Modulation of adenylyl cyclase activity in young and adult rat brain cortex. Identification of suramin as a direct inhibitor of adenylyl cyclase
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16364201
PubMed Central
PMC6740082
DOI
10.1111/j.1582-4934.2005.tb00390.x
PII: 009.004.14
Knihovny.cz E-zdroje
- MeSH
- adenylátcyklasy chemie metabolismus MeSH
- buněčná membrána metabolismus MeSH
- časové faktory MeSH
- dithiothreitol farmakologie MeSH
- fluoridy farmakologie MeSH
- fosforylace MeSH
- guanosin 5'-O-(3-thiotrifosfát) metabolismus MeSH
- inhibitory adenylylcyklasy * MeSH
- kolforsin farmakologie MeSH
- krysa rodu Rattus MeSH
- kyselina askorbová chemie farmakologie MeSH
- mangan farmakologie MeSH
- mozek enzymologie metabolismus MeSH
- mozková kůra enzymologie metabolismus MeSH
- peroxidace lipidů MeSH
- potkani Wistar MeSH
- proteinkinasa C metabolismus MeSH
- sloučeniny hliníku farmakologie MeSH
- stárnutí * MeSH
- suramin chemie metabolismus farmakologie MeSH
- tyrosinkinasy metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- železo chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasy MeSH
- aluminum fluoride MeSH Prohlížeč
- dithiothreitol MeSH
- fluoridy MeSH
- guanosin 5'-O-(3-thiotrifosfát) MeSH
- inhibitory adenylylcyklasy * MeSH
- kolforsin MeSH
- kyselina askorbová MeSH
- mangan MeSH
- proteinkinasa C MeSH
- sloučeniny hliníku MeSH
- suramin MeSH
- tyrosinkinasy MeSH
- železo MeSH
Adenylyl cyclase (AC) in brain cortex from young (12-day-old) rats exhibits markedly higher activity than in adult (90-day-old) animals. In order to find some possibly different regulatory features of AC in these two age groups, here we modulated AC activity by dithiothreitol (DTT), Fe(2+), ascorbic acid and suramin. We did not detect any substantial difference between the effects of all these tested agents on AC activity in cerebrocortical membranes from young and adult rats, and the enzyme activity was always about two-fold higher in the former preparations. Nevertheless, several interesting findings have come out of these investigations. Whereas forskolin- and Mn(2+)-stimulated AC activity was significantly enhanced by the addition of DTT, increased concentrations of Fe(2+) ions or ascorbic acid substantially suppressed the enzyme activity. Lipid peroxidation induced by suitable combinations of DTT/Fe(2+) or by ascorbic acid did not influence AC activity. We have also observed that PKC- or protein tyrosine kinase-mediated phosphorylation apparently does not play any significant role in different activity of AC determined in cerebrocortical preparations from young and adult rats. Our experiments analysing the presumed modulatory role of suramin revealed that this pharmacologically important drug may act as a direct inhibitor of AC. The enzyme activity was diminished to the same extent by suramin in membranes from both tested age groups. Our present data show that AC is regulated similarly in brain cortex from both young and adult rats, but its overall activity is much lower in adulthood.
