Cell penetration to nanofibrous scaffolds: Forcespinning®, an alternative approach for fabricating 3D nanofibers
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24429388
PubMed Central
PMC3974791
DOI
10.4161/cam.27477
PII: 27477
Knihovny.cz E-resources
- Keywords
- Forcespinning®, cell penetration, electrospinning, fibrous scaffold, mesenchymal stem cells,
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Cell infiltration is a critical parameter for the successful development of 3D matrices for tissue engineering. Application of electrospun nanofibers in tissue engineering has recently attracted much attention. Notwithstanding several of their advantages, small pore size and small thickness of the electrospun layer limit their application for development of 3D scaffolds. Several methods for the pore size and/or electrospun layer thickness increase have been recently developed. Nevertheless, tissue engineering still needs emerging of either novel nanofiber-enriched composites or new techniques for 3D nanofiber fabrication. Forcespinning(®) seems to be a promising alternative. The potential of the Forcespinning(®) method is illustrated in preliminary experiment with mesenchymal stem cells.
See more in PubMed
Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006. doi: 10.1016/j.biomaterials.2008.01.011. PubMed DOI
Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials. 2008;29:2348–58. doi: 10.1016/j.biomaterials.2008.01.032. PubMed DOI PMC
Guimarães A, Martins A, Pinho ED, Faria S, Reis RL, Neves NM. Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications. Nanomedicine (Lond) 2010;5:539–54. doi: 10.2217/nnm.10.31. PubMed DOI
Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007;13:2249–57. doi: 10.1089/ten.2006.0306. PubMed DOI PMC
Simonet M, Schneider OD, Neuenschwander P, Stark WJ. Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polym Eng Sci. 2007;47:2020–6. doi: 10.1002/pen.20914. DOI
Sundararaghavan HG, Metter RB, Burdick JA. Electrospun fibrous scaffolds with multiscale and photopatterned porosity. Macromol Biosci. 2010;10:265–70. doi: 10.1002/mabi.200900363. PubMed DOI PMC
Lee JB, Jeong SI, Bae MS, Yang DH, Heo DN, Kim CH, Alsberg E, Kwon IK. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng Part A. 2011;17:2695–702. doi: 10.1089/ten.tea.2010.0709. PubMed DOI
Milleret V, Simona B, Neuenschwander P, Hall H. Tuning electrospinning parameters for production of 3D-fiber-fleeces with increased porosity for soft tissue engineering applications. Eur Cell Mater. 2011;21:286–303. PubMed
Li D, Wang Y, Xia Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett. 2003;3:1167–71. doi: 10.1021/nl0344256. DOI
Li D, Wang Y, Xia Y. Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films. Adv Mater. 2004;16:361–6. doi: 10.1002/adma.200306226. DOI
Li D, Ouyang G, McCann JT, Xia Y. Collecting electrospun nanofibers with patterned electrodes. Nano Lett. 2005;5:913–6. doi: 10.1021/nl0504235. PubMed DOI
Zussman E. Formation of nanofiber crossbars in electrospinning. Appl Phys Lett. 2003;82:973. doi: 10.1063/1.1544060. DOI
Zhu X, Cui W, Li X, Jin Y. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules. 2008;9:1795–801. doi: 10.1021/bm800476u. PubMed DOI
Vaquette C, Cooper-White JJ. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater. 2011;7:2544–57. doi: 10.1016/j.actbio.2011.02.036. PubMed DOI
Rampichová M, Chvojka J, Buzgo M, Prosecká E, Mikeš P, Vysloužilová L, Tvrdík D, Kochová P, Gregor T, Lukáš D, et al. Elastic three-dimensional poly (ε-caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Prolif. 2013;46:23–37. doi: 10.1111/cpr.12001. PubMed DOI PMC
Han D, Gouma P-I. Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine. 2006;2:37–41. PubMed
Chen X, Fu X, Shi JG, Wang H. Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments. Nanomedicine. 2013;9:1283–92. PubMed
Shabani I, Haddadi-Asl V, Seyedjafari E, Soleimani M. Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Biochem Biophys Res Commun. 2012;423:50–4. doi: 10.1016/j.bbrc.2012.05.069. PubMed DOI
Ki CS, Park SY, Kim HJ, Jung HM, Woo KM, Lee JW, Park YH. Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnol Lett. 2008;30:405–10. doi: 10.1007/s10529-007-9581-5. PubMed DOI
Blakeney BA, Tambralli A, Anderson JM, Andukuri A, Lim DJ, Dean DR, Jun HW. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials. 2011;32:1583–90. doi: 10.1016/j.biomaterials.2010.10.056. PubMed DOI PMC
Padron S, Fuentes A, Caruntu D, Lozano K. Experimental study of nanofiber production through forcespinning. J Appl Phys. 2013;113:024318–9. doi: 10.1063/1.4769886. DOI
Dabirian F, Hosseini Ravandi SA, Pishevar AR, Abuzade RA. A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems. J Electrost. 2011;69:540–6. doi: 10.1016/j.elstat.2011.07.006. DOI
Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H, Lozano K. Electrospinning to Forcespinning™. Mater Today. 2010;13:12–4. doi: 10.1016/S1369-7021(10)70199-1. DOI