How the Supramolecular Nature of Lignohumate Affects Its Diffusion in Agarose Hydrogel
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO 1211
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33321956
PubMed Central
PMC7764551
DOI
10.3390/molecules25245831
PII: molecules25245831
Knihovny.cz E-zdroje
- Klíčová slova
- diffusion, hydrogel, lignohumate, spreading, supramolecular nature,
- MeSH
- algoritmy MeSH
- chemické jevy MeSH
- huminové látky analýza MeSH
- hydrogely chemie MeSH
- makromolekulární látky analýza chemie MeSH
- sefarosa chemie MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- huminové látky MeSH
- hydrogely MeSH
- makromolekulární látky MeSH
- sefarosa MeSH
Lignohumate, as an industrially produced analog of natural humic substances, is studied from the point of view of its diffusion properties. This work focuses on its permeation ability, important in agricultural and horticultural applications, connected with its penetration into plant organs as leaves and roots. The hydrogel based on agarose was used as a model material for the diffusion of lignohumate. Two types of experiments were realized: the diffusion of lignohumate in the hydrogel diffusion couple and the diffusion of lignohumate from its solution into hydrogel. The diffusion coefficient of lignohumate in the hydrogel was determined and used for the modelling of the time development of concentration profiles. It was found that the model agrees with experimental data for short times but an accumulation of lignohumate in front of the interface between donor and acceptor hydrogels was observed after several days. The particle size distribution of lignohumate and changes in the E4/E6 ratio used as an indicator of molecular weight of humic substances were determined. The results showed that the supramolecular structure of lignohumate can react sensitively to actual changes in its environs and thus affect their mobility and permeability into different materials. A filtration effect at the interface can be observed as an accompanying phenomenon of the re-arrangement in the lignohumate secondary structure.
Zobrazit více v PubMed
Novák F., Šestauberová M., Hrabal R. Structural features of lignohumic acids. J. Mol. Struct. 2015;1093:179–185. doi: 10.1016/j.molstruc.2015.03.054. DOI
Holub P., Klema K., Tuma I., Vavríková J., Surá K., Veselá B., Urban O., Záhora J. Application of organic carbon affects mineral nitrogen uptake by winter wheat and leaching in subsoil: Proximal sensing as a tool for agronomic practice. Sci. Total Environ. 2020;717:137058. doi: 10.1016/j.scitotenv.2020.137058. PubMed DOI
Vuorinen I., Hamberg L., Müller M., Seiskari P., Pennanen T. Development of growth media for solid substrate propagation of ectomycorrhiza fungi for inoculation of Norway spruce (Picea abies) seedlings. Mycorrhiza. 2015;25:311–324. doi: 10.1007/s00572-014-0611-6. PubMed DOI
Adani F., Genevini P., Zaccheo P., Zocchi G. The effect of commercial humic acid on tomato plant growth and mineral nutrition. J. Plant Nutr. 1998;21:561–575. doi: 10.1080/01904169809365424. DOI
Arancon N.Q., Edwards C.A., Bierman P., Welch C., Metzger J.D. Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresour. Technol. 2004;93:145–153. doi: 10.1016/j.biortech.2003.10.014. PubMed DOI
Arancon N.Q., Edwards C.A., Bierman P., Metzger J.D., Lucht C. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia. 2005;49:297–306. doi: 10.1016/j.pedobi.2005.02.001. DOI
Arancon N.Q., Edwards C.A., Bierman P. Influences of vermicomposts on field strawberries: 2. Effects on soil microbiological and chemical properties. Bioresour. Technol. 2006;97:831–840. doi: 10.1016/j.biortech.2005.04.016. PubMed DOI
