Proteomic analysis of protein composition of rat hippocampus exposed to morphine for 10 days; comparison with animals after 20 days of morphine withdrawal
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32294144
PubMed Central
PMC7159219
DOI
10.1371/journal.pone.0231721
PII: PONE-D-19-31462
Knihovny.cz E-zdroje
- MeSH
- abstinenční syndrom patologie MeSH
- časové faktory MeSH
- hipokampus účinky léků patologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- morfin škodlivé účinky MeSH
- mozková kůra účinky léků patologie MeSH
- opioidní analgetika škodlivé účinky MeSH
- poruchy spojené s užíváním opiátů patologie MeSH
- potkani Wistar MeSH
- proteomika MeSH
- regulace genové exprese účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- morfin MeSH
- opioidní analgetika MeSH
Opioid addiction is recognized as a chronic relapsing brain disease resulting from repeated exposure to opioid drugs. Cellular and molecular mechanisms underlying the ability of organism to return back to the physiological norm after cessation of drug supply are not fully understood. The aim of this work was to extend our previous studies of morphine-induced alteration of rat forebrain cortex protein composition to the hippocampus. Rats were exposed to morphine for 10 days and sacrificed 24 h (groups +M10 and -M10) or 20 days after the last dose of morphine (groups +M10/-M20 and -M10/-M20). The six altered proteins (≥2-fold) were identified in group (+M10) when compared with group (-M10) by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). The number of differentially expressed proteins was increased to thirteen after 20 days of the drug withdrawal. Noticeably, the altered level of α-synuclein, β-synuclein, α-enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was also determined in both (±M10) and (±M10/-M20) samples of hippocampus. Immunoblot analysis of 2D gels by specific antibodies oriented against α/β-synucleins and GAPDH confirmed the data obtained by 2D-DIGE analysis. Label-free quantification identified nineteen differentially expressed proteins in group (+M10) when compared with group (-M10). After 20 days of morphine withdrawal (±M10/-M20), the number of altered proteins was increased to twenty. We conclude that the morphine-induced alteration of protein composition in rat hippocampus after cessation of drug supply proceeds in a different manner when compared with the forebrain cortex. In forebrain cortex, the total number of altered proteins was decreased after 20 days without morphine, whilst in hippocampus, it was increased.
Zobrazit více v PubMed
Kosten TR, George TP. The neurobiology of opiod dependence: implications for treatment. Sci Pract Perspect.2002;1:13–20. 10.1151/spp021113 PubMed DOI PMC
Kosten TR, Baxter LE. Review Article: effective management of opioid withdrawal symptoms: A gateway to opioid dependence treatment. Am J Addict.2019;28:55–62. 10.1111/ajad.12862 PubMed DOI PMC
Sim LJ, Selley DE, Dworkin SI, Childers SR. Effects of chronic morphine administration on mu opioid receptor-stimulated [35S] GTPgammaS autoradiography in rat brain. J Neurosci.1996;16:2684–2692. 10.1523/JNEUROSCI.16-08-02684.1996 PubMed DOI PMC
Sim-Selley LJ, Selley DE, Vogt LJ, Childers SR, Martin TJ. Chronic heroin self-administration desensitizes mu opioid receptor-activated G-proteins in specific regions of rat brain. J Neurosci.2000;20:4555–4562. 10.1523/JNEUROSCI.20-12-04555.2000 PubMed DOI PMC
Maher CE, Martin TJ, Childers SR. Mechanisms of mu opioid receptor/G-protein desensitization in brain by chronic heroin administration. Life Sci.2005;77:1140–1154. 10.1016/j.lfs.2005.03.004 PubMed DOI
Bourova L, Vosahlikova M, Kagan D, Dlouha K, Novotny J, Svoboda P. Long-term adaptation to high doses of morphine causes desensitization of μ-OR- and δ-OR-stimulated G-protein response in forebrain cortex but does not decrease the amount of G-protein alpha subunit. Med Sci Monit.2010;16:260–270. PubMed