Zobrazit více v PubMed
Mons, N , Cooper, DM . Adenylate cyclases: critical foci in neuronal signaling. Trends Neurosci. 1995; 18: 536–42. PubMed
Herrero, I , Sanchez‐Prieto, J . cAMP‐dependent facilitation of glutamate release by β‐adrenergic receptors in cerebrocortical nerve terminals. J Biol Chem. 1996; 271: 30554–60. PubMed
Dohovics, R , Janaky, R , Varga, V , Hermann, A , Saransaari, P , Oja, SS . Regulation of glutamatergic neurotransmission in the striatum by presynaptic adenylyl cyclase‐dependent processes. Neurochem Int. 2003; 42: 1–7. PubMed
Hurley, JH . Structure, mechanism, and regulation of mammalian adenylyl cyclase. J Biol Chem. 1999; 274: 7599–602. PubMed
Patel, TB , Du, Z , Pierre, S , Cartin, L , Scholich, K . Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 2001; 269: 13–25. PubMed
Mons, N , Harry, A , Dubourg, P , Premont, RT , Iyengar, R , Cooper, DM . Immunohistochemical localization of adenylyl cyclase in rat brain indicates a highly selective concentration at synapses. Proc Natl Acad Sci USA. 1995; 92: 8473–7. PubMed PMC
Matsuoka, I , Suzuki, Y , de Fer, N , Nakanishi, H , Hanoune, J . Differential expression of type I, II, and V adenylyl cyclase gene in the postnatal developing rat brain. J Neurochem. 1997; 68: 498–506. PubMed
Levitzki, A , Bar‐Sinai, A . The regulation of adenylyl cyclase by receptor‐operated G proteins. Pharmacol Ther. 1991; 50: 271–83. PubMed
Simonds, WF . G protein regualtion of adenylate cyclase. Trends Pharmacol Sci. 1999; 20: 66–73. PubMed
Hanoune, J , de Fer, N . Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol. 2001; 41: 145–74. PubMed
de Saubry, L , Shoshani, I , Johnson, RA . Inhibition of adenylyl cyclase by a family of newly synthesized adenine nucleoside 3′‐polyphosphates. J Biol Chem. 1996; 271: 14028–34. PubMed
Premont, RT , Matsuoka, I , Mattei, MG , Pouille, Y , de Fer, N , Hanoune, J . Identification and characterization of a widely expressed form of adenylyl cyclase. J Biol Chem. 1996; 271: 13900–7. PubMed
Ihnatovych, I , Novotny, J , Haugvicova, R , Bourova, L , Mares, P , Svoboda, P . Ontogenetic development of the G protein‐mediated adenylyl cyclase signalling in rat brain. Brain Res Dev Brain Res. 2002; 133: 69–75. PubMed
Harden, TK , Wolfe, BB , Sporn, JR , Perkins, JP , Molinoff, PB . Ontogeny of β‐adrenergic receptors in rat cerebral cortex. Brain Res. 1977; 125: 99–108. PubMed
Keshles, O , Levitzki, A . The ontogenesis of β‐adrenergic receptors and of adenylate cyclase in the developing rat brain. Biochem Pharmacol. 1984; 33: 3231–3. PubMed
Rius, RA , Streaty, RA , Peng Loh, Y , Klee, WA . Developmental expression of G proteins that differentially modulate adenylyl cyclase activity in mouse brain. FEBS Lett. 1991; 288: 51–4. PubMed
White, AA . Separation and purification of cyclic nucleotides by alumina column chromatography. Methods Enzymol. 1974; 38: 41–6. PubMed
Baba, A , Lee, E , Ohta, A , Tatsuno, T , Iwata, H . Activation of adenylate cyclase of rat brain by lipid peroxidation. J Biol Chem. 1981; 256: 3679–84. PubMed
Baba, A , Kihara, T , Lee, E , Iwata, H . Activation of rat brain adenylate cyclase by copper plus dithiothreitol. Biochem Pharmacol. 1981; 30: 171–4. PubMed
Oyama, M , Kubota, K . Inhibition by EDTA and enhancement by divalent cations or polyamines of the dithiothreitol‐induced activation of adenylate cyclase in the cellular slime mold, Dictyostelium discoideum. Biochim Biophys Acta 1991; 1092: 85–8. PubMed
Schimke, I , Haberland, A , Will‐Shahab, L , Kuttner, I , Papies, B . Free radical‐induced damage of cardiac sarcolemma (SL) and activity loss of β‐receptor adenylate cyclase system (β‐RAS). A comparison of the time courses. Biomed Biochim Acta 1989; 48: S69–72. PubMed