Smilková M., Smilek J., Kalina M., Sedláček P., Pekař M., Klučáková M. A simple technique for assessing of the cuticular diffusion of humic acid biostimulants. Plant Methods. 2019;15:83. doi: 10.1186/s13007-019-0469-x. PubMed DOI PMC
Pozdnyakov L.A., Stepanov A.L., Gasanov M.E., Semenov M.V., Yakimenko O.S., Suada I.K., Rai I.N., Shchegolkova N.M. Effect of lignohumate on soil biological activity on the Bali Island, Indonesia. Eurasian Soil Sci. 2020;53:653–656. doi: 10.1134/S1064229320050117. DOI
Vialykh E.A., Salahub D.R., Achari G. Metal ion binding by humic substances as emergent functions of labile supramolecular assemblies. Environ. Chem. 2020;17:252–265. doi: 10.1071/EN19198. DOI
Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810–832. doi: 10.1097/00010694-200111000-00007. DOI
Alvarez-Puebla R.A., Valenzuela-Calahorro C., Garrido J.J. Theoretical study on fulvic acid structure, conformation and aggregation: A molecular modelling approach. Sci. Total Environ. 2006;358:243–254. doi: 10.1016/j.scitotenv.2004.11.026. PubMed DOI
Klučáková M., Věžníková K. The role of concentration and solvent character in the molecular organization of humic acids. Molecules. 2016;21:1410. doi: 10.3390/molecules21111410. PubMed DOI PMC
Klučáková M., Smilek J., Sedláček P. How humic acids affect the rheological and transport properties of hydrogels. Molecules. 2019;24:1545. doi: 10.3390/molecules24081545. PubMed DOI PMC
Christl I., Metzger A., Heidmann I., Kretzschmar R. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environ. Sci. Technol. 2005;39:5319–5326. doi: 10.1021/es050018f. PubMed DOI
Conte P., Piccolo A. Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environ. Sci. Technol. 1999;33:1682–1690. doi: 10.1021/es9808604. DOI
Picollo A., Nardi S., Concheri G. Micelle-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere. 1996;33:595–602. doi: 10.1016/0045-6535(96)00210-X. PubMed DOI
Simpson A.J., Kingery W.L., Hayes M.H.B., Spraul M., Humpfer E., Dvortsak P., Kerssebaum R., Godejohann M., Hofman M. Molecular structure and associations of humic substances in the terrestrial environment. Naturwissenschaften. 2002;89:84–88. doi: 10.1007/s00114-001-0293-8. PubMed DOI
Simpson A.J. Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy. Magn. Reson. Chem. 2002;40:S72–S82. doi: 10.1002/mrc.1106. DOI
Tarasevich Y.I., Dolenko S.A., Trifonova M.Y., Alexeenko E.Y. Association and colloid-chemical properties of humic acids in aqueous solutions. Colloid J. 2013;75:207–213. doi: 10.1134/S1061933X13020166. DOI
Baalousha M., Motelica-Heino M., Galaup S., LeCoustumer P. Supramolecular structure of humic acids by TEM with improved sample preparation and staining. Microsc. Res. Tech. 2005;66:299–306. doi: 10.1002/jemt.20173. PubMed DOI
Fischer T. Humic supramolecular structures have polar surfaces and unipolar cores in native soil. Chemosphere. 2017;183:437–443. doi: 10.1016/j.chemosphere.2017.05.125. PubMed DOI
Springer U. Der heutige Stand der Humusuntersuchungsmethodik mit besonderer Berücksichtigung der Trennung, Bestimmung und Charakterisierung der Huminsäuretypen und ihre Anwendung auf charakteristische Humusformen. Bodenkd. Pflanenernähr. 1938;6:312–373. doi: 10.1002/jpln.19380060504. (In German) DOI
Enev V., Pospíšilová L., Klučáková M., Liptaj T., Doskočil L. Spectral characterization of selected natural humic substances. Soil Water Res. 2014;9:9–17. doi: 10.17221/39/2013-SWR. DOI
Klučáková M. Agarose hydrogels enraged by humic acids as the complexation agent. Polymers. 2020;12:687. PubMed PMC
Crank J. The Mathematics of Diffusion. Clarendon Press; Oxford, UK: 1956. pp. 1–61.
Cussler E.L. Diffusion Mass: Transfer in Fluid Systems. 2nd ed. Cambridge University Press; Cambridge, UK: 1984. pp. 13–35.