Berger AC, Whister JL. How to design an opioid drug that causes reduced tolerance and dependence. Ann Neurol.2010;67:559–569. 10.1002/ana.22002 PubMed DOI PMC
Ujcikova H, Dlouha K, Roubalova L, Vosahlikova M, Kagan D, Svoboda P. Up-regulation of adenylylcyclases I and II induced by long-term adaptation of rats to morphine fades away 20 days after morphine withdrawal. Biochim Biophys Acta.2011;1810:1220–1229. 10.1016/j.bbagen.2011.09.017 PubMed DOI
Ujcikova H, Brejchova J, Vosahlikova M, Kagan D, Dlouha K, Sykora J et al. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure. Physiol Res. 2014a; 63(Suppl 1):S165–176. PubMed
Ujcikova H, Vosahlikova M, Roubalova L, Svoboda P. Proteomic analysis of protein composition of rat forebrain cortex exposed to morphine for 10 days; comparison with animals exposed to morphine and subsequently nurtured for 20 days in the absence of this drug. J Proteomics.2016;145:11–23. 10.1016/j.jprot.2016.02.019 PubMed DOI
Morón JA, Abul-Husn NS, Rozenfeld R, Dolios G, Wang R, Devi LA. Morphine administration alters the profile of hippocampal postsynaptic density-associated proteins. Mol Cell Proteomics.2007;6:29–42. 10.1074/mcp.M600184-MCP200 PubMed DOI
Mattei V, Martellucci S, Santilli F, Manganelli V, Garofalo T, Candelise N et al. Morphine withdrawal modifies prion protein expression in rat hippocampus. PloS One.2017;12:e0169571 10.1371/journal.pone.0169571 PubMed DOI PMC
Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem.2016;23:515–533. 10.1101/lm.042192.116 PubMed DOI PMC
Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci.2000;20:9104–9110. 10.1523/JNEUROSCI.20-24-09104.2000 PubMed DOI PMC
Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Popovska V et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell.2018;22:589–599. 10.1016/j.stem.2018.03.015 PubMed DOI PMC
Eriksson PS, Perfilieva E, Bjӧrk-Eriksson T, Alborn AM, Nordborg C, Peterson DA et al. Neurogenesis in the adult human hippocampus. Nat Med.1998;4:1313–1317. 10.1038/3305 PubMed DOI
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J et al. Neurogenesis in the striatum of the adult human brain. Cell.2014;156:1072–1083. 10.1016/j.cell.2014.01.044 PubMed DOI
Ponti G, Peretto P, Bonfanti L. Genesis of neuronal and glial progenitors in the cerebrall cortex of peripuberal and adult rabbits. PloS One.2008;3:e2366 10.1371/journal.pone.0002366 PubMed DOI PMC
Tannu NS, Hemby SE. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc.2006;1:1732–1742. 10.1038/nprot.2006.256 PubMed DOI PMC
Jágr M, Eckhardt A, Pataridis S, Foltan R, Mysak J, Miksik I. Proteomic analysis of human tooth pulp proteomes–comparison of caries-resistant and caries-susceptible persons. J Proteomics.2016;145:127–136. 10.1016/j.jprot.2016.04.022 PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Moll Cell Proteomics.2014;13:2513–2526. PubMed PMC
Ujcikova H, Eckhardt A, Kagan D, Roubalova L, Svoboda P. Proteomic analysis of post-nuclear supernatant and percoll-purified membranes prepared from brain cortex of rats exposed to increasing doses of morphine. Proteome Sci. 2014b;12:11. PubMed PMC
Fountoulakis M, Takács MF, Berndt P, Langen H, Takács B. Enrichment of low abundance proteins of Escherichia coli by hydroxyapatite chromatography. Electrophoresis.1999;20:2181–2195. 10.1002/(SICI)1522-2683(19990801)20:11<2181::AID-ELPS2181>3.0.CO;2-Q PubMed DOI
Ujcikova H, Hlouskova M, Cechova K, Stolarova K, Roubalova L, Svoboda P. Determination of μ-, δ- and κ-opioid receptors in forebrain cortex of rats exposed to morphine for 10 days: Comparison with animals after 20 days of morphine withdrawal. PloS One.2017; 12:e0186797 10.1371/journal.pone.0186797 PubMed DOI PMC
Person MD, Shen J, Traner A, Hensley SC, Lo HH, Abbruzzese JL et al. Protein fragment domains identified using 2D gel electrophoresis/MALDI-TOF. J Biomol Tech.2006;17:145–156. PubMed PMC
