Functional Hydrogels for Agricultural Application
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1211
Ministry of Education, Youth and Sports, Czech Republic
AKTION 76p5
Ministry of Education, Youth and Sports, Czech Republic
AKTION 79p6
Ministry of Education, Youth and Sports, Czech Republic
PubMed
37504469
PubMed Central
PMC10378905
DOI
10.3390/gels9070590
PII: gels9070590
Knihovny.cz E-zdroje
- Klíčová slova
- fertilizer, lignohumate, rheology, stability, superabsorbent, swelling,
- Publikační typ
- časopisecké články MeSH
Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containing different amounts of NPK as mineral fertilizer, lignohumate as a source of organic carbon, and its combination. This study of stability was focused on utility properties in their application in soil-repeated drying/re-swelling cycles and possible freezing in winter. Lignohumate supported the water absorbency, while the addition of NPK caused a negative effect. Pore sizes decreased with NPK addition. Lignohumate incorporated into polymers resulted in a much miscellaneous structure, rich in different pores and voids of with a wide range of sizes. NPK fertilizer supported the elastic character of prepared materials, while the addition of lignohumate shifted their rheological behavior to more liquid. Both dynamic moduli decreased in time. The most stable samples appeared to contain only one fertilizer constituent (NPK or lignohumate). Repeated re-swelling resulted in an increase in elastic character, which was connected with the gradual release of fertilizers. A similar effect was observed with samples that were frozen and defrosted, except samples containing a higher amount of NPK without lignohumate. A positive effect of acrylamide on superabsorbent properties was not confirmed.
Faculty of Chemistry Brno University of Technology Purkyňova 464 118 CZ 61200 Brno Czech Republic
Institute of Polymer Science Johannes Kepler University Altenberger Strasse 69 4040 Linz Austria
Zobrazit více v PubMed
Kiatkamjornwong S. Superabsorbent polymers and superabsorbent polymer composites. Sci. Asia. 2007;33:39–40. doi: 10.2306/scienceasia1513-1874.2007.33(s1).039. DOI
Raju M.P., Raju K.M. Design and synthesis of superabsorbent polymers. J. Appl. Polym. Sci. 2001;80:2635–2639. doi: 10.1002/app.1376. DOI
Raju M.P., Raju K.M., Mohan Y.M. Synthesis and water absorbency of crosslinked superabsorbent polymers. J. Appl. Polym. Sci. 2002;85:1795–1801. doi: 10.1002/app.10731. DOI
Li A., Wang A., Chen J. Studies on poly(acrylic acid)/attapulgite superabsorbent composites. II. Swelling behaviors of superabsorbent composites in saline solutions and hydrophilic solvent–water mixtures. J. Appl. Polym. Sci. 2004;94:1869–1876. doi: 10.1002/app.20850. DOI
Dadhaniya P.V., Patel M.P., Patel R.G. Swelling and dye adsorption study of novel superswelling [Acrylamide/N-vinylpyrrolidone/3(2-hydroxyethyl carbamoyl) acrylic acid] hydrogels. Polym. Bull. 2006;57:21–31. doi: 10.1007/s00289-006-0531-5. DOI
Nnadi F., Brave C. Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. J. Soil Sci. Environ. Manag. 2011;2:206–211.
Pó R. Water-absorbent polymers: A patent survey. J. Macromol. Sci. Polymer. Rev. 1994;34:607–662. doi: 10.1080/15321799408014168. DOI
Li A., Zhang J., Wang A. Synthesis, characterization and water absorbency properties of poly(acrylic acid)/sodium humate superabsorbent composite. Polym. Adv. Technol. 2005;16:675–680. doi: 10.1002/pat.641. DOI
Chu M., Zhu S.Q., Li H.M., Huang Z.B., Li S.Q. Synthesis of poly(acrylic acid)/sodium humate superabsorbent composite for agricultural use. J. Appl. Polym. Sci. 2006;102:5137–5143. doi: 10.1002/app.24661. DOI
Chu M., Zhu S.Q., Huang Z.B., Li H.M. Influence of potassium humate on the swelling properties of a poly(acrylic acid-co-acrylamide)/potassium humate superabsorbent composite. J. Appl. Polym. Sci. 2008;107:3727–3733. doi: 10.1002/app.27410. DOI