Schimke, I , Haberland, A , Will‐Shahab, L , Kuttner, I , Papies, B . in vitro effects of reactive O2 species on the beta‐receptor‐adenylyl cyclase system. Mol Cell Biochem. 1992; 110: 41–6. PubMed
Butler, SJ , Kelly, EC , McKenzie, FR , Guild, SB , Wakelam, MJ , Milligan, G . Differential effects of suramin on the coupling of receptors to individual species of pertussis‐toxin‐sensitive guanine‐nucleotide‐binding protenins. Biochem J. 1988; 251: 201–5. PubMed PMC
Freissmuth, M , Boehm, S , Beindl, W , Nickel, P , Ijzerman, AP , Hohenegger, M , Nanoff, C . Suramin analogues as subtype‐selective G protein inhibitors. Mol Pharmacol. 1996; 49: 602–11. PubMed
Beindl, W , Mitterauer, T , Hohenegger, M , Ijzerman, AP , Nanoff, C , Freissmuth, M . Inhibition of receptor/G protein coupling by suramin analogues. Mol Pharmacol. 1996; 50: 415–23. PubMed
Ross, EM , Howlett, AC , Ferguson, KM , Gilman, AG . Reconstitution of hormone‐sensitive adenylate cyclase activity with resolved components of the enzyme. J Biol Chem. 1978; 253: 6401–12. PubMed
Tan, CM , Kelvin, DJ , Litchfield, DW , Ferguson, SS , Feldman, RD . Tyrosine kinase‐mediated serine phosphorylation of adenylyl cyclase. Biochemistry 2001; 40: 1702–9. PubMed
El‐Mowafy, AM , White, RE . Evidence for a tyrosine kinase‐dependent activation of the adenylyl Cyclase/PKA cascade downstream from the G‐protein‐linked endothelin ETA receptor in vascular smooth muscle. Biochem Biophys Res Commun. 1998; 251: 494–500. PubMed
Patrizio, M , Slepko, N , Levi, G . Opposite regulation of adenylyl cyclase by protein kinase C in astrocyte and microglia cultures. J Neurochem. 1997; 69: 1267–77. PubMed
Tan, CM , McDonald, CG , Chorazyczewski, J , Burry, AF , Feldman, RD , Macdonald, CJ . Vanadate stimulation of adenylyl cyclase: an index of tyrosine kinase vascular effects. Clin Pharmacol Ther. 1999; 66: 275–81. PubMed
Suen, ET , Kwan, PC , Clement‐Cormier, YC . Selective effects of an essential sulfhydryl group on the activation of dopamine‐ and guanine nucleotide‐sensitive adenylate cyclase. Mol Pharmacol. 1982; 22: 595–601. PubMed
Ozawa, Y , Chopra, IJ , Solomon, DH , Smith, F . The role of sulfhydryl groups in thyrotropin binding and adenylate cyclase activities of thyroid plasma membranes. Endocrinology 1979; 105: 1221–5. PubMed
Skurat, AV , Yurkova, MS , Baranova, LA , Gulyaev, NN , Bulargina, TV , Severin, ES . Evidence for the existence of a sulfhydryl group in the adenylate cyclase active site. Biochem Int. 1985; 10:451–61. PubMed
Lin, MC , Cooper, DM , Rodbell, M . Selective effects of organic mercurials on the GTP‐regulatory proteins of adenylate cyclase systems. J Biol Chem. 1980; 255: 7250–4. PubMed
Murphy, MG . Membrane fatty acids, lipid peroxidation and adenylate cyclase activity in cultured neural cells. Biochem Biophys Res Commun. 1985; 132:757–63. PubMed
Murphy, MG . Studies of the regulation of basal adenylate cyclase activity by membrane polyunsaturated fatty acids in cultured neuroblastoma. J Neurochem. 1986; 47: 245–53. PubMed
Shin, Y , White, BH , Uh, M , Sidhu, A . Modulation of D1‐like dopamine receptor function by aldehydic products of lipid peroxidation. Brain Res. 2003; 968:102–13. PubMed
Coffey, RJ Jr , Leof, EB , Shipley, GD , Moses, HL . Suramin inhibition of growth factor receptor binding and mitogenicity in AKR‐2B cells. J Cell Physiol. 1987; 132: 143–8. PubMed
Mills, GB , Zhang, N , May, C , Hill, M , Chung, A . Suramin prevents binding of interleukin 2 to its cell surface receptor: a possible mechanism for immunosuppression. Cancer Res. 1990; 50:3036–42. PubMed
Minniti, CP , Maggi, M , Helman, LJ . Suramin inhibits the growth of human rhabdomyosarcoma by interrupting the insulin‐like growth factor II autocrine growth loop. Cancer Res. 1992; 52:1830–5. PubMed
