An Investigation of the RNA Modification m6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal

. 2025 May 04 ; 26 (9) : . [epub] 20250504

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40362608

Grantová podpora
GA UK No. 377821 Charles University Grant Agency
SVV-260683 Charles University Institutional Research Fund

N6-methyladenosine (m6A) is one of the most prevalent methylated modifications of mRNA in eukaryotes. This reversible alteration can directly or indirectly influence biological functions, including RNA degradation, translation, and splicing. This study investigates the impact of chronic morphine administration and varying withdrawal durations (1 day, 1 week, 4 weeks, and 12 weeks) on the m6A modification levels in brain regions critical to addiction development and persistence. Our findings indicate that in the prefrontal cortex, the m6A levels and METTL3 expression decrease, accompanied by an increase in FTO and ALKBH5 expression, followed by fluctuating, but statistically insignificant changes in methylation-regulating enzymes over prolonged withdrawal. In the striatum, reductions in m6A levels and METTL3 expression are observed at 4 weeks of withdrawal, preceded by non-significant fluctuations in enzyme expression and the m6A modification levels. In contrast, no changes in the m6A modification levels or the expression of related enzymes are detected in the hippocampus and the cerebellum. Our data suggest that m6A modification and its regulatory enzymes undergo region-specific and time-dependent changes in response to chronic morphine exposure and subsequent withdrawal.

Zobrazit více v PubMed

Jang K.-H., Heras C.R., Lee G. m6A in the Signal Transduction Network. Mol. Cells. 2022;45:435–443. doi: 10.14348/molcells.2022.0017. PubMed DOI PMC

Li J., Yang X., Qi Z., Sang Y., Liu Y., Xu B., Liu W., Xu Z., Deng Y. The Role of mRNA m 6 A Methylation in the Nervous System. Cell Biosci. 2019;9:66. doi: 10.1186/s13578-019-0330-y. PubMed DOI PMC

Akhtar J., Lugoboni M., Junion G. m6A RNA Modification in Transcription Regulation. Transcription. 2021;12:266–276. doi: 10.1080/21541264.2022.2057177. PubMed DOI PMC

Jiang X., Liu B., Nie Z., Duan L., Xiong Q., Jin Z., Yang C., Chen Y. The Role of m6A Modification in the Biological Functions and Diseases. Sig. Transduct. Target. Ther. 2021;6:74. doi: 10.1038/s41392-020-00450-x. PubMed DOI PMC

Agarwala S.D., Blitzblau H.G., Hochwagen A., Fink G.R. RNA Methylation by the MIS Complex Regulates a Cell Fate Decision in Yeast. PLoS Genet. 2012;8:e1002732. doi: 10.1371/journal.pgen.1002732. PubMed DOI PMC

Bokar J.A., Shambaugh M.E., Polayes D., Matera A.G., Rottman F.M. Purification and cDNA Cloning of the AdoMet-Binding Subunit of the Human mRNA (N6-Adenosine)-Methyltransferase. RNA. 1997;3:1233–1247. PubMed PMC

Liu J., Yue Y., Han D., Wang X., Fu Y., Zhang L., Jia G., Yu M., Lu Z., Deng X., et al. A METTL3–METTL14 Complex Mediates Mammalian Nuclear RNA N 6-Adenosine Methylation. Nat. Chem. Biol. 2014;10:93–95. doi: 10.1038/nchembio.1432. PubMed DOI PMC

Schwartz S., Mumbach M.R., Jovanovic M., Wang T., Maciag K., Bushkin G.G., Mertins P., Ter-Ovanesyan D., Habib N., Cacchiarelli D., et al. Perturbation of m6A Writers Reveals Two Distinct Classes of mRNA Methylation at Internal and 5′ Sites. Cell Rep. 2014;8:284–296. doi: 10.1016/j.celrep.2014.05.048. PubMed DOI PMC

Pendleton K.E., Chen B., Liu K., Hunter O.V., Xie Y., Tu B.P., Conrad N.K. The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell. 2017;169:824–835. doi: 10.1016/j.cell.2017.05.003. PubMed DOI PMC

Patil D.P., Chen C.-K., Pickering B.F., Chow A., Jackson C., Guttman M., Jaffrey S.R. m6A RNA Methylation Promotes XIST-Mediated Transcriptional Repression. Nature. 2016;537:369–373. doi: 10.1038/nature19342. PubMed DOI PMC

Wen J., Lv R., Ma H., Shen H., He C., Wang J., Jiao F., Liu H., Yang P., Tan L., et al. Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Mol. Cell. 2018;69:1028–1038. doi: 10.1016/j.molcel.2018.02.015. PubMed DOI PMC

Wang P., Doxtader K.A., Nam Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol. Cell. 2016;63:306–317. doi: 10.1016/j.molcel.2016.05.041. PubMed DOI PMC

Bokar J.A., Rath-Shambaugh M.E., Ludwiczak R., Narayan P., Rottman F. Characterization and Partial Purification of mRNA N6-Adenosine Methyltransferase from HeLa Cell Nuclei. Internal mRNA Methylation Requires a Multisubunit Complex. J. Biol. Chem. 1994;269:17697–17704. doi: 10.1016/S0021-9258(17)32497-3. PubMed DOI

Trewick S.C., Henshaw T.F., Hausinger R.P., Lindahl T., Sedgwick B. Oxidative Demethylation by Escherichia coli AlkB Directly Reverts DNA Base Damage. Nature. 2002;419:174–178. doi: 10.1038/nature00908. PubMed DOI

Shi H., Wang X., Lu Z., Zhao B.S., Ma H., Hsu P.J., Liu C., He C. YTHDF3 Facilitates Translation and Decay of N6-Methyladenosine-Modified RNA. Cell Res. 2017;27:315–328. doi: 10.1038/cr.2017.15. PubMed DOI PMC

Wang X., Lu Z., Gomez A., Hon G.C., Yue Y., Han D., Fu Y., Parisien M., Dai Q., Jia G., et al. N 6-Methyladenosine-Dependent Regulation of Messenger RNA Stability. Nature. 2014;505:117–120. doi: 10.1038/nature12730. PubMed DOI PMC

Wang X., Zhao B.S., Roundtree I.A., Lu Z., Han D., Ma H., Weng X., Chen K., Shi H., He C. N6-Methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015;161:1388–1399. doi: 10.1016/j.cell.2015.05.014. PubMed DOI PMC

Dhote V., Sweeney T.R., Kim N., Hellen C.U., Pestova T.V. Roles of Individual Domains in the Function of DHX29, an Essential Factor Required for Translation of Structured Mammalian mRNAs. Proc. Natl. Acad. Sci. USA. 2012;109:E3150–E3159. doi: 10.1073/pnas.1208014109. PubMed DOI PMC

Hartmann A.M., Nayler O., Schwaiger F.W., Obermeier A., Stamm S. The Interaction and Colocalization of Sam68 with the Splicing-Associated Factor YT521-B in Nuclear Dots Is Regulated by the Src Family Kinase P59fyn. Mol. Biol. Cell. 1999;10:3909–3926. doi: 10.1091/mbc.10.11.3909. PubMed DOI PMC

Kretschmer J., Rao H., Hackert P., Sloan K.E., Höbartner C., Bohnsack M.T. The m6A Reader Protein YTHDC2 Interacts with the Small Ribosomal Subunit and the 5′–3′ Exoribonuclease XRN1. RNA. 2018;24:1339–1350. doi: 10.1261/rna.064238.117. PubMed DOI PMC

Wojtas M.N., Pandey R.R., Mendel M., Homolka D., Sachidanandam R., Pillai R.S. Regulation of m6A Transcripts by the 3′→5′ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Mol. Cell. 2017;68:374–387. doi: 10.1016/j.molcel.2017.09.021. PubMed DOI

Livneh I., Moshitch-Moshkovitz S., Amariglio N., Rechavi G., Dominissini D. The m6A Epitranscriptome: Transcriptome Plasticity in Brain Development and Function. Nat. Rev. Neurosci. 2020;21:36–51. doi: 10.1038/s41583-019-0244-z. PubMed DOI

