Agarose Hydrogels Enriched by Humic Acids as the Complexation Agent

. 2020 Mar 19 ; 12 (3) : . [epub] 20200319

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32204449

Grantová podpora
LO 1211 Ministerstvo Školství, Mládeže a Tělovýchovy

The transport properties of agarose hydrogels enriched by humic acids were studied. Methylene blue, rhodamine 6G and Cu(II) ions were incorporated into hydrogel as diffusion probes, and then their release into water was monitored. Cu(II) ions as well as both the dyes studied in this work have high affinity to humic substances and their interactions strongly affected their diffusion in hydrogels. It was confirmed that humic acids retarded the transport of diffusion probes. Humic acids' enrichment caused the decrease in the values of effective diffusion coefficients due to their complexation with diffusion probes. In general, the diffusion of dyes was more affected by the complexation with humic acids in comparison with Cu(II) ions. The effect of complexation was selective for the particular diffusion probe. The strongest effect was obtained for the diffusion of methylene blue. It was assumed that metal ions interacted preferentially with acidic functional groups. In contrast to Cu(II) ions, dyes can interact with acidic functional groups, and the condensed cyclic structures of the dye probes supported their interactions with the hydrophobic domains of humic substances.

Zobrazit více v PubMed

Djabourov M., Clark A.H., Rowlands D.W., Rossmurphy S.B. Small-angle X-ray-scattering characterization of agarose sols and gels. Macromolecules. 1989;22:180–188. doi: 10.1021/ma00191a035. DOI

Fatin-Rouge N., Milon A., Buffle J., Goulet R.R., Tessier A. Diffusion and partitioning of solutes in agarose hydrogels: The relative influence of electrostatic and specific interactions. J. Phys. Chem. B. 2003;107:12126–12137. doi: 10.1021/jp0303164. DOI

Singh T., Meena R., Kumar A. Effect of sodium sulfate on the gelling behavior of agarose and water structure inside the gel networks. J. Phys. Chem. B. 2009;113:2519–2525. doi: 10.1021/jp809294p. PubMed DOI

Sourbh T., Jyoti C., Vinod K., Vijay K.T. Progress in pectin based hydrogels for water purification: Trends and challenges. J. Environ. Manag. 2019;238:210–223. PubMed

Sourbh T., Bhawna S., Anki V., Jyoti C., Sigitas T., Vijay K.T. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J. Clean. Prod. 2018;198:143–159.

Sourbh T., Penny P.G., Messai A.M., Sigitas T., Yogendra K.M., Vijay K.T. Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives. Vacuum. 2017;146:342–355.

Fernandez E., Lopez D., Mijangos C., Duskova-Smrckova M., Ilavsky M., Dusek K. Rheological and thermal properties of agarose aqueous solutions and hydrogels. J. Polym. Sci. B. 2008;46:322–328. doi: 10.1002/polb.21370. DOI

Barrangou L.M., Daubert C.R., Foegeding E.A. Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocolloid. 2006;20:184–195. doi: 10.1016/j.foodhyd.2005.02.019. DOI

Barrangou L.M., Drake M., Daubert C.R., Foegeding E.A. Textural properties of agarose gels. II. Relationships between rheological properties and sensory texture. Food Hydrocolloid. 2006;20:196–203. doi: 10.1016/j.foodhyd.2005.03.013. DOI

Aymard P., Martin D.R., Plucknett K., Foster T.J., Clark A.H., Norton I.T. Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers. 2001;59:131–144. doi: 10.1002/1097-0282(200109)59:3<131::AID-BIP1013>3.0.CO;2-8. PubMed DOI

Kim H., Kim H.J., Huh H.K., Hwang H.J., Lee S.J. Structural design of a double-layered porous hydrogel for effective mass transport. Biomicrofluidisc. 2015;9:024104. doi: 10.1063/1.4914383. PubMed DOI PMC

Narayanan J., Xiong J.Y., Liu X.Y. Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques. J. Phys. Conf. Ser. 2006;28:83–86. doi: 10.1088/1742-6596/28/1/017. DOI

Gong J.P., Hirota N., Kakugo A., Narita T., Osada Y. Effect of aspect ratio on protein diffusion in hydrogels. J. Phys. Chem. B. 2000;104:9904–9908. doi: 10.1021/jp0014418. DOI

Pluen A., Netti P.A., Jain R.K., Berk D.A. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J. 1999;77:542–552. doi: 10.1016/S0006-3495(99)76911-0. PubMed DOI PMC

Gutenwik J., Nilsson B., Axelsson A. Determination of protein diffusion coefficients in agarose gel with a diffusion cell. Biochem. Eng. J. 2004;19:1–7. doi: 10.1016/j.bej.2003.09.004. DOI

Golmohamadi M., Davis T.A., Wilkinson K.J. Diffusion and partitioning of cations in an agarose hydrogel. J. Phys. Chem. A. 2012;116:6505–6510. doi: 10.1021/jp212343g. PubMed DOI

Doi M., Edwards S.F. The Theory of Polymer Dynamics. Oxford University Press; Oxford, UK: 1986.

