Functional Hydrogels for Agricultural Application

. 2023 Jul 22 ; 9 (7) : . [epub] 20230722

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37504469

Grantová podpora
LO1211 Ministry of Education, Youth and Sports, Czech Republic
AKTION 76p5 Ministry of Education, Youth and Sports, Czech Republic
AKTION 79p6 Ministry of Education, Youth and Sports, Czech Republic

Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containing different amounts of NPK as mineral fertilizer, lignohumate as a source of organic carbon, and its combination. This study of stability was focused on utility properties in their application in soil-repeated drying/re-swelling cycles and possible freezing in winter. Lignohumate supported the water absorbency, while the addition of NPK caused a negative effect. Pore sizes decreased with NPK addition. Lignohumate incorporated into polymers resulted in a much miscellaneous structure, rich in different pores and voids of with a wide range of sizes. NPK fertilizer supported the elastic character of prepared materials, while the addition of lignohumate shifted their rheological behavior to more liquid. Both dynamic moduli decreased in time. The most stable samples appeared to contain only one fertilizer constituent (NPK or lignohumate). Repeated re-swelling resulted in an increase in elastic character, which was connected with the gradual release of fertilizers. A similar effect was observed with samples that were frozen and defrosted, except samples containing a higher amount of NPK without lignohumate. A positive effect of acrylamide on superabsorbent properties was not confirmed.

Zobrazit více v PubMed

Kiatkamjornwong S. Superabsorbent polymers and superabsorbent polymer composites. Sci. Asia. 2007;33:39–40. doi: 10.2306/scienceasia1513-1874.2007.33(s1).039. DOI

Raju M.P., Raju K.M. Design and synthesis of superabsorbent polymers. J. Appl. Polym. Sci. 2001;80:2635–2639. doi: 10.1002/app.1376. DOI

Raju M.P., Raju K.M., Mohan Y.M. Synthesis and water absorbency of crosslinked superabsorbent polymers. J. Appl. Polym. Sci. 2002;85:1795–1801. doi: 10.1002/app.10731. DOI

Li A., Wang A., Chen J. Studies on poly(acrylic acid)/attapulgite superabsorbent composites. II. Swelling behaviors of superabsorbent composites in saline solutions and hydrophilic solvent–water mixtures. J. Appl. Polym. Sci. 2004;94:1869–1876. doi: 10.1002/app.20850. DOI

Dadhaniya P.V., Patel M.P., Patel R.G. Swelling and dye adsorption study of novel superswelling [Acrylamide/N-vinylpyrrolidone/3(2-hydroxyethyl carbamoyl) acrylic acid] hydrogels. Polym. Bull. 2006;57:21–31. doi: 10.1007/s00289-006-0531-5. DOI

Nnadi F., Brave C. Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. J. Soil Sci. Environ. Manag. 2011;2:206–211.

Pó R. Water-absorbent polymers: A patent survey. J. Macromol. Sci. Polymer. Rev. 1994;34:607–662. doi: 10.1080/15321799408014168. DOI

Li A., Zhang J., Wang A. Synthesis, characterization and water absorbency properties of poly(acrylic acid)/sodium humate superabsorbent composite. Polym. Adv. Technol. 2005;16:675–680. doi: 10.1002/pat.641. DOI

Chu M., Zhu S.Q., Li H.M., Huang Z.B., Li S.Q. Synthesis of poly(acrylic acid)/sodium humate superabsorbent composite for agricultural use. J. Appl. Polym. Sci. 2006;102:5137–5143. doi: 10.1002/app.24661. DOI

Chu M., Zhu S.Q., Huang Z.B., Li H.M. Influence of potassium humate on the swelling properties of a poly(acrylic acid-co-acrylamide)/potassium humate superabsorbent composite. J. Appl. Polym. Sci. 2008;107:3727–3733. doi: 10.1002/app.27410. DOI

Liu J., Wang Q., Wang A. Synthesis and characterization of chitosan-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr. Polym. 2007;70:166–173. doi: 10.1016/j.carbpol.2007.03.015. DOI

Gao L., Wang S., Zhao X. Synthesis and characterization of agricultural controllable humic acid superabsorbent. J. Environ. Sci. 2013;25:S69–S76. doi: 10.1016/S1001-0742(14)60629-X. PubMed DOI

Kratochvílová R., Sedláček P., Pořízka J., Klučáková M. Composite materials for controlled release of mineral nutrients and humic substances for agricultural application. Soil Use Manag. 2021;37:460–467. doi: 10.1111/sum.12613. DOI

Zhang D., Tang Y., Zhang C., Huhe F.N.U., Wu B., Gong X., Chuang S.S.C. Formulating zwitterionic, responsive polymers for designing smart soils. Nano Micro Small. 2022;18:2203899. doi: 10.1002/smll.202203899. PubMed DOI

Pushpamalar J., Langford S.J., Ahmad M.B., Lim Y.Y., Hashim K. Eco-friendly smart hydrogels for soil conditioning and sustain release fertilizer. Int. J. Environ. Sci. Technol. 2018;15:2059–2074. doi: 10.1007/s13762-017-1598-2. DOI

Kabir S.M.F., Sikdar P.P., Haque B., Bhuiyan M.A.R., Ali A., Islam M.N. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018;7:153–174. doi: 10.1007/s40204-018-0095-0. PubMed DOI PMC

Sikdar P., Uddin M.M., Dip T.M., Islam S., Hoque M.S., Dhar A.K., Wu S. Recent advances in the synthesis of smart hydrogels. Mater. Adv. 2021;2:4532–4573. doi: 10.1039/D1MA00193K. DOI

Azeem M.K., Islam A., Khan R.U., Rasool A., Qureshi M.A.R., Rizwan M., Sher F., Rasheed T. Eco-friendly three-dimensional hydrogels for sustainable agricultural applications: Current and future scenarios. Polym. Adv. Technol. 2023 doi: 10.1002/pat.6122. (first published) DOI

Chakraborty R., Mukhopadhyay A., Paul S., Sarkar S., Mukhopadhyay R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. Sci. Total Environ. 2023;863:160859. doi: 10.1016/j.scitotenv.2022.160859. PubMed DOI

Ramazani-Harandi M.J., Zohuriaan-Mehr M.J., Yousefi A.A., Ershad-Langroudi A., Kabiri K. Effects of structural variables on AUL and rheological behavior of SAP gels. J. Appl. Polym. Sci. 2009;113:3676–3686. doi: 10.1002/app.30370. DOI

Zaharia A., Radu A.L., Iancu S., Florea A.M., Sandu T., Minca I., Fruth-Oprisan V., Teodorescu M., Sarbu A., Iordache T.V. Bacterial cellulose-poly(acrylic acid-co-N,N’-methylene-bis-acrylamide) interpenetrated networks for the controlled release of fertilizers. RSC Adv. 2018;8:17635. doi: 10.1039/C8RA01733F. PubMed DOI PMC

Rehman T.U., Shah L.A. Rheological investigation of polymer hydrogels for industrial application: A review. Int. J. Polym. Anal. Charact. 2022;27:430–445. doi: 10.1080/1023666X.2022.2105876. DOI

Zhang Q., Zhou W., Liang G., Wang X., Sun J., He P., Li L. Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment. PLoS ONE. 2015;10:0124096. doi: 10.1371/journal.pone.0124096. PubMed DOI PMC

Vishwanath V., Kumar S., Purakayastha T.J., Datta S.P., Rosin K.G., Mahapatra P., Sinha S.K., Yadav S.P. Impact of forty-seven years of long-term fertilization and liming on soil health, yield of soybean and wheat in an acidic Alfisol. Arch. Agron. Soil Sci. 2022;68:531–546. doi: 10.1080/03650340.2020.1843023. DOI

Mi W.H., Sun Y., Xia S., Zhao H.T., Mi W.T., Brookes P.C., Liu Y., Wu L. Effect of inorganic fertilizers with organic amendments on soil chemical properties and rice yield in a low-productivity paddy soil. Geoderma. 2018;320:23–29. doi: 10.1016/j.geoderma.2018.01.016. DOI

Novák F., Šestauberová M., Hrabal R. Structural features of lignohumic acids. J. Mol. Struct. 2015;1093:179–185. doi: 10.1016/j.molstruc.2015.03.054. DOI

Holub P., Klema K., Tuma I., Vavríková J., Surá K., Veselá B., Urban O., Záhora J. Application of organic carbon affects mineral nitrogen uptake by winter wheat and leaching in subsoil: Proximal sensing as a tool for agronomic practice. Sci. Total Environ. 2020;717:137058. doi: 10.1016/j.scitotenv.2020.137058. PubMed DOI

Klučáková M., Kalina M., Enev V. How the supramolecular nature of lignohumate affects its diffusion in agarose hydrogel. Molecules. 2020;25:5831. doi: 10.3390/molecules25245831. PubMed DOI PMC

Klučáková M. Complexation of metal ions with solid humic acids, humic colloidal solutions, and humic hydrogel. Environ. Eng. Sci. 2014;31:612–620. doi: 10.1089/ees.2013.0487. DOI

Klučáková M., Kalina M. Composition, particle size, charge and colloidal stability of pH-fractionated humic acids. J. Soil. Sediment. 2015;15:1900–1908. doi: 10.1007/s11368-015-1142-2. DOI

Klučáková M. Dissociation properties and behavior of active humic fractions dissolved in aqueous systems. React. Funct. Polym. 2016;109:9–14. doi: 10.1016/j.reactfunctpolym.2016.09.004. DOI

Klučáková M. Characterization of pH-fractionated humic acids with respect to their dissociation behaviour. Environ. Sci. Pollut. Res. 2016;23:7722–7731. doi: 10.1007/s11356-015-5932-2. PubMed DOI

Klučáková M. Conductometric study of the dissociation behavior of humic and fulvic acids. React. Funct. Polym. 2018;128:24–28. doi: 10.1016/j.reactfunctpolym.2018.04.017. DOI

Enev V., Pospíšilová L., Klučáková M., Liptaj T., Doskočil L. Spectral characterization of selected natural humic substances. Soil Water Res. 2014;9:9–17. doi: 10.17221/39/2013-SWR. DOI

Vuorinen I., Hamberg L., Müller M., Seiskari P., Pennanen T. Development of growth media for solid substrate propagation of ectomycorrhiza fungi for inoculation of Norway spruce (Picea abies) seedlings. Mycorrhiza. 2015;25:311–324. doi: 10.1007/s00572-014-0611-6. PubMed DOI

Adani F., Genevini P., Zaccheo P., Zocchi G. The effect of commercial humic acid on tomato plant growth and mineral nutrition. J. Plant Nutr. 1998;21:561–575. doi: 10.1080/01904169809365424. DOI

Arancon N.Q., Edwards C.A., Bierman P., Welch C., Metzger J.D. Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresour. Technol. 2004;93:145–153. doi: 10.1016/j.biortech.2003.10.014. PubMed DOI

Arancon N.Q., Edwards C.A., Bierman P., Metzger J.D., Lucht C. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia. 2005;49:297–306. doi: 10.1016/j.pedobi.2005.02.001. DOI

Arancon N.Q., Edwards C.A., Bierman P. Influences of vermicomposts on field strawberries: 2. Effects on soil microbiological and chemical properties. Bioresour. Technol. 2006;97:831–840. doi: 10.1016/j.biortech.2005.04.016. PubMed DOI

Smilková M., Smilek J., Kalina M., Sedláček P., Pekař M., Klučáková M. A simple technique for assessing of the cuticular diffusion of humic acid biostimulants. Plant Methods. 2019;15:83. doi: 10.1186/s13007-019-0469-x. PubMed DOI PMC

Spencer P., Schaumburg H. A review of acrylamide neurotoxicity part I. Properties, uses, and human exposure. Can. J. Neurol. Sci. 1974;1:143–150. doi: 10.1017/S0317167100019739. PubMed DOI

Spencer P., Schaumburg H. A review of acrylamide neurotoxicity part II. Experimental animal neurotoxicity and pathologic mechanisms. Can. J. Neurol. Sci. 1974;1:152–169. doi: 10.1017/S0317167100119201. PubMed DOI

Spencer H., Wahome J., Haasch M. Toxicity evaluation of acrylamide on the early life stages of the zebrafish embryos (Danio rerio) J. Environ. Prot. 2018;9:1082–1091. doi: 10.4236/jep.2018.910067. DOI

Matoso V., Bargi-Souza P., Ivanski F., Romano M.A., Romano R.M. Acrylamide: A review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Food Chem. 2019;283:422–430. doi: 10.1016/j.foodchem.2019.01.054. PubMed DOI

Rashidzadeh A., Olad A. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr. Polym. 2014;114:269–278. doi: 10.1016/j.carbpol.2014.08.010. PubMed DOI

Olad A., Zebhi H., Salari D., Mirmohseni A., Tabar A.R. Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Mater. Sci. Eng. C. 2018;90:333–340. doi: 10.1016/j.msec.2018.04.083. PubMed DOI

Lee Y.N., Ahmed O.H., Wahid S.A., Jalloh M.B., Muzah A.A. Nutrient release and ammonia volatilization from biochar-blended fertilizer with and without densification. Agronomy. 2021;11:2082. doi: 10.3390/agronomy11102082. DOI

Senesi N., D’Orazio V., Ricca G. Humic acids in the first generation of Eurosoils. Geoderma. 2003;116:325–344. doi: 10.1016/S0016-7061(03)00107-1. DOI

Feng L., Yang H., Dong X., Lei H., Chen D. pH-sensitive polymeric particles as smart carriers for rebar inhibitors delivery in alkaline condition. J. Appl. Polym. Sci. 2018;135:45886. doi: 10.1002/app.45886. DOI

Zhang W., Liu Q., Xu Y., Mu X., Zhang H., Lei Z. Waste cabbage-integrated nutritional superabsorbent polymers for water retention and absorption applications. Langmuir. 2022;38:14869–14878. doi: 10.1021/acs.langmuir.2c02538. PubMed DOI

Ramli R.A., Lian Y.M., Nor N.M., Azman N.I.Z. Synthesis, characterization, and morphology study of coco peat-grafted-poly(acrylic acid)/NPK slow release fertilizer hydrogel. J. Polym. Res. 2019;26:266. doi: 10.1007/s10965-019-1952-9. DOI

Singh T., Singhal R. Poly(acrylic acid/acrylamide/sodium humate) superabsorbent hydrogels for metal ion/dye adsorption: Effect of sodium humate concentration. J. Appl. Polym. Sci. 2012;125:1267–1283. doi: 10.1002/app.35435. DOI

Tomar R.S., Gupta I., Singhal R., Nagpal A.K. Synthesis of poly (acrylamide-co-acrylic acid) based superabsorbent hydrogels: Study of network parameters and swelling behaviour. Polym. Plast. Technol. Eng. 2007;46:481–488. doi: 10.1080/03602550701297095. DOI

Wu J., Lin J., Zhou M., Wei C. Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol. Rapid Commun. 2000;21:1032–1034. doi: 10.1002/1521-3927(20001001)21:15<1032::AID-MARC1032>3.0.CO;2-N. DOI

Seetapan N., Wongsawaeng J., Kiatkamjornwong S. Gel strength and swelling of acrylamide-protic acid superabsorbent copolymers. Polym. Advan. Technol. 2011;22:1685–1695. doi: 10.1002/pat.1658. DOI

Pourjavadi A., Hosseinzadeh H. Synthesis and properties of partially hydrolyzed acrylonitrile-co-acrylamide superabsorbent hydrogel. Bull. Korean Chem. Soc. 2010;31:3136–3172. doi: 10.5012/bkcs.2010.31.11.3163. DOI

Kabiri K., Omidian H., Hashemi S.A., Zohuriaan-Mehr M.J. Synthesis of fast-swelling superabsorbent hydrogels: Effect of crosslinker type and concentration on porosity and absorption rate. Eur. Polym. J. 2003;39:1341–1348. doi: 10.1016/S0014-3057(02)00391-9. DOI

Kabiri K., Zohuriaan-Mehr M.J. Superabsorbent hydrogel composites. Polym. Adv. Technol. 2003;14:438–444. doi: 10.1002/pat.356. DOI

Shahid S., Qidwai A., Anwar F., Ullah I., Rashid U. Effects of a novel poly (AA-co-AAm)/AlZnFe2O4/potassium humate superabsorbent hydrogel nanocomposite on water retention of sandy loam soil and wheat seedling growth. Molecules. 2012;17:12587–12602. doi: 10.3390/molecules171112587. PubMed DOI PMC

Nada W.M., Blumenstei O. Characterization and impact of newly synthesized superabsorbent hydrogel nanocomposite on water retention characteristics of sandy soil and grass seedling growth. J. Soil Sci. 2015;10:153–165. doi: 10.3923/ijss.2015.153.165. DOI

Bai W., Zhang H., Liu B., Wu Y., Song J. Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles. Soil Use Manag. 2010;26:253–260. doi: 10.1111/j.1475-2743.2010.00271.x. DOI

Zhang X., Wang X., Li L., Zhang S., Wu R. Preparation and swelling behaviors of a high temperature resistant superabsorbent using tetraallylammonium chloride as crosslinking agent. React. Funct. Polym. 2015;87:15–21. doi: 10.1016/j.reactfunctpolym.2014.12.006. DOI

Pourjavadi A., Bardajee G.R., Soleyman R. Synthesis and swelling behavior of a new superabsorbent hydrogel network based on polyacrylamide grafted onto salep. J. Appl. Polym. Sci. 2009;112:2625–2633. doi: 10.1002/app.29831. DOI

He G., Ke W., Chen X., Kong Y., Zheng H., Yin Y., Cai W. Preparation and properties of quaternary ammonium chitosan-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogels. React. Funct. Polym. 2017;111:14–21. doi: 10.1016/j.reactfunctpolym.2016.12.001. DOI

Zheng Y., Gao T., Wang A. Preparation, swelling, and slow-release characteristics of superabsorbent composite containings humate. Ind. Eng. Chem. Res. 2008;47:1766–1773. doi: 10.1021/ie0713137. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...