Moravcova Z, Rudajev V, Stohr J, Novotny J, Cerny J, Matousek P et al. Long-term agonist stimulation of IP prostanoid receptor depletes the cognate Gsα protein from membrane domains but does not affect the receptor level. Biochim Biophys Acta.2004;1691:51–65. 10.1016/j.bbamcr.2003.12.004 PubMed DOI
Rudajev V, Novotny J, Hejnova L, Milligan G, Svoboda P. Thyrotropin-releasing hormone receptor is excluded from lipid domains. Detergent-resistant and detergent-sensitive pools of TRH receptor and Gqα/G11α protein. J Biochem.2005;138:111–125. PubMed
Stefanis L. Alpha-synuclein in Parkinson´s disease. Cold Spring Harb Percpect Med.2012; 2(2):a009399. PubMed PMC
Bendor J, Logan T, Edwards RH. The function of α-synuclein. Neuron.2013;79:1044–1066 10.1016/j.neuron.2013.09.004 PubMed DOI PMC
Taguchi K, Watanabe Y, Tsujimura A, Tatebe H, Miyata S, Tokuda T et al. Differential expression of alpha-synuclein in hippocampal neurons. PLoS One.2014;9(2):e89327 10.1371/journal.pone.0089327 PubMed DOI PMC
Taguchi K, Watanabe Y, Tsujimura A, Tanaka M. Brain region-dependent differential expression of alpha-synuclein. J Comp Neurol.2016;524:1236–1258. 10.1002/cne.23901 PubMed DOI
Monti B, Polazzi E, Batti L, Crochemore C, Virgili M, Contestabile A. Alpha-synuclein protects cerebellar granule neurons against 6-hydroxydopamine-induced death. J Neurochem.2007;103:518–530. 10.1111/j.1471-4159.2007.04778.x PubMed DOI
Ziolkowska B, Gieryk A, Bilecki W, Wawrzcak-Bargiela A, Wedzony K, Chocyk A et al. Regulation of α-synuclein expression in limbic and motor brain regions of morphine-treated rats. J Neurosci.2005;25:4996–5003. 10.1523/JNEUROSCI.4376-04.2005 PubMed DOI PMC
da Costa CA, Masliah E, Checler F. β-synulein displays an antiapoptotic p53-dependent phenotype and protects neurons from 6-hydroxydopamine-induced caspase 3 activation. J Biol Chem.2003;278:37330–37335. 10.1074/jbc.M306083200 PubMed DOI
Antolak A, Bodzon-Kułakowska A, Cetnarska E, Pietruszka M, Marszałek-Grabska M, Kotlińska J et al. Proteomic data in morphine addiction versus real protein activity: metabolic enzymes. J Cell Biochem.2017;118:4323–4330. 10.1002/jcb.26085 PubMed DOI
Kim SY, Chudapongse N, Lee SM, Levin MC, Oh JT, Park HJ et al. Proteomics analysis of phosphotyrosyl proteins in morphine-dependent rat brains. Brain Res Mol Brain Res.2005;133:58–70. 10.1016/j.molbrainres.2004.09.018 PubMed DOI
Huang Q, Lan F, Zheng Z, Xie F, Han J, Dong L et al. AKT2 kinase suppresses glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mediated-apoptosis in ovarian cancer via phosphorylating GAPDH at threonine 237 and decreasing its nuclear translocation. J Biol Chem.2011;286:42211–42220. 10.1074/jbc.M111.296905 PubMed DOI PMC
Tristan C, Shahani N, Sedlak TW, Sawa A. The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal.2011;23:317–323. 10.1016/j.cellsig.2010.08.003 PubMed DOI PMC
Li T, Liu M, Feng X, Wang Z, Das I, Xu Y et al. Glyceraldehyde-3-phosphate is activated by lysine 254 acetylation in response to glucose signal. J Biol Chem.2014;289:3775–3785. 10.1074/jbc.M113.531640 PubMed DOI PMC
Kunjithapatham R, Geschwind JF, Devine L, Boronina TN, O’Meally RN, Cole RN et al. Occurence of a multimer high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum. J Proteome Res.2015;14:1645–1656. 10.1021/acs.jproteome.5b00089 PubMed DOI PMC
Chuang DM, Hough C, Senatorov VV. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol.2005;45:269–290. 10.1146/annurev.pharmtox.45.120403.095902 PubMed DOI
Bell RAV, Smith JC, Storey KB. Purification and properties of glyceraldehyde-3-phosphate dehydrogenase from the skeletal muscle of the hibernating ground squirrel, Ictidomys tridecemlineatus. PeerJ.2014;2:e634 10.7717/peerj.634 PubMed DOI PMC
Hwang NR, Yim SH, Kim YM, Jeong J, Song EJ, Lee Y et al. Oxidative modifications of glyceraldehyde-3-phophate dehydrogenase play a key role in its multiple cellular functions. Biochem J.2009;423:253–264. 10.1042/BJ20090854 PubMed DOI
Chen XL, Lu G, Gong YX, Zhao LC, Chen J, Chi ZQ et al. Expression changes of hippocampal energy metabolism enzymes contribute to behavioral abnormalities during chronic morphine treatment. Cell Res.2007;17:689–700. 10.1038/cr.2007.63 PubMed DOI