De Gennes P.G. Sealing Concepts in Polymer Physics. Cornell University Press; Ithac, NY, USA: 1979.

Wang Y., Ding S., Gong M., Xu S., Xu W., Zhang C. Diffusion characteristics of agarose hydrogel used in diffusive gradients in thin films for measurements of cations and anions. Anal. Chim. Acta. 2016;945:47–56. doi: 10.1016/j.aca.2016.10.003. PubMed DOI

Urík J., Vrána B. An improved design of a passive sampler for polar organic compounds based on diffusion in agarose hydrogel. Environ. Sci. Pollut. Res. 2019;26:15273–15284. doi: 10.1007/s11356-019-04843-6. PubMed DOI

Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of low molecular ions - Results from diffusion cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI

Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of low molecular ions – 2. Non-stationary diffusion experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI

Smilek J., Sedláček P., Kalina M., Klučáková M. On the role of humic acids’ carboxyl groups in the binding of charged organic compounds. Chemosphere. 2015;138:503–510. doi: 10.1016/j.chemosphere.2015.06.093. PubMed DOI

Klučáková M., Smilek J., Sedláček P. How humic acids affect the rheological and transport properties of hydrogels. Molecules. 2019;24:1545. doi: 10.3390/molecules24081545. PubMed DOI PMC

Klučáková M., Pekař M. Transport of copper (II) ions in humic gel—New results from diffusion couple. Colloid. Surf. A. 2009;349:96–101. doi: 10.1016/j.colsurfa.2009.08.001. DOI

Klučáková M., Jarábková S., Velcer T., Kalina M., Pekař M. Transport of a model diffusion probe in polyelectrolyte-surfactant hydrogels. Colloid. Surf. A. 2019;573:73–79. doi: 10.1016/j.colsurfa.2019.04.042. DOI

Klučáková M., Pekař M. Study of Structure and properties of humic and fulvic acids. III. Study of complexation of Cu2+ ions with humic acid in sols. J. Polym. Mater. 2003;20:145–154.

Klučáková M., Pekař M. Study of structure and properties of humic and fulvic acids. IV. Study of interactions of Cu2+ ions with humic gels and final comparison. J. Polym. Mater. 2003;20:155–162.

Klučáková M., Kalina M., Smilek J., Laštůvková M. The transport of metal ions in hydrogels containing humic acids as active complexation agent. Colloid. Surf. A. 2018;557:116–122. doi: 10.1016/j.colsurfa.2018.02.042. DOI

Manceau A., Matynia A. The nature of Cu bonding to natural organic matter. Geochim. Cosmochim. Acta. 2010;74:2556–2580. doi: 10.1016/j.gca.2010.01.027. DOI

Xu J., Tan W., Xiong J., Wang M., Fang L., Koopal L.K. Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra. J. Colloid Interface Sci. 2016;473:141–151. doi: 10.1016/j.jcis.2016.03.066. PubMed DOI

Sierra J., Roig N., Gimenez Papiol G., Perez-Gallego E., Schuhmacher M. Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers. Sci. Total Environ. 2017;605–606:211–218. doi: 10.1016/j.scitotenv.2017.06.136. PubMed DOI

Baek K., Yang J.-W. Humic-substance-enhanced ultrafiltration for removal of heavy metals. Sep. Sci. Technol. 2005;40:699–708. doi: 10.1081/SS-200042665. DOI

Humic-Substances.Org. [(accessed on 24 February 2020)]; Available online: https://www.humic-substances.org.

Ritchie J.D., Perdue E.M. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim. Cosmochim. Acta. 2003;67:85–96. doi: 10.1016/S0016-7037(02)01044-X. DOI

Crank J. The Mathematics of Diffusion. 2nd ed. Clarendon Press; Oxford, UK: 1975.

Cussler E.L. Diffusion: Mass Transfer in Fluid Systems. 2nd ed. Cambridge University Press; Cambridge, UK: 1984.

Haynes W.M. Handbook of Chemistry and Physics. 93rd ed. CRC Press; Boca Raton, FL, USA: 2012.