Klučáková M., Pekař M. Transport of copper (II) ions in humic gel—New results from diffusion couple. Colloid. Surf. A. 2009;349:96–101. doi: 10.1016/j.colsurfa.2009.08.001. DOI
Cornel P.K., Summers R.S., Roberts P.V. Diffusion of humic acids in dilute aqueous solution. J. Colloid Interface Sci. 1985;110:149–164. doi: 10.1016/0021-9797(86)90364-4. DOI
Pinheiro J.P., Mota A.M., Simoes Goncalves M.L.S., van Leeuwen H.P. The pH effect in the diffusion coefficient of humic matter: Influence in speciation studies using voltammetric techniques. Colloid. Surf. A. 1998;137:165–170. doi: 10.1016/S0927-7757(97)00306-3. DOI
Lead J.R., Wilkinson K.J., Starchev K., Canonica S., Buffle J. Determination of diffusion coefficients of humic substances by fluorescence correlation spectroscopy: Role of solution conditions. Environ. Sci. Technol. 2000;34:1365–1369. doi: 10.1021/es9907616. DOI
Lead J.R., Wilkinson K.J. Measurement of diffusion coefficients of humic substances in a hydrogel and in water by fluorescence correlation spectroscopy. WIT Trans. Ecol. Environ. 2001;49:487–494.
Lead J.R., Starchev K., Wilkinson K.J. Diffusion coefficients of humic substances in agarose gel and in water. Environ. Sci. Technol. 2003;37:482–487. doi: 10.1021/es025840n. PubMed DOI
Pinheiro J.P., Mota A.M., d’Oliveira J.M.R., Martinho J.M.G. Dynamic properties of humic matter by dynamic light scattering and voltammetry. Anal. Chim. Acta. 1996;329:15–24. doi: 10.1016/0003-2670(96)00097-9. DOI
Aymard P., Martin D.R., Plucknett K., Foster T.J., Clark A.H., Norton I.T. Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers. 2001;59:131–144. doi: 10.1002/1097-0282(200109)59:3<131::AID-BIP1013>3.0.CO;2-8. PubMed DOI
Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of low molecular ions—Results from diffusion cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI
Chen Y., Senesi N., Schnitzer M. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 1977;41:352–358. doi: 10.2136/sssaj1977.03615995004100020037x. DOI
Chen J., Gu B., LeBoeuf E.J., Pan H., Dai S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere. 2002;48:59–68. doi: 10.1016/S0045-6535(02)00041-3. PubMed DOI
Fuentes M., González-Gaitano G., García-Mina J.M. The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Org. Geochem. 2006;37:1949–1959. doi: 10.1016/j.orggeochem.2006.07.024. DOI
Klučáková M., Kalina M. Composition, particle size, charge and colloidal stability of pH-fractionated humic acids. J. Soil. Sediment. 2015;15:1900–1908. doi: 10.1007/s11368-015-1142-2. DOI
Baalousha M., Motelica-Heino M., Le Coustumer P. Conformation and size of humic substances: Effects of major cation concentration and type, pH, salinity, and residence time. Colloid. Surf. A. 2006;272:48–55. doi: 10.1016/j.colsurfa.2005.07.010. DOI
Klučáková M. Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact. Front. Chem. 2018;6:1–8. doi: 10.3389/fchem.2018.00235. PubMed DOI PMC
Fageria N.K., Barbosa Filho M.P., Moreira A., Guimaraes C.M. Foliar fertilization of crop plants. J. Plant Nutr. 2009;32:1044–1064. doi: 10.1080/01904160902872826. DOI
Gladkov O.A., Poloskin R.B., Polyakov Y.J., Sokolova I.V., Sorokin N.I., Glebov A.V. Method for Producing Humic Acid Salts. 7198805B2. U.S. Patent. 2007 Apr 3;
Klučáková M., Věžníková K. Micro-organization of humic acids in aqueous solutions. J. Mol. Struct. 2017;1144:33–40. doi: 10.1016/j.molstruc.2017.05.012. DOI
Reid P.M., Wilkinson A.E., Tipping E., Jones M.N. Aggregation of humic substances in aqueous media as determined by light-scattering methods. J. Soil Sci. 1991;42:259–270. doi: 10.1111/j.1365-2389.1991.tb00407.x. DOI
Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of ionic dyes in hydrogels. 2. Non-stationary diffusion experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI