Prolonged Morphine Treatment Alters Expression and Plasma Membrane Distribution of β-Adrenergic Receptors and Some Other Components of Their Signaling System in Rat Cerebral Cortex
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
952214
Grantová Agentura, Univerzita Karlova
SVV-260434/2017
Přírodovědecká Fakulta, Univerzita Karlova
PubMed
29081032
DOI
10.1007/s12031-017-0987-9
PII: 10.1007/s12031-017-0987-9
Knihovny.cz E-resources
- Keywords
- Adenylyl cyclase, Beta-adrenergic receptors, G proteins, Lipid rafts, Morphine, Rat brain cortex,
- MeSH
- Adenylyl Cyclases genetics metabolism MeSH
- beta-Arrestins genetics metabolism MeSH
- Receptors, Adrenergic, beta metabolism MeSH
- G-Protein-Coupled Receptor Kinase 3 genetics metabolism MeSH
- Rats MeSH
- Membrane Microdomains metabolism MeSH
- Morphine pharmacology MeSH
- Cerebral Cortex drug effects metabolism MeSH
- Narcotics pharmacology MeSH
- Rats, Wistar MeSH
- Signal Transduction * MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenylyl Cyclases MeSH
- beta-Arrestins MeSH
- Receptors, Adrenergic, beta MeSH
- Grk3 protein, rat MeSH Browser
- G-Protein-Coupled Receptor Kinase 3 MeSH
- Morphine MeSH
- Narcotics MeSH
β-Adrenergic signaling plays an important role in regulating diverse brain functions and alterations in this signaling have been observed in different neuropathological conditions. In this study, we investigated the effect of a 10-day treatment with high doses of morphine (10 mg/kg per day) on major components and functional state of the β-adrenergic receptor (β-AR) signaling system in the rat cerebral cortex. β-ARs were characterized by radioligand binding assays and amounts of various G protein subunits, adenylyl cyclase (AC) isoforms, G protein-coupled receptor kinases (GRKs), and β-arrestin were examined by Western blot analysis. AC activity was determined as a measure of functionality of the signaling system. We also assessed the partitioning of selected signaling proteins between the lipid raft and non-raft fractions prepared from cerebrocortical plasma membranes. Morphine treatment resulted in a significant upregulation of β-ARs, GRK3, and some AC isoforms (AC-I, -II, and -III). There was no change in quantity of G proteins and some other signaling molecules (AC-IV, AC-V/VI, GRK2, GRK5, GRK6, and β-arrestin) compared with controls. Interestingly, morphine exposure caused a partial redistribution of β-ARs, Gsα, Goα, and GRK2 between lipid rafts and bulk plasma membranes. Spatial localization of other signaling molecules within the plasma membrane was not changed. Basal as well as fluoride- and forskolin-stimulated AC activities were not significantly different in membrane preparations from control and morphine-treated animals. However, AC activity stimulated by the beta-AR agonist isoprenaline was markedly increased. This is the first study to demonstrate lipid raft association of key components of the cortical β-AR system and its sensitivity to morphine.
See more in PubMed
J Biol Chem. 2000 Dec 29;275(52):41447-57 PubMed
Brain Res Mol Brain Res. 2001 Nov 1;95(1-2):129-37 PubMed
Prog Mol Biol Transl Sci. 2015;132:189-206 PubMed
J Immunol. 2004 Oct 15;173(8):4847-58 PubMed
Neuropharmacology. 2008 Dec;55(8):1265-73 PubMed