Leaist D.G. The effect of aggregation, counterion binding, and added NaCl on diffusion of aqueous methylene blue. Can. J. Chem. 1988;66:2452–2456. doi: 10.1139/v88-386. DOI

Samprovalaki K., Robbins P.T., Fryer P.J. Investigation of the diffusion of dyes in agar gels. J. Food Eng. 2012;111:537–545. doi: 10.1016/j.jfoodeng.2012.03.024. DOI

Gendron P.O., Avaltroni F., Wilkinson K.J. Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. J. Fluoresc. 2008;18:1093–1101. doi: 10.1007/s10895-008-0357-7. PubMed DOI

Chakraborty P., Manek A., Nizogi S., Hudson J. Determination of dynamic metal complexes and their diffusion coefficients in the presence of different humic substances by combining two analytical techniques. Anal. Lett. 2014;47:1224–1241. doi: 10.1080/00032719.2013.865204. DOI

Zhang H., Davison W. Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta. 1999;398:329–340. doi: 10.1016/S0003-2670(99)00458-4. DOI

Majer G., Melchior J.P. Characterization of the fluorescence correlation spectroscopy (FCS) standard Rhodamine 6G and calibration of its diffusion coefficient in aqueous solutions. J. Chem. Phys. 2014;140:094201. doi: 10.1063/1.4867096. PubMed DOI

Klucakova M., Veznikova K. The role of concentration and solvent character in the molecular organization of humic acids. Molecules. 2016;21:1410. doi: 10.3390/molecules21111410. PubMed DOI PMC

Klucakova M., Veznikova K. Micro-organization of humic acids in aqueous solutions. J. Mol. Struct. 2017;1144:33–40. doi: 10.1016/j.molstruc.2017.05.012. DOI

Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810–832. doi: 10.1097/00010694-200111000-00007. DOI

Ramirez Coutino V.A., Torres Bustillos L.G., Godinez Mora Tovar L.A., Guerra Sanchez R.J., Rodriguez Valadez F.J. pH effect on surfactant properties and supramolecular structure of humic substances obtained from sewage sludge composting. Rev. Int. Contam. Ambie. 2013;29:191–199.

Fischer T. Humic supramolecular structures have polar surfaces and unpolar cores in native soil. Chemosphere. 2017;183:437–443. doi: 10.1016/j.chemosphere.2017.05.125. PubMed DOI

Tarasevich Y.I., Dolenko S.A., Trifonova M.Y., Alekseenko E.Y. Association and colloid-chemical properties of humic acids in aqueous solutions. Colloid J. 2013;75:207–213. doi: 10.1134/S1061933X13020166. DOI

Baalousha M., Motelica-Heino M., Galaup S., Le Coustumer P. Supramolecular structure of humic acids by TEM with improved sample preparation and staining. Microsc. Res. Technol. 2005;66:299–306. doi: 10.1002/jemt.20173. PubMed DOI

Klucakova M., Kalina M. Diffusivity of Cu (II) ions in humic gels—influence of reactive functional groups of humic acids. Colloid. Surface. A. 2015;483:162–170. doi: 10.1016/j.colsurfa.2015.05.041. DOI

Terdale S., Tantray A. Spectroscopic study of the dimerization of rhodamine 6G in water and different organic solvents. J. Mol. Liq. 2017;225:662–671. doi: 10.1016/j.molliq.2016.10.090. DOI

Talap P.D. Self-aggregation of Rhodamine—6G in aqueous medium and aqueous solution of Bu4NBr. Arch. Appl. Sci. Res. 2014;6:183–187.

Florence N., Naorem H. Study on the effect of an electrolyte on the self-aggregation and the geometry of the dye aggregates of methylene blue in aqueous media. J. Surf. Sci. Technol. 2016;32:28–34. doi: 10.18311/jsst/2016/6599. DOI

Moreno-Vasilda I., Torres-Gallegos C., Araya-Hermosilla R., Nishide H. Influence of the linear aromatic density on methylene blue aggregation around polyanions containing sulfonate groups. J. Phys. Chem. B. 2010;114:4151–4158. doi: 10.1021/jp909105r. PubMed DOI

Marras-Marquez T., Pena J., Veiga-Ochoa M.D. Agarose drug delivery systems upgraded by surfactants inclusion: Critical role of the pore architecture. Carbohydr. Polym. 2014;103:359–368. doi: 10.1016/j.carbpol.2013.12.026. PubMed DOI

Li X., Li Y., Chen C., Zhao D., Wang X., Zhao L., Shi H., Ma G., Su Z. Pore size analysis from low field NMR spin–spin relaxation measurements of porous microspheres. J. Porous Mater. 2015;22:11–20. doi: 10.1007/s10934-014-9864-x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...