Hensey, CE , Boscoboinik, D , Azzi, A . Suramin, an anticancer drug, inhibits protein kinase C and induces differentiation in neuroblastoma cell clone NB2A. FEBS Lett. 1989; 258: 156–8. PubMed
Mahoney, CW , Azzi, A , Huang, KP . Effects of suramin, an anti‐human immunodeficiency virus reverse transcriptase agent, on protein kinase C. Differential activation and inhibition of protein kinase C isozymes. J Biol Chem. 1990; 265: 5424–8. PubMed
Kopp, R , Pfeiffer, A . Suramin alters phosphoinositide synthesis and inhibits growth factor receptor binding in HT‐29 cells. Cancer Res. 1990; 50: 6490–6. PubMed
Schulze‐Lohoff, E , Bitzer, M , Ogilvie, A , Sterzel, RB . P2U‐purinergic receptor activation mediates inhibition of cAMP accumulation in cultured renal mesangial cells. Ren Physiol Biochem. 1995; 18:219–30. PubMed
Hall, DA , Hourani, SM . Effects of suramin on increases in cytosolic calcium and on inhibition of adenylate cyclase induced by adenosine 5′‐diphosphate in human platelets. Biochem Pharmacol. 1994; 47: 1013–8. PubMed
Lopez‐Lopez, R , Langeveld, CH , Pizao, PE , van Rijswijk, RE , Wagstaff, J , Pinedo, HM , Peters, GJ . Effect of suramin on adenylate cyclase and protein kinase C. Anticancer Drug Des. 1994; 9: 279–90. PubMed
Jacobowitz, O , Iyengar, R . Phorbol ester‐induced stimulation and phosphorylation of adenylyl cyclase 2. Proc Natl Acad Sci USA. 1994; 91:10630–4. PubMed PMC
Watson, PA , Krupinski, J , Kempinski, AM , Frankenfield, CD . Molecular cloning and characterization of the type VII isoform of mammalian adenylyl cyclase expressed widely in mouse tissues and in S49 mouse lymphoma cells. J Biol Chem. 1994; 269: 28893–8. PubMed
Zimmermann, G , Taussig, R . Protein kinase C alters the responsiveness of adenylyl cyclases to G protein alpha and betagamma subunits. J Biol Chem. 1996; 271: 27161–6. PubMed
Lai, HL , Lin, TH , Kao, YY , Lin, WJ , Hwang, MJ , Chern, Y . The N terminus domain of type VI adenylyl cyclase mediates its inhibition by protein kinase C . Mol Pharmacol. 1999; 56: 644–50. PubMed
Kawabe, J , Iwami, G , Ebina, T , Ohno, S , Katada, T , Ueda, Y , Homcy, CJ , Ishikawa, Y . Differential activation of adenylyl cyclase by protein kinase C isoenzymes. J Biol Chem. 1994: 269: 16554–8. PubMed
Jacobowtiz, O , Chen, J , Premount, RT , Iyengar, R . Stimulation of specific types of Gs‐stimulated adenylyl cyclases by phorbol ester treatment. J Biol Chem. 1993; 268: 3829–32. PubMed
Hadcock, JR , Port, JD , Gelman, MS , Malbon, CC . Crosstalk between tyrosine kinase and G‐protien‐linked receptors. Phosphorylation of β2‐adrenergic receptors in response to insulin. J Biol Chem. 1992; 267: 26017–22. PubMed
Valiquette, M , Parent, S , Loise, TP , Bouvier, M . Mutation of tyrosine‐141 inhibits insulin‐promoted tyrosine phosphorylation and increased responsivencess of the human β 2‐adrenergic receptor. EMBO J. 1995; 14: 5542–9. PubMed PMC
Ihnatovych, I , Novotny, J , Haugvicova, R , Bourova, L , Mares, P , Svoboda, P . Opposing changes of trimeric G protein levles during ontogenetic development of rat brain. Brain Res Dev Brain Res. 2002; 133:57–67. PubMed
Stöhr, J , Novotny, J , Svoboda, P . Characterization of [3H]forskolin binding sites in young and adult rat brain cortex. Identification of suramin as a competitive inhibitor of [3H]forskolin binding. Can J Physiol Pharmaocl. 2005; 83: 573–81. PubMed
Summers, ST , Walker, JM , Sando, JJ , Cronin, MJ . Phorbol esters increase adenylate cyclase activity and stability in pituitary membranes. Biochem Biophys Res Commun. 1988; 151: 16–24. PubMed
Mikalsen, SO , Kaalhus, O . A characterization of pervanadate, an inducer of cellular tyrosine phosphorylation and inhibitor of gap junctional intercellular communication. Biochim Biophys Acta 1996; 1290: 308–18. PubMed