Mol Pharmacol. 2006 Apr;69(4):1421-32 PubMed
Neuropeptides. 1984 Dec;5(1-3):29-32 PubMed
J Appl Physiol (1985). 2003 Jun;94(6):2423-32 PubMed
Acta Anaesthesiol Scand. 1997 Jan;41(1 Pt 2):184-6 PubMed
J Neurochem. 2001 Oct;79(1):88-97 PubMed
J Biol Chem. 2001 Nov 9;276(45):42063-9 PubMed
Brain Res. 2007 Dec 12;1184:46-56 PubMed
Neuropsychopharmacology. 1993 Dec;9(4):303-11 PubMed
Proc Natl Acad Sci U S A. 1984 Mar;81(5):1585-9 PubMed
Eur J Pharmacol. 2001 Jan 5;411(1-2):11-16 PubMed
Brain Res. 1987 Jan 1;400(1):110-26 PubMed
Neuroscience. 2003;117(2):383-9 PubMed
Mol Pharmacol. 2011 Jul;80(1):210-8 PubMed
J Heart Lung Transplant. 1994 Jul-Aug;13(4):635-40 PubMed
J Mol Endocrinol. 2004 Apr;32(2):325-38 PubMed
Mol Biol Cell. 2001 Mar;12(3):685-98 PubMed
Neurosignals. 2009;17(1):5-22 PubMed
Mol Cells. 2016 Sep;39(9):645-53 PubMed
Pharmacol Rep. 2012;64(2):351-9 PubMed
Med Sci Monit. 2009 Apr;15(4):BR111-22 PubMed
Pharmacol Rep. 2010 Nov-Dec;62(6):1197-203 PubMed
Annu Rev Biochem. 2004;73:953-90 PubMed
J Pharmacol Exp Ther. 1997 Jan;280(1):512-20 PubMed
Neuropharmacology. 2002 Oct;43(5):809-16 PubMed
J Biol Chem. 2006 Jan 6;281(1):288-94 PubMed
Mol Pharmacol. 1988 Feb;33(2):127-32 PubMed
Peptides. 2002 Dec;23(12):2177-80 PubMed
J Biol Chem. 2006 Sep 8;281(36):26391-9 PubMed
J Neurochem. 1994 Nov;63(5):1983-6 PubMed
J Biol Chem. 2009 Feb 13;284(7):4451-63 PubMed
Neuropharmacology. 2006 Jun;50(8):998-1005 PubMed
Eur J Pharmacol. 1993 Feb 15;244(3):211-22 PubMed
Pharmacol Ther. 2005 Jun;106(3):405-21 PubMed
Mol Endocrinol. 1999 Jul;13(7):1061-70 PubMed
Mol Interv. 2002 Jun;2(3):168-84 PubMed
J Mol Neurosci. 2005;27(2):195-203 PubMed
J Biol Chem. 1996 Aug 30;271(35):21309-15 PubMed
Learn Mem. 2008 Jan 29;15(2):88-92 PubMed
Curr Biol. 2002 Mar 5;12 (5):421-5 PubMed
J Biol Chem. 1997 Feb 21;272(8):5040-7 PubMed
Life Sci. 1994;54(8):PL113-8 PubMed
Circ Res. 2011 Jul 8;109(2):231-44 PubMed
Cell Signal. 2007 Nov;19(11):2247-54 PubMed
Med Sci Monit. 2010 Aug;16(8):BR260-70 PubMed
World J Gastroenterol. 2006 Dec 28;12(48):7753-7 PubMed
Neuroscience. 1994 Dec;63(4):1111-6 PubMed
Eur J Pharmacol. 1993 Mar 15;245(1):23-9 PubMed
J Neurochem. 2002 Nov;83(4):818-27 PubMed
Neuropsychopharmacology. 2005 Jul;30(7):1238-45 PubMed
Prog Mol Biol Transl Sci. 2013;118:93-113 PubMed
Brain Res. 1998 Mar 30;788(1-2):104-10 PubMed
Pharmacol Ther. 2012 Jan;133(1):40-69 PubMed
Neuroreport. 2006 Sep 18;17(13):1443-7 PubMed
Annu Rev Pharmacol Toxicol. 2008;48:359-91 PubMed
Cardiology. 2012;122(2):104-12 PubMed
Cell. 2007 May 4;129(3):511-22 PubMed
Pharmacol Biochem Behav. 1997 Mar;56(3):487-91 PubMed
J Biol Chem. 2005 Sep 2;280(35):31036-44 PubMed
Biochim Biophys Acta. 2011 Dec;1810(12):1220-9 PubMed
J Neurochem. 1998 Mar;70(3):1249-57 PubMed
Jpn J Pharmacol. 1986 Nov;42(3):419-23 PubMed
Cardiovasc Res. 2004 Aug 15;63(3):414-22 PubMed
Am J Physiol Cell Physiol. 2003 Aug;285(2):C377-83 PubMed
Cell Signal. 2011 Apr;23 (4):621-9 PubMed
Neuropsychopharmacology. 2011 Aug;36(9):1912-20 PubMed
Biomed Res Int. 2015;2015:894732 PubMed
Eur J Pharmacol. 1992 Jan 28;211(1):35-8 PubMed
Front Pharmacol. 2015 Jul 17;6:148 PubMed
J Biol Chem. 2000 Nov 10;275(45):35264-75 PubMed
J Biomed Sci. 2011 Nov 30;18:89 PubMed