Liu J., Wang Q., Wang A. Synthesis and characterization of chitosan-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr. Polym. 2007;70:166–173. doi: 10.1016/j.carbpol.2007.03.015. DOI
Gao L., Wang S., Zhao X. Synthesis and characterization of agricultural controllable humic acid superabsorbent. J. Environ. Sci. 2013;25:S69–S76. doi: 10.1016/S1001-0742(14)60629-X. PubMed DOI
Kratochvílová R., Sedláček P., Pořízka J., Klučáková M. Composite materials for controlled release of mineral nutrients and humic substances for agricultural application. Soil Use Manag. 2021;37:460–467. doi: 10.1111/sum.12613. DOI
Zhang D., Tang Y., Zhang C., Huhe F.N.U., Wu B., Gong X., Chuang S.S.C. Formulating zwitterionic, responsive polymers for designing smart soils. Nano Micro Small. 2022;18:2203899. doi: 10.1002/smll.202203899. PubMed DOI
Pushpamalar J., Langford S.J., Ahmad M.B., Lim Y.Y., Hashim K. Eco-friendly smart hydrogels for soil conditioning and sustain release fertilizer. Int. J. Environ. Sci. Technol. 2018;15:2059–2074. doi: 10.1007/s13762-017-1598-2. DOI
Kabir S.M.F., Sikdar P.P., Haque B., Bhuiyan M.A.R., Ali A., Islam M.N. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018;7:153–174. doi: 10.1007/s40204-018-0095-0. PubMed DOI PMC
Sikdar P., Uddin M.M., Dip T.M., Islam S., Hoque M.S., Dhar A.K., Wu S. Recent advances in the synthesis of smart hydrogels. Mater. Adv. 2021;2:4532–4573. doi: 10.1039/D1MA00193K. DOI
Azeem M.K., Islam A., Khan R.U., Rasool A., Qureshi M.A.R., Rizwan M., Sher F., Rasheed T. Eco-friendly three-dimensional hydrogels for sustainable agricultural applications: Current and future scenarios. Polym. Adv. Technol. 2023 doi: 10.1002/pat.6122. (first published) DOI
Chakraborty R., Mukhopadhyay A., Paul S., Sarkar S., Mukhopadhyay R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. Sci. Total Environ. 2023;863:160859. doi: 10.1016/j.scitotenv.2022.160859. PubMed DOI
Ramazani-Harandi M.J., Zohuriaan-Mehr M.J., Yousefi A.A., Ershad-Langroudi A., Kabiri K. Effects of structural variables on AUL and rheological behavior of SAP gels. J. Appl. Polym. Sci. 2009;113:3676–3686. doi: 10.1002/app.30370. DOI
Zaharia A., Radu A.L., Iancu S., Florea A.M., Sandu T., Minca I., Fruth-Oprisan V., Teodorescu M., Sarbu A., Iordache T.V. Bacterial cellulose-poly(acrylic acid-co-N,N’-methylene-bis-acrylamide) interpenetrated networks for the controlled release of fertilizers. RSC Adv. 2018;8:17635. doi: 10.1039/C8RA01733F. PubMed DOI PMC
Rehman T.U., Shah L.A. Rheological investigation of polymer hydrogels for industrial application: A review. Int. J. Polym. Anal. Charact. 2022;27:430–445. doi: 10.1080/1023666X.2022.2105876. DOI
Zhang Q., Zhou W., Liang G., Wang X., Sun J., He P., Li L. Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment. PLoS ONE. 2015;10:0124096. doi: 10.1371/journal.pone.0124096. PubMed DOI PMC
Vishwanath V., Kumar S., Purakayastha T.J., Datta S.P., Rosin K.G., Mahapatra P., Sinha S.K., Yadav S.P. Impact of forty-seven years of long-term fertilization and liming on soil health, yield of soybean and wheat in an acidic Alfisol. Arch. Agron. Soil Sci. 2022;68:531–546. doi: 10.1080/03650340.2020.1843023. DOI
Mi W.H., Sun Y., Xia S., Zhao H.T., Mi W.T., Brookes P.C., Liu Y., Wu L. Effect of inorganic fertilizers with organic amendments on soil chemical properties and rice yield in a low-productivity paddy soil. Geoderma. 2018;320:23–29. doi: 10.1016/j.geoderma.2018.01.016. DOI
Novák F., Šestauberová M., Hrabal R. Structural features of lignohumic acids. J. Mol. Struct. 2015;1093:179–185. doi: 10.1016/j.molstruc.2015.03.054. DOI
Holub P., Klema K., Tuma I., Vavríková J., Surá K., Veselá B., Urban O., Záhora J. Application of organic carbon affects mineral nitrogen uptake by winter wheat and leaching in subsoil: Proximal sensing as a tool for agronomic practice. Sci. Total Environ. 2020;717:137058. doi: 10.1016/j.scitotenv.2020.137058. PubMed DOI