Yen Y.-P., Chen J.-A. The m6A Epitranscriptome on Neural Development and Degeneration. J. Biomed. Sci. 2021;28:40. doi: 10.1186/s12929-021-00734-6. PubMed DOI PMC

Shi H., Zhang X., Weng Y.-L., Lu Z., Liu Y., Lu Z., Li J., Hao P., Zhang Y., Zhang F., et al. m6A Facilitates Hippocampus-Dependent Learning and Memory through YTHDF1. Nature. 2018;563:249–253. doi: 10.1038/s41586-018-0666-1. PubMed DOI PMC

Widagdo J., Wong J.J.-L., Anggono V. The m6A-Epitranscriptome in Brain Plasticity, Learning and Memory. Sem. Cell Dev. Biol. 2022;125:110–121. doi: 10.1016/j.semcdb.2021.05.023. PubMed DOI

Engel M., Eggert C., Kaplick P.M., Eder M., Röh S., Tietze L., Namendorf C., Arloth J., Weber P., Rex-Haffner M., et al. The Role of m6A/m-RNA Methylation in Stress Response Regulation. Neuron. 2018;99:389–403. doi: 10.1016/j.neuron.2018.07.009. PubMed DOI PMC

Barbon A., Magri C. RNA Editing and Modifications in Mood Disorders. Genes. 2020;11:872. doi: 10.3390/genes11080872. PubMed DOI PMC

Fan Y., Yan D., Ma L., Liu X., Luo G., Hu Y., Kou X. ALKBH5 Is a Prognostic Factor and Promotes the Angiogenesis of Glioblastoma. Sci. Rep. 2024;14:1303. doi: 10.1038/s41598-024-51994-9. PubMed DOI PMC

Ma H., Hong Y., Xu Z., Weng Z., Yang Y., Jin D., Chen Z., Zhou X., Xu Z., Fei F., et al. ALKBH5 Acts a Tumor-Suppressive Biomarker and Is Associated with Immunotherapy Response in Hepatocellular Carcinoma. Sci. Rep. 2025;15:55. doi: 10.1038/s41598-024-84050-7. PubMed DOI PMC

Wei C., Wang B., Peng D., Zhang X., Li Z., Luo L., He Y., Liang H., Du X., Li S., et al. Pan-Cancer Analysis Shows That ALKBH5 Is a Potential Prognostic and Immunotherapeutic Biomarker for Multiple Cancer Types Including Gliomas. Front. Immunol. 2022;13:849592. PubMed PMC

Tang B., Yang Y., Kang M., Wang Y., Wang Y., Bi Y., He S., Shimamoto F. M 6 A Demethylase ALKBH5 Inhibits Pancreatic Cancer Tumorigenesis by Decreasing WIF-1 RNA Methylation and Mediating Wnt Signaling. Mol. Cancer. 2020;19:3. doi: 10.1186/s12943-019-1128-6. PubMed DOI PMC

Xu D., Shao W., Jiang Y., Wang X., Liu Y., Liu X. FTO Expression Is Associated with the Occurrence of Gastric Cancer and Prognosis. Oncol. Rep. 2017;38:2285–2292. doi: 10.3892/or.2017.5904. PubMed DOI

Wang Q., Geng W., Guo H., Wang Z., Xu K., Chen C., Wang S. Emerging Role of RNA Methyltransferase METTL3 in Gastrointestinal Cancer. J. Hematol. Oncol. 2020;13:57. doi: 10.1186/s13045-020-00895-1. PubMed DOI PMC

Xue A., Huang Y., Li M., Wei Q., Bu Q. Comprehensive Analysis of Differential m6A RNA Methylomes in the Hippocampus of Cocaine-Conditioned Mice. Mol. Neurobiol. 2021;58:3759–3768. doi: 10.1007/s12035-021-02363-4. PubMed DOI

Wu X., Wu C., Zhou T. No Significant Change of N6-Methyladenosine Modification Landscape in Mouse Brain after Morphine Exposure. Brain Behav. 2024;14:e3350. doi: 10.1002/brb3.3350. PubMed DOI PMC

Dabrowski K.R., Daws S.E. Morphine-Driven m6A Epitranscriptomic Neuroadaptations in Primary Cortical Cultures. Mol. Neurobiol. 2024;61:10684–10704. doi: 10.1007/s12035-024-04219-z. PubMed DOI PMC

