An Investigation of the RNA Modification m6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA UK No. 377821
Charles University Grant Agency
SVV-260683
Charles University Institutional Research Fund
PubMed
40362608
PubMed Central
PMC12072463
DOI
10.3390/ijms26094371
PII: ijms26094371
Knihovny.cz E-zdroje
- Klíčová slova
- FTO, N6-methyladenosine, morphine, morphine withdrawal, rat brain,
- MeSH
- abstinenční syndrom * metabolismus genetika MeSH
- adenosin * analogy a deriváty metabolismus MeSH
- alfa-ketoglutarát-dependentní dioxygenasa, AlkB homolog 5 metabolismus genetika MeSH
- gen pro FTO metabolismus genetika MeSH
- krysa rodu Rattus MeSH
- messenger RNA metabolismus genetika MeSH
- methyltransferasy metabolismus genetika MeSH
- metylace MeSH
- morfin * škodlivé účinky farmakologie aplikace a dávkování MeSH
- mozek * metabolismus účinky léků MeSH
- potkani Sprague-Dawley MeSH
- závislost na morfiu metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosin * MeSH
- alfa-ketoglutarát-dependentní dioxygenasa, AlkB homolog 5 MeSH
- gen pro FTO MeSH
- messenger RNA MeSH
- methyltransferasy MeSH
- morfin * MeSH
- N-methyladenosine MeSH Prohlížeč
N6-methyladenosine (m6A) is one of the most prevalent methylated modifications of mRNA in eukaryotes. This reversible alteration can directly or indirectly influence biological functions, including RNA degradation, translation, and splicing. This study investigates the impact of chronic morphine administration and varying withdrawal durations (1 day, 1 week, 4 weeks, and 12 weeks) on the m6A modification levels in brain regions critical to addiction development and persistence. Our findings indicate that in the prefrontal cortex, the m6A levels and METTL3 expression decrease, accompanied by an increase in FTO and ALKBH5 expression, followed by fluctuating, but statistically insignificant changes in methylation-regulating enzymes over prolonged withdrawal. In the striatum, reductions in m6A levels and METTL3 expression are observed at 4 weeks of withdrawal, preceded by non-significant fluctuations in enzyme expression and the m6A modification levels. In contrast, no changes in the m6A modification levels or the expression of related enzymes are detected in the hippocampus and the cerebellum. Our data suggest that m6A modification and its regulatory enzymes undergo region-specific and time-dependent changes in response to chronic morphine exposure and subsequent withdrawal.
Zobrazit více v PubMed
Jang K.-H., Heras C.R., Lee G. m6A in the Signal Transduction Network. Mol. Cells. 2022;45:435–443. doi: 10.14348/molcells.2022.0017. PubMed DOI PMC
Li J., Yang X., Qi Z., Sang Y., Liu Y., Xu B., Liu W., Xu Z., Deng Y. The Role of mRNA m 6 A Methylation in the Nervous System. Cell Biosci. 2019;9:66. doi: 10.1186/s13578-019-0330-y. PubMed DOI PMC
Akhtar J., Lugoboni M., Junion G. m6A RNA Modification in Transcription Regulation. Transcription. 2021;12:266–276. doi: 10.1080/21541264.2022.2057177. PubMed DOI PMC
Jiang X., Liu B., Nie Z., Duan L., Xiong Q., Jin Z., Yang C., Chen Y. The Role of m6A Modification in the Biological Functions and Diseases. Sig. Transduct. Target. Ther. 2021;6:74. doi: 10.1038/s41392-020-00450-x. PubMed DOI PMC
Agarwala S.D., Blitzblau H.G., Hochwagen A., Fink G.R. RNA Methylation by the MIS Complex Regulates a Cell Fate Decision in Yeast. PLoS Genet. 2012;8:e1002732. doi: 10.1371/journal.pgen.1002732. PubMed DOI PMC