Klučáková M., Kalina M., Enev V. How the supramolecular nature of lignohumate affects its diffusion in agarose hydrogel. Molecules. 2020;25:5831. doi: 10.3390/molecules25245831. PubMed DOI PMC
Klučáková M. Complexation of metal ions with solid humic acids, humic colloidal solutions, and humic hydrogel. Environ. Eng. Sci. 2014;31:612–620. doi: 10.1089/ees.2013.0487. DOI
Klučáková M., Kalina M. Composition, particle size, charge and colloidal stability of pH-fractionated humic acids. J. Soil. Sediment. 2015;15:1900–1908. doi: 10.1007/s11368-015-1142-2. DOI
Klučáková M. Dissociation properties and behavior of active humic fractions dissolved in aqueous systems. React. Funct. Polym. 2016;109:9–14. doi: 10.1016/j.reactfunctpolym.2016.09.004. DOI
Klučáková M. Characterization of pH-fractionated humic acids with respect to their dissociation behaviour. Environ. Sci. Pollut. Res. 2016;23:7722–7731. doi: 10.1007/s11356-015-5932-2. PubMed DOI
Klučáková M. Conductometric study of the dissociation behavior of humic and fulvic acids. React. Funct. Polym. 2018;128:24–28. doi: 10.1016/j.reactfunctpolym.2018.04.017. DOI
Enev V., Pospíšilová L., Klučáková M., Liptaj T., Doskočil L. Spectral characterization of selected natural humic substances. Soil Water Res. 2014;9:9–17. doi: 10.17221/39/2013-SWR. DOI
Vuorinen I., Hamberg L., Müller M., Seiskari P., Pennanen T. Development of growth media for solid substrate propagation of ectomycorrhiza fungi for inoculation of Norway spruce (Picea abies) seedlings. Mycorrhiza. 2015;25:311–324. doi: 10.1007/s00572-014-0611-6. PubMed DOI
Adani F., Genevini P., Zaccheo P., Zocchi G. The effect of commercial humic acid on tomato plant growth and mineral nutrition. J. Plant Nutr. 1998;21:561–575. doi: 10.1080/01904169809365424. DOI
Arancon N.Q., Edwards C.A., Bierman P., Welch C., Metzger J.D. Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresour. Technol. 2004;93:145–153. doi: 10.1016/j.biortech.2003.10.014. PubMed DOI
Arancon N.Q., Edwards C.A., Bierman P., Metzger J.D., Lucht C. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia. 2005;49:297–306. doi: 10.1016/j.pedobi.2005.02.001. DOI
Arancon N.Q., Edwards C.A., Bierman P. Influences of vermicomposts on field strawberries: 2. Effects on soil microbiological and chemical properties. Bioresour. Technol. 2006;97:831–840. doi: 10.1016/j.biortech.2005.04.016. PubMed DOI
Smilková M., Smilek J., Kalina M., Sedláček P., Pekař M., Klučáková M. A simple technique for assessing of the cuticular diffusion of humic acid biostimulants. Plant Methods. 2019;15:83. doi: 10.1186/s13007-019-0469-x. PubMed DOI PMC
Spencer P., Schaumburg H. A review of acrylamide neurotoxicity part I. Properties, uses, and human exposure. Can. J. Neurol. Sci. 1974;1:143–150. doi: 10.1017/S0317167100019739. PubMed DOI
Spencer P., Schaumburg H. A review of acrylamide neurotoxicity part II. Experimental animal neurotoxicity and pathologic mechanisms. Can. J. Neurol. Sci. 1974;1:152–169. doi: 10.1017/S0317167100119201. PubMed DOI
Spencer H., Wahome J., Haasch M. Toxicity evaluation of acrylamide on the early life stages of the zebrafish embryos (Danio rerio) J. Environ. Prot. 2018;9:1082–1091. doi: 10.4236/jep.2018.910067. DOI
Matoso V., Bargi-Souza P., Ivanski F., Romano M.A., Romano R.M. Acrylamide: A review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Food Chem. 2019;283:422–430. doi: 10.1016/j.foodchem.2019.01.054. PubMed DOI
Rashidzadeh A., Olad A. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr. Polym. 2014;114:269–278. doi: 10.1016/j.carbpol.2014.08.010. PubMed DOI
Olad A., Zebhi H., Salari D., Mirmohseni A., Tabar A.R. Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Mater. Sci. Eng. C. 2018;90:333–340. doi: 10.1016/j.msec.2018.04.083. PubMed DOI
Lee Y.N., Ahmed O.H., Wahid S.A., Jalloh M.B., Muzah A.A. Nutrient release and ammonia volatilization from biochar-blended fertilizer with and without densification. Agronomy. 2021;11:2082. doi: 10.3390/agronomy11102082. DOI
Senesi N., D’Orazio V., Ricca G. Humic acids in the first generation of Eurosoils. Geoderma. 2003;116:325–344. doi: 10.1016/S0016-7061(03)00107-1. DOI
Feng L., Yang H., Dong X., Lei H., Chen D. pH-sensitive polymeric particles as smart carriers for rebar inhibitors delivery in alkaline condition. J. Appl. Polym. Sci. 2018;135:45886. doi: 10.1002/app.45886. DOI
Zhang W., Liu Q., Xu Y., Mu X., Zhang H., Lei Z. Waste cabbage-integrated nutritional superabsorbent polymers for water retention and absorption applications. Langmuir. 2022;38:14869–14878. doi: 10.1021/acs.langmuir.2c02538. PubMed DOI
Ramli R.A., Lian Y.M., Nor N.M., Azman N.I.Z. Synthesis, characterization, and morphology study of coco peat-grafted-poly(acrylic acid)/NPK slow release fertilizer hydrogel. J. Polym. Res. 2019;26:266. doi: 10.1007/s10965-019-1952-9. DOI
Singh T., Singhal R. Poly(acrylic acid/acrylamide/sodium humate) superabsorbent hydrogels for metal ion/dye adsorption: Effect of sodium humate concentration. J. Appl. Polym. Sci. 2012;125:1267–1283. doi: 10.1002/app.35435. DOI
Tomar R.S., Gupta I., Singhal R., Nagpal A.K. Synthesis of poly (acrylamide-co-acrylic acid) based superabsorbent hydrogels: Study of network parameters and swelling behaviour. Polym. Plast. Technol. Eng. 2007;46:481–488. doi: 10.1080/03602550701297095. DOI
Wu J., Lin J., Zhou M., Wei C. Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol. Rapid Commun. 2000;21:1032–1034. doi: 10.1002/1521-3927(20001001)21:15<1032::AID-MARC1032>3.0.CO;2-N. DOI
Seetapan N., Wongsawaeng J., Kiatkamjornwong S. Gel strength and swelling of acrylamide-protic acid superabsorbent copolymers. Polym. Advan. Technol. 2011;22:1685–1695. doi: 10.1002/pat.1658. DOI
Pourjavadi A., Hosseinzadeh H. Synthesis and properties of partially hydrolyzed acrylonitrile-co-acrylamide superabsorbent hydrogel. Bull. Korean Chem. Soc. 2010;31:3136–3172. doi: 10.5012/bkcs.2010.31.11.3163. DOI
Kabiri K., Omidian H., Hashemi S.A., Zohuriaan-Mehr M.J. Synthesis of fast-swelling superabsorbent hydrogels: Effect of crosslinker type and concentration on porosity and absorption rate. Eur. Polym. J. 2003;39:1341–1348. doi: 10.1016/S0014-3057(02)00391-9. DOI
Kabiri K., Zohuriaan-Mehr M.J. Superabsorbent hydrogel composites. Polym. Adv. Technol. 2003;14:438–444. doi: 10.1002/pat.356. DOI
Shahid S., Qidwai A., Anwar F., Ullah I., Rashid U. Effects of a novel poly (AA-co-AAm)/AlZnFe2O4/potassium humate superabsorbent hydrogel nanocomposite on water retention of sandy loam soil and wheat seedling growth. Molecules. 2012;17:12587–12602. doi: 10.3390/molecules171112587. PubMed DOI PMC
Nada W.M., Blumenstei O. Characterization and impact of newly synthesized superabsorbent hydrogel nanocomposite on water retention characteristics of sandy soil and grass seedling growth. J. Soil Sci. 2015;10:153–165. doi: 10.3923/ijss.2015.153.165. DOI
Bai W., Zhang H., Liu B., Wu Y., Song J. Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles. Soil Use Manag. 2010;26:253–260. doi: 10.1111/j.1475-2743.2010.00271.x. DOI
Zhang X., Wang X., Li L., Zhang S., Wu R. Preparation and swelling behaviors of a high temperature resistant superabsorbent using tetraallylammonium chloride as crosslinking agent. React. Funct. Polym. 2015;87:15–21. doi: 10.1016/j.reactfunctpolym.2014.12.006. DOI
Pourjavadi A., Bardajee G.R., Soleyman R. Synthesis and swelling behavior of a new superabsorbent hydrogel network based on polyacrylamide grafted onto salep. J. Appl. Polym. Sci. 2009;112:2625–2633. doi: 10.1002/app.29831. DOI
He G., Ke W., Chen X., Kong Y., Zheng H., Yin Y., Cai W. Preparation and properties of quaternary ammonium chitosan-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogels. React. Funct. Polym. 2017;111:14–21. doi: 10.1016/j.reactfunctpolym.2016.12.001. DOI
Zheng Y., Gao T., Wang A. Preparation, swelling, and slow-release characteristics of superabsorbent composite containings humate. Ind. Eng. Chem. Res. 2008;47:1766–1773. doi: 10.1021/ie0713137. DOI