How the Supramolecular Nature of Lignohumate Affects Its Diffusion in Agarose Hydrogel

. 2020 Dec 10 ; 25 (24) : . [epub] 20201210

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33321956

Grantová podpora
LO 1211 Ministerstvo Školství, Mládeže a Tělovýchovy

Lignohumate, as an industrially produced analog of natural humic substances, is studied from the point of view of its diffusion properties. This work focuses on its permeation ability, important in agricultural and horticultural applications, connected with its penetration into plant organs as leaves and roots. The hydrogel based on agarose was used as a model material for the diffusion of lignohumate. Two types of experiments were realized: the diffusion of lignohumate in the hydrogel diffusion couple and the diffusion of lignohumate from its solution into hydrogel. The diffusion coefficient of lignohumate in the hydrogel was determined and used for the modelling of the time development of concentration profiles. It was found that the model agrees with experimental data for short times but an accumulation of lignohumate in front of the interface between donor and acceptor hydrogels was observed after several days. The particle size distribution of lignohumate and changes in the E4/E6 ratio used as an indicator of molecular weight of humic substances were determined. The results showed that the supramolecular structure of lignohumate can react sensitively to actual changes in its environs and thus affect their mobility and permeability into different materials. A filtration effect at the interface can be observed as an accompanying phenomenon of the re-arrangement in the lignohumate secondary structure.

Zobrazit více v PubMed

Novák F., Šestauberová M., Hrabal R. Structural features of lignohumic acids. J. Mol. Struct. 2015;1093:179–185. doi: 10.1016/j.molstruc.2015.03.054. DOI

Holub P., Klema K., Tuma I., Vavríková J., Surá K., Veselá B., Urban O., Záhora J. Application of organic carbon affects mineral nitrogen uptake by winter wheat and leaching in subsoil: Proximal sensing as a tool for agronomic practice. Sci. Total Environ. 2020;717:137058. doi: 10.1016/j.scitotenv.2020.137058. PubMed DOI

Vuorinen I., Hamberg L., Müller M., Seiskari P., Pennanen T. Development of growth media for solid substrate propagation of ectomycorrhiza fungi for inoculation of Norway spruce (Picea abies) seedlings. Mycorrhiza. 2015;25:311–324. doi: 10.1007/s00572-014-0611-6. PubMed DOI

Adani F., Genevini P., Zaccheo P., Zocchi G. The effect of commercial humic acid on tomato plant growth and mineral nutrition. J. Plant Nutr. 1998;21:561–575. doi: 10.1080/01904169809365424. DOI

Arancon N.Q., Edwards C.A., Bierman P., Welch C., Metzger J.D. Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresour. Technol. 2004;93:145–153. doi: 10.1016/j.biortech.2003.10.014. PubMed DOI

Arancon N.Q., Edwards C.A., Bierman P., Metzger J.D., Lucht C. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia. 2005;49:297–306. doi: 10.1016/j.pedobi.2005.02.001. DOI

Arancon N.Q., Edwards C.A., Bierman P. Influences of vermicomposts on field strawberries: 2. Effects on soil microbiological and chemical properties. Bioresour. Technol. 2006;97:831–840. doi: 10.1016/j.biortech.2005.04.016. PubMed DOI

Smilková M., Smilek J., Kalina M., Sedláček P., Pekař M., Klučáková M. A simple technique for assessing of the cuticular diffusion of humic acid biostimulants. Plant Methods. 2019;15:83. doi: 10.1186/s13007-019-0469-x. PubMed DOI PMC

Pozdnyakov L.A., Stepanov A.L., Gasanov M.E., Semenov M.V., Yakimenko O.S., Suada I.K., Rai I.N., Shchegolkova N.M. Effect of lignohumate on soil biological activity on the Bali Island, Indonesia. Eurasian Soil Sci. 2020;53:653–656. doi: 10.1134/S1064229320050117. DOI

Vialykh E.A., Salahub D.R., Achari G. Metal ion binding by humic substances as emergent functions of labile supramolecular assemblies. Environ. Chem. 2020;17:252–265. doi: 10.1071/EN19198. DOI

Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810–832. doi: 10.1097/00010694-200111000-00007. DOI

Alvarez-Puebla R.A., Valenzuela-Calahorro C., Garrido J.J. Theoretical study on fulvic acid structure, conformation and aggregation: A molecular modelling approach. Sci. Total Environ. 2006;358:243–254. doi: 10.1016/j.scitotenv.2004.11.026. PubMed DOI

Klučáková M., Věžníková K. The role of concentration and solvent character in the molecular organization of humic acids. Molecules. 2016;21:1410. doi: 10.3390/molecules21111410. PubMed DOI PMC

Klučáková M., Smilek J., Sedláček P. How humic acids affect the rheological and transport properties of hydrogels. Molecules. 2019;24:1545. doi: 10.3390/molecules24081545. PubMed DOI PMC

Christl I., Metzger A., Heidmann I., Kretzschmar R. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environ. Sci. Technol. 2005;39:5319–5326. doi: 10.1021/es050018f. PubMed DOI

Conte P., Piccolo A. Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environ. Sci. Technol. 1999;33:1682–1690. doi: 10.1021/es9808604. DOI

Picollo A., Nardi S., Concheri G. Micelle-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere. 1996;33:595–602. doi: 10.1016/0045-6535(96)00210-X. PubMed DOI

Simpson A.J., Kingery W.L., Hayes M.H.B., Spraul M., Humpfer E., Dvortsak P., Kerssebaum R., Godejohann M., Hofman M. Molecular structure and associations of humic substances in the terrestrial environment. Naturwissenschaften. 2002;89:84–88. doi: 10.1007/s00114-001-0293-8. PubMed DOI

Simpson A.J. Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy. Magn. Reson. Chem. 2002;40:S72–S82. doi: 10.1002/mrc.1106. DOI

Tarasevich Y.I., Dolenko S.A., Trifonova M.Y., Alexeenko E.Y. Association and colloid-chemical properties of humic acids in aqueous solutions. Colloid J. 2013;75:207–213. doi: 10.1134/S1061933X13020166. DOI

Baalousha M., Motelica-Heino M., Galaup S., LeCoustumer P. Supramolecular structure of humic acids by TEM with improved sample preparation and staining. Microsc. Res. Tech. 2005;66:299–306. doi: 10.1002/jemt.20173. PubMed DOI

Fischer T. Humic supramolecular structures have polar surfaces and unipolar cores in native soil. Chemosphere. 2017;183:437–443. doi: 10.1016/j.chemosphere.2017.05.125. PubMed DOI

Springer U. Der heutige Stand der Humusuntersuchungsmethodik mit besonderer Berücksichtigung der Trennung, Bestimmung und Charakterisierung der Huminsäuretypen und ihre Anwendung auf charakteristische Humusformen. Bodenkd. Pflanenernähr. 1938;6:312–373. doi: 10.1002/jpln.19380060504. (In German) DOI

Enev V., Pospíšilová L., Klučáková M., Liptaj T., Doskočil L. Spectral characterization of selected natural humic substances. Soil Water Res. 2014;9:9–17. doi: 10.17221/39/2013-SWR. DOI

Klučáková M. Agarose hydrogels enraged by humic acids as the complexation agent. Polymers. 2020;12:687. PubMed PMC

Crank J. The Mathematics of Diffusion. Clarendon Press; Oxford, UK: 1956. pp. 1–61.

Cussler E.L. Diffusion Mass: Transfer in Fluid Systems. 2nd ed. Cambridge University Press; Cambridge, UK: 1984. pp. 13–35.