Bokar J.A., Shambaugh M.E., Polayes D., Matera A.G., Rottman F.M. Purification and cDNA Cloning of the AdoMet-Binding Subunit of the Human mRNA (N6-Adenosine)-Methyltransferase. RNA. 1997;3:1233–1247. PubMed PMC
Liu J., Yue Y., Han D., Wang X., Fu Y., Zhang L., Jia G., Yu M., Lu Z., Deng X., et al. A METTL3–METTL14 Complex Mediates Mammalian Nuclear RNA N 6-Adenosine Methylation. Nat. Chem. Biol. 2014;10:93–95. doi: 10.1038/nchembio.1432. PubMed DOI PMC
Schwartz S., Mumbach M.R., Jovanovic M., Wang T., Maciag K., Bushkin G.G., Mertins P., Ter-Ovanesyan D., Habib N., Cacchiarelli D., et al. Perturbation of m6A Writers Reveals Two Distinct Classes of mRNA Methylation at Internal and 5′ Sites. Cell Rep. 2014;8:284–296. doi: 10.1016/j.celrep.2014.05.048. PubMed DOI PMC
Pendleton K.E., Chen B., Liu K., Hunter O.V., Xie Y., Tu B.P., Conrad N.K. The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell. 2017;169:824–835. doi: 10.1016/j.cell.2017.05.003. PubMed DOI PMC
Patil D.P., Chen C.-K., Pickering B.F., Chow A., Jackson C., Guttman M., Jaffrey S.R. m6A RNA Methylation Promotes XIST-Mediated Transcriptional Repression. Nature. 2016;537:369–373. doi: 10.1038/nature19342. PubMed DOI PMC
Wen J., Lv R., Ma H., Shen H., He C., Wang J., Jiao F., Liu H., Yang P., Tan L., et al. Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Mol. Cell. 2018;69:1028–1038. doi: 10.1016/j.molcel.2018.02.015. PubMed DOI PMC
Wang P., Doxtader K.A., Nam Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol. Cell. 2016;63:306–317. doi: 10.1016/j.molcel.2016.05.041. PubMed DOI PMC
Bokar J.A., Rath-Shambaugh M.E., Ludwiczak R., Narayan P., Rottman F. Characterization and Partial Purification of mRNA N6-Adenosine Methyltransferase from HeLa Cell Nuclei. Internal mRNA Methylation Requires a Multisubunit Complex. J. Biol. Chem. 1994;269:17697–17704. doi: 10.1016/S0021-9258(17)32497-3. PubMed DOI
Trewick S.C., Henshaw T.F., Hausinger R.P., Lindahl T., Sedgwick B. Oxidative Demethylation by Escherichia coli AlkB Directly Reverts DNA Base Damage. Nature. 2002;419:174–178. doi: 10.1038/nature00908. PubMed DOI
Shi H., Wang X., Lu Z., Zhao B.S., Ma H., Hsu P.J., Liu C., He C. YTHDF3 Facilitates Translation and Decay of N6-Methyladenosine-Modified RNA. Cell Res. 2017;27:315–328. doi: 10.1038/cr.2017.15. PubMed DOI PMC
Wang X., Lu Z., Gomez A., Hon G.C., Yue Y., Han D., Fu Y., Parisien M., Dai Q., Jia G., et al. N 6-Methyladenosine-Dependent Regulation of Messenger RNA Stability. Nature. 2014;505:117–120. doi: 10.1038/nature12730. PubMed DOI PMC
Wang X., Zhao B.S., Roundtree I.A., Lu Z., Han D., Ma H., Weng X., Chen K., Shi H., He C. N6-Methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015;161:1388–1399. doi: 10.1016/j.cell.2015.05.014. PubMed DOI PMC
Dhote V., Sweeney T.R., Kim N., Hellen C.U., Pestova T.V. Roles of Individual Domains in the Function of DHX29, an Essential Factor Required for Translation of Structured Mammalian mRNAs. Proc. Natl. Acad. Sci. USA. 2012;109:E3150–E3159. doi: 10.1073/pnas.1208014109. PubMed DOI PMC
Hartmann A.M., Nayler O., Schwaiger F.W., Obermeier A., Stamm S. The Interaction and Colocalization of Sam68 with the Splicing-Associated Factor YT521-B in Nuclear Dots Is Regulated by the Src Family Kinase P59fyn. Mol. Biol. Cell. 1999;10:3909–3926. doi: 10.1091/mbc.10.11.3909. PubMed DOI PMC
Kretschmer J., Rao H., Hackert P., Sloan K.E., Höbartner C., Bohnsack M.T. The m6A Reader Protein YTHDC2 Interacts with the Small Ribosomal Subunit and the 5′–3′ Exoribonuclease XRN1. RNA. 2018;24:1339–1350. doi: 10.1261/rna.064238.117. PubMed DOI PMC
Wojtas M.N., Pandey R.R., Mendel M., Homolka D., Sachidanandam R., Pillai R.S. Regulation of m6A Transcripts by the 3′→5′ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Mol. Cell. 2017;68:374–387. doi: 10.1016/j.molcel.2017.09.021. PubMed DOI
Livneh I., Moshitch-Moshkovitz S., Amariglio N., Rechavi G., Dominissini D. The m6A Epitranscriptome: Transcriptome Plasticity in Brain Development and Function. Nat. Rev. Neurosci. 2020;21:36–51. doi: 10.1038/s41583-019-0244-z. PubMed DOI
Yen Y.-P., Chen J.-A. The m6A Epitranscriptome on Neural Development and Degeneration. J. Biomed. Sci. 2021;28:40. doi: 10.1186/s12929-021-00734-6. PubMed DOI PMC
Shi H., Zhang X., Weng Y.-L., Lu Z., Liu Y., Lu Z., Li J., Hao P., Zhang Y., Zhang F., et al. m6A Facilitates Hippocampus-Dependent Learning and Memory through YTHDF1. Nature. 2018;563:249–253. doi: 10.1038/s41586-018-0666-1. PubMed DOI PMC
Widagdo J., Wong J.J.-L., Anggono V. The m6A-Epitranscriptome in Brain Plasticity, Learning and Memory. Sem. Cell Dev. Biol. 2022;125:110–121. doi: 10.1016/j.semcdb.2021.05.023. PubMed DOI
Engel M., Eggert C., Kaplick P.M., Eder M., Röh S., Tietze L., Namendorf C., Arloth J., Weber P., Rex-Haffner M., et al. The Role of m6A/m-RNA Methylation in Stress Response Regulation. Neuron. 2018;99:389–403. doi: 10.1016/j.neuron.2018.07.009. PubMed DOI PMC
Barbon A., Magri C. RNA Editing and Modifications in Mood Disorders. Genes. 2020;11:872. doi: 10.3390/genes11080872. PubMed DOI PMC
Fan Y., Yan D., Ma L., Liu X., Luo G., Hu Y., Kou X. ALKBH5 Is a Prognostic Factor and Promotes the Angiogenesis of Glioblastoma. Sci. Rep. 2024;14:1303. doi: 10.1038/s41598-024-51994-9. PubMed DOI PMC
Ma H., Hong Y., Xu Z., Weng Z., Yang Y., Jin D., Chen Z., Zhou X., Xu Z., Fei F., et al. ALKBH5 Acts a Tumor-Suppressive Biomarker and Is Associated with Immunotherapy Response in Hepatocellular Carcinoma. Sci. Rep. 2025;15:55. doi: 10.1038/s41598-024-84050-7. PubMed DOI PMC
Wei C., Wang B., Peng D., Zhang X., Li Z., Luo L., He Y., Liang H., Du X., Li S., et al. Pan-Cancer Analysis Shows That ALKBH5 Is a Potential Prognostic and Immunotherapeutic Biomarker for Multiple Cancer Types Including Gliomas. Front. Immunol. 2022;13:849592. PubMed PMC
Tang B., Yang Y., Kang M., Wang Y., Wang Y., Bi Y., He S., Shimamoto F. M 6 A Demethylase ALKBH5 Inhibits Pancreatic Cancer Tumorigenesis by Decreasing WIF-1 RNA Methylation and Mediating Wnt Signaling. Mol. Cancer. 2020;19:3. doi: 10.1186/s12943-019-1128-6. PubMed DOI PMC
Xu D., Shao W., Jiang Y., Wang X., Liu Y., Liu X. FTO Expression Is Associated with the Occurrence of Gastric Cancer and Prognosis. Oncol. Rep. 2017;38:2285–2292. doi: 10.3892/or.2017.5904. PubMed DOI
Wang Q., Geng W., Guo H., Wang Z., Xu K., Chen C., Wang S. Emerging Role of RNA Methyltransferase METTL3 in Gastrointestinal Cancer. J. Hematol. Oncol. 2020;13:57. doi: 10.1186/s13045-020-00895-1. PubMed DOI PMC
Xue A., Huang Y., Li M., Wei Q., Bu Q. Comprehensive Analysis of Differential m6A RNA Methylomes in the Hippocampus of Cocaine-Conditioned Mice. Mol. Neurobiol. 2021;58:3759–3768. doi: 10.1007/s12035-021-02363-4. PubMed DOI
Wu X., Wu C., Zhou T. No Significant Change of N6-Methyladenosine Modification Landscape in Mouse Brain after Morphine Exposure. Brain Behav. 2024;14:e3350. doi: 10.1002/brb3.3350. PubMed DOI PMC
Dabrowski K.R., Daws S.E. Morphine-Driven m6A Epitranscriptomic Neuroadaptations in Primary Cortical Cultures. Mol. Neurobiol. 2024;61:10684–10704. doi: 10.1007/s12035-024-04219-z. PubMed DOI PMC
Egervari G., Landry J., Callens J., Fullard J.F., Roussos P., Keller E., Hurd Y.L. Striatal H3K27 Acetylation Linked to Glutamatergic Gene Dysregulation in Human Heroin Abusers Holds Promise as Therapeutic Target. Biol. Psychiatry. 2017;81:585–594. doi: 10.1016/j.biopsych.2016.09.015. PubMed DOI PMC
Chen W.-S., Xu W.-J., Zhu H.-Q., Gao L., Lai M.-J., Zhang F.-Q., Zhou W.-H., Liu H.-F. Effects of Histone Deacetylase Inhibitor Sodium Butyrate on Heroin Seeking Behavior in the Nucleus Accumbens in Rats. Brain Res. 2016;1652:151–157. doi: 10.1016/j.brainres.2016.10.007. PubMed DOI
Sheng J., gang Lv Z., Wang L., Zhou Y., Hui B. Histone H3 Phosphoacetylation Is Critical for Heroin-Induced Place Preference. Neuroreport. 2011;22:575–580. doi: 10.1097/WNR.0b013e328348e6aa. PubMed DOI
Nielsen D.A., Yuferov V., Hamon S., Jackson C., Ho A., Ott J., Kreek M.J. Increased OPRM1 DNA Methylation in Lymphocytes of Methadone-Maintained Former Heroin Addicts. Neuropsychopharmacology. 2009;34:867–873. doi: 10.1038/npp.2008.108. PubMed DOI PMC
Schuster R., Kleimann A., Rehme M.-K., Taschner L., Glahn A., Groh A., Frieling H., Lichtinghagen R., Hillemacher T., Bleich S., et al. Elevated Methylation and Decreased Serum Concentrations of BDNF in Patients in Levomethadone Compared to Diamorphine Maintenance Treatment. Eur. Arch. Psych. Clin. Neurosci. 2017;267:33–40. doi: 10.1007/s00406-016-0668-7. PubMed DOI
Ammon-Treiber S., Höllt V. Morphine-Induced Changes of Gene Expression in the Brain. Addict. Biol. 2005;10:81–89. doi: 10.1080/13556210412331308994. PubMed DOI
Gago B., Suárez-Boomgaard D., Fuxe K., Brené S., Reina-Sánchez M.D., Rodríguez-Pérez L.M., Agnati L.F., de la Calle A., Rivera A. Effect of Acute and Continuous Morphine Treatment on Transcription Factor Expression in Subregions of the Rat Caudate Putamen. Marked Modulation by D4 Receptor Activation. Brain Res. 2011;1407:47–61. doi: 10.1016/j.brainres.2011.06.046. PubMed DOI
Cheng Y.-C., Tsai R.-Y., Sung Y.-T., Chen I.-J., Tu T.-Y., Mao Y.-Y., Wong C.-S. Melatonin Regulation of Transcription in the Reversal of Morphine Tolerance: Microarray Analysis of Differential Gene Expression. Int. J. Mol. Med. 2019;43:791–806. doi: 10.3892/ijmm.2018.4030. PubMed DOI PMC
McClung C.A., Nestler E.J., Zachariou V. Regulation of Gene Expression by Chronic Morphine and Morphine Withdrawal in the Locus Ceruleus and Ventral Tegmental Area. J. Neurosci. 2005;25:6005–6015. doi: 10.1523/JNEUROSCI.0062-05.2005. PubMed DOI PMC
Nutt D.J., King L.A., Phillips L.D. Drug Harms in the UK: A Multicriteria Decision Analysis. Lancet. 2010;376:1558–1565. doi: 10.1016/S0140-6736(10)61462-6. PubMed DOI
Masserman J.H., Wikler A. Effects of Morphine on Learned Adaptive Behavior and Experimental Neuroses in Cats. Arch. Neurol. Psychiatry. 1942;48:447–458.
