdroje
- Klíčová slova
- Biased agonists *, Cholesterol *, FRAP *, G protein coupling *, μ-Opioid receptor *,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- buněčná membrána účinky léků metabolismus MeSH
- cholesterol nedostatek MeSH
- enkefalin, Ala(2)-MePhe(4)-Gly(5)- metabolismus farmakologie MeSH
- FRAP MeSH
- guanosin 5'-O-(3-thiotrifosfát) metabolismus MeSH
- HEK293 buňky MeSH
- konfokální mikroskopie MeSH
- lidé MeSH
- ligandy MeSH
- luminescentní proteiny genetika metabolismus MeSH
- morfin metabolismus farmakologie MeSH
- narkotika - antagonisté farmakologie MeSH
- oligopeptidy metabolismus farmakologie MeSH
- pertusový toxin farmakologie MeSH
- proteiny vázající GTP - alfa-podjednotky Gi-Go metabolismus MeSH
- receptory opiátové mu agonisté genetika metabolismus MeSH
- rekombinantní fúzní proteiny metabolismus MeSH
- transfekce MeSH
- transport proteinů MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- bakteriální proteiny MeSH
- cholesterol MeSH
- endomorphin 2 MeSH Prohlížeč
- enkefalin, Ala(2)-MePhe(4)-Gly(5)- MeSH
- guanosin 5'-O-(3-thiotrifosfát) MeSH
- ligandy MeSH
- luminescentní proteiny MeSH
- morfin MeSH
- narkotika - antagonisté MeSH
- oligopeptidy MeSH
- pertusový toxin MeSH
- proteiny vázající GTP - alfa-podjednotky Gi-Go MeSH
- receptory opiátové mu MeSH
- rekombinantní fúzní proteiny MeSH
- yellow fluorescent protein, Bacteria MeSH Prohlížeč
There are some indications that biased μ-opioid ligands may diversely affect μ-opioid receptor (MOR) properties. Here, we used confocal fluorescence recovery after photobleaching (FRAP) to study the regulation by different MOR agonists of receptor movement within the plasma membrane of HEK293 cells stably expressing a functional yellow fluorescent protein (YFP)-tagged μ-opioid receptor (MOR-YFP). We found that the lateral mobility of MOR-YFP was increased by (D-Ala2,N-MePhe4,Gly5-ol)-enkephalin (DAMGO) and to a lesser extent also by morphine but decreased by endomorphin-2. Interestingly, cholesterol depletion strongly enhanced the ability of morphine to elevate receptor mobility but significantly reduced or even eliminated the effect of DAMGO and endomorphin-2, respectively. Moreover, the ability of DAMGO and endomorphin-2 to influence MOR-YFP movement was diminished by pertussis toxin treatment. The results obtained by agonist-stimulated [35S]GTPγS binding assays indicated that DAMGO exhibited higher efficacy than morphine and endomorphin-2 did and that the efficacy of DAMGO, contrary to the latter agonists, was enhanced by cholesterol depletion. Overall, our study provides clear evidence that biased MOR agonists diversely affect receptor mobility in plasma membranes as well as MOR/G protein coupling and that the regulatory effect of different ligands depends on the membrane cholesterol content. These findings help to delineate the fundamental properties of MOR regarding their interaction with biased MOR ligands and cognate G proteins.
Zobrazit více v PubMed
Biochim Biophys Acta. 2007 Mar;1768(3):655-68 PubMed
Biochim Biophys Acta. 2015 Mar;1848(3):781-96 PubMed
J Neurochem. 2011 Mar;116(5):726-33 PubMed
Biochemistry. 2001 Sep 11;40(36):10839-45 PubMed
Annu Rev Pharmacol Toxicol. 2012;52:179-97 PubMed
Mol Pharmacol. 2015 Aug;88(2):335-46 PubMed
Biophys J. 1983 Jan;41(1):95-7 PubMed
Brain Res. 2007 Dec 12;1184:46-56 PubMed
J Cell Biochem. 2010 Jan 1;109(1):255-64 PubMed
Mol Pharmacol. 2011 Jul;80(1):210-8 PubMed
Trends Pharmacol Sci. 2007 Dec;28(12):637-45 PubMed
J Neurochem. 1999 Jul;73(1):289-300 PubMed
Bioinformatics. 2012 Jul 1;28(13):1800-1 PubMed
Cell Signal. 2014 Sep;26(9):1943-9 PubMed
Semin Cell Dev Biol. 2014 Mar;27:3-13 PubMed
Biochim Biophys Acta. 2011 Jan;1808(1):461-5 PubMed
Mol Pharmacol. 2012 Aug;82(2):178-88 PubMed
J Biol Chem. 2015 Nov 13;290(46):27723-35 PubMed
Biochem Biophys Res Commun. 2007 Apr 27;356(1):67-71 PubMed
Pharmacol Rev. 2013 Sep 27;65(4):1257-317 PubMed
Biochemistry. 2004 Dec 21;43(50):15852-62 PubMed
PLoS One. 2014 Jun 27;9(6):e100346 PubMed
FASEB J. 2008 Oct;22(10):3537-48 PubMed
Neuroscience. 2009 Jan 12;158(1):19-24 PubMed
J Neurosci. 2010 Jun 30;30(26):8841-51 PubMed
J Recept Signal Transduct Res. 2007;27(5-6):335-52 PubMed
J Biol Chem. 2010 May 7;285(19):14514-20 PubMed
J Biol Chem. 2009 Aug 14;284(33):22108-22 PubMed
J Biol Chem. 2014 Oct 10;289(41):28697-706 PubMed
Mol Membr Biol. 2008 Aug;25(5):423-35 PubMed
FEBS Lett. 2006 Oct 2;580(22):5227-31 PubMed
Biophys J. 2005 Aug;89(2):1362-73 PubMed
Traffic. 2009 Aug;10(8):962-71 PubMed
Biochim Biophys Acta. 2012 Sep;1818(9):2228-33 PubMed
Nat Rev Neurosci. 2007 Feb;8(2):128-40 PubMed
Neuroscience. 1993 Jan;52(1):73-81 PubMed
Neuroscience. 2003;117(4):921-9 PubMed
J Neurophysiol. 2006 May;95(5):3086-96 PubMed
J Biol Chem. 2010 Apr 23;285(17 ):12522-35 PubMed
Eur Biophys J. 2010 Jan;39(2):213-27 PubMed
Eur Biophys J. 2007 Nov;36(8):849-60 PubMed
Biochem Soc Trans. 2016 Apr 15;44(2):624-9 PubMed
Br J Pharmacol. 2015 Jan;172(2):317-23 PubMed
Mol Pharmacol. 2010 Oct;78(4):756-66 PubMed
Prog Brain Res. 2002;139:43-55 PubMed
Biochim Biophys Acta. 2012 Jun;1823(6):1068-81 PubMed
Nat Chem Biol. 2011 Aug 21;7(10):692-700 PubMed
Methods Mol Biol. 1994;32:5-8 PubMed
Subcell Biochem. 2010;51:439-66 PubMed
J Biol Chem. 2014 Jun 27;289(26):18314-26 PubMed
Methods Enzymol. 2013;521:47-67 PubMed