Klučáková M., Pekař M. Transport of copper (II) ions in humic gel—New results from diffusion couple. Colloid. Surf. A. 2009;349:96–101. doi: 10.1016/j.colsurfa.2009.08.001. DOI

Cornel P.K., Summers R.S., Roberts P.V. Diffusion of humic acids in dilute aqueous solution. J. Colloid Interface Sci. 1985;110:149–164. doi: 10.1016/0021-9797(86)90364-4. DOI

Pinheiro J.P., Mota A.M., Simoes Goncalves M.L.S., van Leeuwen H.P. The pH effect in the diffusion coefficient of humic matter: Influence in speciation studies using voltammetric techniques. Colloid. Surf. A. 1998;137:165–170. doi: 10.1016/S0927-7757(97)00306-3. DOI

Lead J.R., Wilkinson K.J., Starchev K., Canonica S., Buffle J. Determination of diffusion coefficients of humic substances by fluorescence correlation spectroscopy: Role of solution conditions. Environ. Sci. Technol. 2000;34:1365–1369. doi: 10.1021/es9907616. DOI

Lead J.R., Wilkinson K.J. Measurement of diffusion coefficients of humic substances in a hydrogel and in water by fluorescence correlation spectroscopy. WIT Trans. Ecol. Environ. 2001;49:487–494.

Lead J.R., Starchev K., Wilkinson K.J. Diffusion coefficients of humic substances in agarose gel and in water. Environ. Sci. Technol. 2003;37:482–487. doi: 10.1021/es025840n. PubMed DOI

Pinheiro J.P., Mota A.M., d’Oliveira J.M.R., Martinho J.M.G. Dynamic properties of humic matter by dynamic light scattering and voltammetry. Anal. Chim. Acta. 1996;329:15–24. doi: 10.1016/0003-2670(96)00097-9. DOI

Aymard P., Martin D.R., Plucknett K., Foster T.J., Clark A.H., Norton I.T. Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers. 2001;59:131–144. doi: 10.1002/1097-0282(200109)59:3<131::AID-BIP1013>3.0.CO;2-8. PubMed DOI

Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of low molecular ions—Results from diffusion cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI

Chen Y., Senesi N., Schnitzer M. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 1977;41:352–358. doi: 10.2136/sssaj1977.03615995004100020037x. DOI

Chen J., Gu B., LeBoeuf E.J., Pan H., Dai S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere. 2002;48:59–68. doi: 10.1016/S0045-6535(02)00041-3. PubMed DOI

Fuentes M., González-Gaitano G., García-Mina J.M. The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Org. Geochem. 2006;37:1949–1959. doi: 10.1016/j.orggeochem.2006.07.024. DOI

Klučáková M., Kalina M. Composition, particle size, charge and colloidal stability of pH-fractionated humic acids. J. Soil. Sediment. 2015;15:1900–1908. doi: 10.1007/s11368-015-1142-2. DOI

Baalousha M., Motelica-Heino M., Le Coustumer P. Conformation and size of humic substances: Effects of major cation concentration and type, pH, salinity, and residence time. Colloid. Surf. A. 2006;272:48–55. doi: 10.1016/j.colsurfa.2005.07.010. DOI

Klučáková M. Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact. Front. Chem. 2018;6:1–8. doi: 10.3389/fchem.2018.00235. PubMed DOI PMC

Fageria N.K., Barbosa Filho M.P., Moreira A., Guimaraes C.M. Foliar fertilization of crop plants. J. Plant Nutr. 2009;32:1044–1064. doi: 10.1080/01904160902872826. DOI

Gladkov O.A., Poloskin R.B., Polyakov Y.J., Sokolova I.V., Sorokin N.I., Glebov A.V. Method for Producing Humic Acid Salts. 7198805B2. U.S. Patent. 2007 Apr 3;

Klučáková M., Věžníková K. Micro-organization of humic acids in aqueous solutions. J. Mol. Struct. 2017;1144:33–40. doi: 10.1016/j.molstruc.2017.05.012. DOI

Reid P.M., Wilkinson A.E., Tipping E., Jones M.N. Aggregation of humic substances in aqueous media as determined by light-scattering methods. J. Soil Sci. 1991;42:259–270. doi: 10.1111/j.1365-2389.1991.tb00407.x. DOI

Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of ionic dyes in hydrogels. 2. Non-stationary diffusion experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Functional Hydrogels for Agricultural Application

. 2023 Jul 22 ; 9 (7) : . [epub] 20230722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...