Bourova L., Vosahlikova M., Kagan D., Dlouha K., Novotny J., Svoboda P. Long-Term Adaptation to High Doses of Morphine Causes Desensitization of Mu-OR- and Delta-OR-Stimulated G-Protein Response in Forebrain Cortex but Does Not Decrease the Amount of G-Protein Alpha Subunits. Med. Sci. Monit. 2010;16:BR260–BR270. PubMed
Ouyang H., Zhang J., Chi D., Zhang K., Huang Y., Huang J., Huang W., Bai X. The YTHDF1–TRAF6 Pathway Regulates the Neuroinflammatory Response and Contributes to Morphine Tolerance and Hyperalgesia in the Periaqueductal Gray. J. Neuroinflam. 2022;19:310. doi: 10.1186/s12974-022-02672-y. PubMed DOI PMC
Gipson C.D., Dunn K.E., Bull A., Ulangkaya H., Hossain A. Establishing Preclinical Withdrawal Syndrome Symptomatology Following Heroin Self-Administration in Male and Female Rats. Exp. Clin. Psychopharmacol. 2021;29:636–649. doi: 10.1037/pha0000375. PubMed DOI PMC
Knuckles P., Carl S.H., Musheev M., Niehrs C., Wenger A., Bühler M. RNA Fate Determination through Cotranscriptional Adenosine Methylation and Microprocessor Binding. Nat. Struct Mol. Biol. 2017;24:561–569. doi: 10.1038/nsmb.3419. PubMed DOI
Blaze J., Browne C.J., Futamura R., Javidfar B., Zachariou V., Nestler E.J., Akbarian S. tRNA Epitranscriptomic Alterations Associated with Opioid-Induced Reward-Seeking and Long-Term Opioid Withdrawal in Male Mice. Neuropsychopharmacology. 2024;49:1276–1284. doi: 10.1038/s41386-024-01813-6. PubMed DOI PMC
Hess M.E., Brüning J.C. The Fat Mass and Obesity-Associated (FTO) Gene: Obesity and Beyond? Biochim. Biophys. Acta—Mol. Basis Dis. 2014;1842:2039–2047. doi: 10.1016/j.bbadis.2014.01.017. PubMed DOI
Sun H.-L., Zhu A.C., Gao Y., Terajima H., Fei Q., Liu S., Zhang L., Zhang Z., Harada B.T., He Y.-Y., et al. Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m6A Methylation. Mol. Cell. 2020;80:633–647.e7. doi: 10.1016/j.molcel.2020.10.026. PubMed DOI PMC
Abdulmalek S., Hardiman G. Genetic and Epigenetic Studies of Opioid Abuse Disorder—The Potential for Future Diagnostics. Expert Rev. Mol. Diagb. 2023;23:361–373. doi: 10.1080/14737159.2023.2190022. PubMed DOI PMC
Anderson E.M., Taniguchi M. Epigenetic Effects of Addictive Drugs in the Nucleus Accumbens. Front. Mol. Neurosci. 2022;15:828055. doi: 10.3389/fnmol.2022.828055. PubMed DOI PMC
Browne C.J., Godino A., Salery M., Nestler E.J. Epigenetic Mechanisms of Opioid Addiction. Biol. Psychiatry. 2020;87:22–33. doi: 10.1016/j.biopsych.2019.06.027. PubMed DOI PMC
Carpenter M.D., Manners M.T., Heller E.A., Blendy J.A. Adolescent Oxycodone Exposure Inhibits Withdrawal-Induced Expression of Genes Associated with the Dopamine Transmission. Addict. Biol. 2021;26:e12994. doi: 10.1111/adb.12994. PubMed DOI PMC
Chen X., Yu C., Guo M., Zheng X., Ali S., Huang H., Zhang L., Wang S., Huang Y., Qie S., et al. Down-Regulation of m6A mRNA Methylation Is Involved in Dopaminergic Neuronal Death. ACS Chem. Neurosci. J. 2019;10:2355–2363. doi: 10.1021/acschemneuro.8b00657. PubMed DOI
Kanarik M., Liiver K., Norden M., Teino I., Org T., Laugus K., Shimmo R., Karelson M., Saarma M., Harro J. RNA m6A Methyltransferase Activator Affects Anxiety-Related Behaviours, Monoamines and Striatal Gene Expression in the Rat. Acta Neuropsychiatr. 2024;37:e52. doi: 10.1017/neu.2024.36. PubMed DOI
Hwang J.-Y., Aromolaran K.A., Zukin R.S. The Emerging Field of Epigenetics in Neurodegeneration and Neuroprotection. Nat. Rev. Neurosci. 2017;18:347–361. doi: 10.1038/nrn.2017.46. PubMed DOI PMC
Li Y., Dou X., Liu J., Xiao Y., Zhang Z., Hayes L., Wu R., Fu X., Ye Y., Yang B., et al. Globally Reduced N6-Methyladenosine (m6A) in C9ORF72-ALS/FTD Dysregulates RNA Metabolism and Contributes to Neurodegeneration. Nat. Neurosci. 2023;26:1328–1338. doi: 10.1038/s41593-023-01374-9. PubMed DOI PMC
Su X., Qu Y., Mu D. The Regulatory Network of METTL3 in the Nervous System: Diagnostic Biomarkers and Therapeutic Targets. Biomolecules. 2023;13:664. doi: 10.3390/biom13040664. PubMed DOI PMC
Yu Z., Huang L., Xia Y., Cheng S., Yang C., Chen C., Zou Z., Wang X., Tian X., Jiang X., et al. Analysis of m6A Modification Regulators in the Substantia Nigra and Striatum of MPTP-Induced Parkinson’s Disease Mice. Neurosci. Lett. 2022;791:136907. doi: 10.1016/j.neulet.2022.136907. PubMed DOI
Hearing M., Graziane N., Dong Y., Thomas M.J. Opioid and Psychostimulant Plasticity: Targeting Overlap in Nucleus Accumbens Glutamate Signaling. Trends Pharmacol. Sci. 2018;39:276–294. doi: 10.1016/j.tips.2017.12.004. PubMed DOI PMC
Lu W., Yang X., Zhong W., Chen G., Guo X., Ye Q., Xu Y., Qi Z., Ye Y., Zhang J., et al. METTL14-Mediated m6A Epitranscriptomic Modification Contributes to Chemotherapy-Induced Neuropathic Pain by Stabilizing GluN2A Expression via IGF2BP2. J. Clin. Investig. 2024;134:e174847. doi: 10.1172/JCI174847. PubMed DOI PMC
Fang X., Li M., Yu T., Liu G., Wang J. Reversible N6-Methyladenosine of RNA: The Regulatory Mechanisms on Gene Expression and Implications in Physiology and Pathology. Genes Dis. 2020;7:585–597. doi: 10.1016/j.gendis.2020.06.011. PubMed DOI PMC
Christie M.J. Cellular Neuroadaptations to Chronic Opioids: Tolerance, Withdrawal and Addiction. Br. J. Pharmacol. 2008;154:384–396. doi: 10.1038/bjp.2008.100. PubMed DOI PMC
Moreno-Rius J. Opioid Addiction and the Cerebellum. Neurosci. Biobehav. Rev. 2019;107:238–251. doi: 10.1016/j.neubiorev.2019.09.015. PubMed DOI
Rio D.C., Ares M., Hannon G.J., Nilsen T.W. Purification of RNA Using TRIzol (TRI Reagent) Cold Spring Harb. Protoc. 2010;2010:pdb.prot5439. doi: 10.1101/pdb.prot5439. PubMed DOI
Walker J.M. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. Meth. Mol. Biol. 1994;32:5–8. PubMed
Hejnova L., Hronova A., Drastichova Z., Novotny J. Long-Term Administration of Morphine Specifically Alters the Level of Protein Expression in Different Brain Regions and Affects the Redox State. Open Life Sci. 2024;19:20220858. doi: 10.1515/biol-2022-0858. PubMed DOI PMC
Ihnatovych I., Hejnová L., Kostrnová A., Mares P., Svoboda P., Novotný J. Maturation of Rat Brain Is Accompanied by Differential Expression of the Long and Short Splice Variants of G(s)Alpha Protein: Identification of Cytosolic Forms of G(s)Alpha. J. Neurochem. 2001;79:88–97. doi: 10.1046/j.1471-4159.2001.00544.x. PubMed DOI