Egervari G., Landry J., Callens J., Fullard J.F., Roussos P., Keller E., Hurd Y.L. Striatal H3K27 Acetylation Linked to Glutamatergic Gene Dysregulation in Human Heroin Abusers Holds Promise as Therapeutic Target. Biol. Psychiatry. 2017;81:585–594. doi: 10.1016/j.biopsych.2016.09.015. PubMed DOI PMC

Chen W.-S., Xu W.-J., Zhu H.-Q., Gao L., Lai M.-J., Zhang F.-Q., Zhou W.-H., Liu H.-F. Effects of Histone Deacetylase Inhibitor Sodium Butyrate on Heroin Seeking Behavior in the Nucleus Accumbens in Rats. Brain Res. 2016;1652:151–157. doi: 10.1016/j.brainres.2016.10.007. PubMed DOI

Sheng J., gang Lv Z., Wang L., Zhou Y., Hui B. Histone H3 Phosphoacetylation Is Critical for Heroin-Induced Place Preference. Neuroreport. 2011;22:575–580. doi: 10.1097/WNR.0b013e328348e6aa. PubMed DOI

Nielsen D.A., Yuferov V., Hamon S., Jackson C., Ho A., Ott J., Kreek M.J. Increased OPRM1 DNA Methylation in Lymphocytes of Methadone-Maintained Former Heroin Addicts. Neuropsychopharmacology. 2009;34:867–873. doi: 10.1038/npp.2008.108. PubMed DOI PMC

Schuster R., Kleimann A., Rehme M.-K., Taschner L., Glahn A., Groh A., Frieling H., Lichtinghagen R., Hillemacher T., Bleich S., et al. Elevated Methylation and Decreased Serum Concentrations of BDNF in Patients in Levomethadone Compared to Diamorphine Maintenance Treatment. Eur. Arch. Psych. Clin. Neurosci. 2017;267:33–40. doi: 10.1007/s00406-016-0668-7. PubMed DOI

Ammon-Treiber S., Höllt V. Morphine-Induced Changes of Gene Expression in the Brain. Addict. Biol. 2005;10:81–89. doi: 10.1080/13556210412331308994. PubMed DOI

Gago B., Suárez-Boomgaard D., Fuxe K., Brené S., Reina-Sánchez M.D., Rodríguez-Pérez L.M., Agnati L.F., de la Calle A., Rivera A. Effect of Acute and Continuous Morphine Treatment on Transcription Factor Expression in Subregions of the Rat Caudate Putamen. Marked Modulation by D4 Receptor Activation. Brain Res. 2011;1407:47–61. doi: 10.1016/j.brainres.2011.06.046. PubMed DOI

Cheng Y.-C., Tsai R.-Y., Sung Y.-T., Chen I.-J., Tu T.-Y., Mao Y.-Y., Wong C.-S. Melatonin Regulation of Transcription in the Reversal of Morphine Tolerance: Microarray Analysis of Differential Gene Expression. Int. J. Mol. Med. 2019;43:791–806. doi: 10.3892/ijmm.2018.4030. PubMed DOI PMC

McClung C.A., Nestler E.J., Zachariou V. Regulation of Gene Expression by Chronic Morphine and Morphine Withdrawal in the Locus Ceruleus and Ventral Tegmental Area. J. Neurosci. 2005;25:6005–6015. doi: 10.1523/JNEUROSCI.0062-05.2005. PubMed DOI PMC

Nutt D.J., King L.A., Phillips L.D. Drug Harms in the UK: A Multicriteria Decision Analysis. Lancet. 2010;376:1558–1565. doi: 10.1016/S0140-6736(10)61462-6. PubMed DOI

Masserman J.H., Wikler A. Effects of Morphine on Learned Adaptive Behavior and Experimental Neuroses in Cats. Arch. Neurol. Psychiatry. 1942;48:447–458.

Bourova L., Vosahlikova M., Kagan D., Dlouha K., Novotny J., Svoboda P. Long-Term Adaptation to High Doses of Morphine Causes Desensitization of Mu-OR- and Delta-OR-Stimulated G-Protein Response in Forebrain Cortex but Does Not Decrease the Amount of G-Protein Alpha Subunits. Med. Sci. Monit. 2010;16:BR260–BR270. PubMed

Ouyang H., Zhang J., Chi D., Zhang K., Huang Y., Huang J., Huang W., Bai X. The YTHDF1–TRAF6 Pathway Regulates the Neuroinflammatory Response and Contributes to Morphine Tolerance and Hyperalgesia in the Periaqueductal Gray. J. Neuroinflam. 2022;19:310. doi: 10.1186/s12974-022-02672-y. PubMed DOI PMC

Gipson C.D., Dunn K.E., Bull A., Ulangkaya H., Hossain A. Establishing Preclinical Withdrawal Syndrome Symptomatology Following Heroin Self-Administration in Male and Female Rats. Exp. Clin. Psychopharmacol. 2021;29:636–649. doi: 10.1037/pha0000375. PubMed DOI PMC

Knuckles P., Carl S.H., Musheev M., Niehrs C., Wenger A., Bühler M. RNA Fate Determination through Cotranscriptional Adenosine Methylation and Microprocessor Binding. Nat. Struct Mol. Biol. 2017;24:561–569. doi: 10.1038/nsmb.3419. PubMed DOI

Blaze J., Browne C.J., Futamura R., Javidfar B., Zachariou V., Nestler E.J., Akbarian S. tRNA Epitranscriptomic Alterations Associated with Opioid-Induced Reward-Seeking and Long-Term Opioid Withdrawal in Male Mice. Neuropsychopharmacology. 2024;49:1276–1284. doi: 10.1038/s41386-024-01813-6. PubMed DOI PMC

Hess M.E., Brüning J.C. The Fat Mass and Obesity-Associated (FTO) Gene: Obesity and Beyond? Biochim. Biophys. Acta—Mol. Basis Dis. 2014;1842:2039–2047. doi: 10.1016/j.bbadis.2014.01.017. PubMed DOI

Sun H.-L., Zhu A.C., Gao Y., Terajima H., Fei Q., Liu S., Zhang L., Zhang Z., Harada B.T., He Y.-Y., et al. Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m6A Methylation. Mol. Cell. 2020;80:633–647.e7. doi: 10.1016/j.molcel.2020.10.026. PubMed DOI PMC

Abdulmalek S., Hardiman G. Genetic and Epigenetic Studies of Opioid Abuse Disorder—The Potential for Future Diagnostics. Expert Rev. Mol. Diagb. 2023;23:361–373. doi: 10.1080/14737159.2023.2190022. PubMed DOI PMC

Anderson E.M., Taniguchi M. Epigenetic Effects of Addictive Drugs in the Nucleus Accumbens. Front. Mol. Neurosci. 2022;15:828055. doi: 10.3389/fnmol.2022.828055. PubMed DOI PMC

Browne C.J., Godino A., Salery M., Nestler E.J. Epigenetic Mechanisms of Opioid Addiction. Biol. Psychiatry. 2020;87:22–33. doi: 10.1016/j.biopsych.2019.06.027. PubMed DOI PMC

Carpenter M.D., Manners M.T., Heller E.A., Blendy J.A. Adolescent Oxycodone Exposure Inhibits Withdrawal-Induced Expression of Genes Associated with the Dopamine Transmission. Addict. Biol. 2021;26:e12994. doi: 10.1111/adb.12994. PubMed DOI PMC

Chen X., Yu C., Guo M., Zheng X., Ali S., Huang H., Zhang L., Wang S., Huang Y., Qie S., et al. Down-Regulation of m6A mRNA Methylation Is Involved in Dopaminergic Neuronal Death. ACS Chem. Neurosci. J. 2019;10:2355–2363. doi: 10.1021/acschemneuro.8b00657. PubMed DOI

Kanarik M., Liiver K., Norden M., Teino I., Org T., Laugus K., Shimmo R., Karelson M., Saarma M., Harro J. RNA m6A Methyltransferase Activator Affects Anxiety-Related Behaviours, Monoamines and Striatal Gene Expression in the Rat. Acta Neuropsychiatr. 2024;37:e52. doi: 10.1017/neu.2024.36. PubMed DOI