Jiang X, Li J, Ma L. Metabolic enzymes link morphine withdrawal with metabolic disorder. Cell Res.2007;17:741–743. 10.1038/cr.2007.75 PubMed DOI
Díaz-Ramos A, Borrellas AR, García-Melero A, López-Alemany R. α-enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol.2012; 2012:156795 10.1155/2012/156795 PubMed DOI PMC
Bodzon-Kułakowska A, Suder P, Mak P, Bierczynska-Krzysik A, Lubec G, Walczak B et al. Proteomic analysis of striatal neuronal cell cultures after morphine administration. J Sep Sci.2009;32:1200–1210. 10.1002/jssc.200800464 PubMed DOI
Bierczynska-Krzysik A, Pradeep John JP, Silberring J, Kotlinska J, Dylag T, Cabatic M et al. Proteomic analysis of rat cerebral cortex, hippocampus and striatum after exposure to morphine. Int J Mol Med.2006;18:775–784. PubMed
Marie-Claire C, Courtin C, Roques BP, Noble F. Cytoskeletal genes regulation by chronic morphine treatment in rat striatum. Neuropsychopharmacology.2004;29:2208–2215. 10.1038/sj.npp.1300513 PubMed DOI
Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM. OS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev.2013;2013:963520 10.1155/2013/963520 PubMed DOI PMC
Skrabalova J, Drastichova Z, Novotny J. Morphine as a potential oxidative stress-causing agent. Mini Rev Org Chem.2013;10:367–372. 10.2174/1570193X113106660031 PubMed DOI PMC
Payabvash S, Behehstian A, Salmazi AH, Kihumehr S, Ghahremani MH, Tavangar SM et al. Chronic morphine treatment induces oxidant and apoptotic damage in the mice liver. Life Sci.2006;79:972–980. 10.1016/j.lfs.2006.05.008 PubMed DOI
Ma J, Yuan X, Qu H, Zhang J, Wang D, Sun X et al. The role of reactive oxygen species in morphine addiction of SH-SY5Y cells. Life Sci.2015;124:128–135. 10.1016/j.lfs.2015.01.003 PubMed DOI
Xu NJ, Bao L, Fan HP, Bao GB, Pu L, Lu YJ et al. Morphine withdrawal increases glutamate uptake and surface expression of glutamate transporter GLT1 at hippocampal synapses. J Neurosci.2003;23:4775–4784. 10.1523/JNEUROSCI.23-11-04775.2003 PubMed DOI PMC
Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ. Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci U S A.2000;97:7579–7584. 10.1073/pnas.120552597 PubMed DOI PMC
Liao D, Lin H, Law PY, Loh HH. Mu-opioid receptors modulate the stability of dendritic spines. Proc Natl Acad Sci U S A.2005;102:1725–1730. 10.1073/pnas.0406797102 PubMed DOI PMC
Mansouri FA, Motamedi F, Fathollahi Y, Atapour N, Semnanian S. Augmentation of LTP induced by primed-bursts tetanic stimulation in hippocampal CA1 area of morphine dependent rats. Brain Res.1997;769:119–124. 10.1016/s0006-8993(97)00608-2 PubMed DOI
Mansouri FA, Motamedi F, Fathollahi Y. Chronic in vivo morphine administration facilitates primed-bursts-induced long-term potentiation of Schaffer collateral-CA1 synapses in hippocampal slices in vitro. Brain Res.1999;815:419–423. 10.1016/s0006-8993(98)01148-2 PubMed DOI
Pu L, Bao GB, Xu NJ, Ma L, Pei G. Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci.2002;22:1914–1921. 10.1523/JNEUROSCI.22-05-01914.2002 PubMed DOI PMC
Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L et al. Regulation of morphine-induced synaptic alterations: role of oxidative stress, ER stress, and autophagy. J Cell Biol.2016;215:245–258. 10.1083/jcb.201605065 PubMed DOI PMC
Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K. The role of α-synuclein in Parkinson´s disease: insights from animal models. Nat Rev Neurosci.2003;4:727–738. 10.1038/nrn1199 PubMed DOI
Zhou JF, Yan XF, Ruan ZR, Peng FY, Cai D, Yuan H et al. Heroin abuse and nitric oxide, oxidation, peroxidation, lipoperoxidation. Biomed Envir Sci.2000;13:131–139. PubMed
Xu B, Wang Z, Li G, Li B, Lin H, Zheng R et al. Heroin-administered mice involved in oxidative stress and exogenous antioxidant-alleviated withdrawal syndrome. Basic Clin Pharmacol Toxicol.2006;99:153–161. 10.1111/j.1742-7843.2006.pto_461.x PubMed DOI