Hwang J.-Y., Aromolaran K.A., Zukin R.S. The Emerging Field of Epigenetics in Neurodegeneration and Neuroprotection. Nat. Rev. Neurosci. 2017;18:347–361. doi: 10.1038/nrn.2017.46. PubMed DOI PMC

Li Y., Dou X., Liu J., Xiao Y., Zhang Z., Hayes L., Wu R., Fu X., Ye Y., Yang B., et al. Globally Reduced N6-Methyladenosine (m6A) in C9ORF72-ALS/FTD Dysregulates RNA Metabolism and Contributes to Neurodegeneration. Nat. Neurosci. 2023;26:1328–1338. doi: 10.1038/s41593-023-01374-9. PubMed DOI PMC

Su X., Qu Y., Mu D. The Regulatory Network of METTL3 in the Nervous System: Diagnostic Biomarkers and Therapeutic Targets. Biomolecules. 2023;13:664. doi: 10.3390/biom13040664. PubMed DOI PMC

Yu Z., Huang L., Xia Y., Cheng S., Yang C., Chen C., Zou Z., Wang X., Tian X., Jiang X., et al. Analysis of m6A Modification Regulators in the Substantia Nigra and Striatum of MPTP-Induced Parkinson’s Disease Mice. Neurosci. Lett. 2022;791:136907. doi: 10.1016/j.neulet.2022.136907. PubMed DOI

Hearing M., Graziane N., Dong Y., Thomas M.J. Opioid and Psychostimulant Plasticity: Targeting Overlap in Nucleus Accumbens Glutamate Signaling. Trends Pharmacol. Sci. 2018;39:276–294. doi: 10.1016/j.tips.2017.12.004. PubMed DOI PMC

Lu W., Yang X., Zhong W., Chen G., Guo X., Ye Q., Xu Y., Qi Z., Ye Y., Zhang J., et al. METTL14-Mediated m6A Epitranscriptomic Modification Contributes to Chemotherapy-Induced Neuropathic Pain by Stabilizing GluN2A Expression via IGF2BP2. J. Clin. Investig. 2024;134:e174847. doi: 10.1172/JCI174847. PubMed DOI PMC

Fang X., Li M., Yu T., Liu G., Wang J. Reversible N6-Methyladenosine of RNA: The Regulatory Mechanisms on Gene Expression and Implications in Physiology and Pathology. Genes Dis. 2020;7:585–597. doi: 10.1016/j.gendis.2020.06.011. PubMed DOI PMC

Christie M.J. Cellular Neuroadaptations to Chronic Opioids: Tolerance, Withdrawal and Addiction. Br. J. Pharmacol. 2008;154:384–396. doi: 10.1038/bjp.2008.100. PubMed DOI PMC

Moreno-Rius J. Opioid Addiction and the Cerebellum. Neurosci. Biobehav. Rev. 2019;107:238–251. doi: 10.1016/j.neubiorev.2019.09.015. PubMed DOI

Rio D.C., Ares M., Hannon G.J., Nilsen T.W. Purification of RNA Using TRIzol (TRI Reagent) Cold Spring Harb. Protoc. 2010;2010:pdb.prot5439. doi: 10.1101/pdb.prot5439. PubMed DOI

Walker J.M. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. Meth. Mol. Biol. 1994;32:5–8. PubMed

Hejnova L., Hronova A., Drastichova Z., Novotny J. Long-Term Administration of Morphine Specifically Alters the Level of Protein Expression in Different Brain Regions and Affects the Redox State. Open Life Sci. 2024;19:20220858. doi: 10.1515/biol-2022-0858. PubMed DOI PMC

Ihnatovych I., Hejnová L., Kostrnová A., Mares P., Svoboda P., Novotný J. Maturation of Rat Brain Is Accompanied by Differential Expression of the Long and Short Splice Variants of G(s)Alpha Protein: Identification of Cytosolic Forms of G(s)Alpha. J. Neurochem. 2001;79:88–97. doi: 10.1046/j.1471-4159.2001.00544.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...