Agarose Hydrogels Enriched by Humic Acids as the Complexation Agent
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO 1211
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32204449
PubMed Central
PMC7182926
DOI
10.3390/polym12030687
PII: polym12030687
Knihovny.cz E-zdroje
- Klíčová slova
- agarose, diffusion, humic acid, hydrogel, reactivity,
- Publikační typ
- časopisecké články MeSH
The transport properties of agarose hydrogels enriched by humic acids were studied. Methylene blue, rhodamine 6G and Cu(II) ions were incorporated into hydrogel as diffusion probes, and then their release into water was monitored. Cu(II) ions as well as both the dyes studied in this work have high affinity to humic substances and their interactions strongly affected their diffusion in hydrogels. It was confirmed that humic acids retarded the transport of diffusion probes. Humic acids' enrichment caused the decrease in the values of effective diffusion coefficients due to their complexation with diffusion probes. In general, the diffusion of dyes was more affected by the complexation with humic acids in comparison with Cu(II) ions. The effect of complexation was selective for the particular diffusion probe. The strongest effect was obtained for the diffusion of methylene blue. It was assumed that metal ions interacted preferentially with acidic functional groups. In contrast to Cu(II) ions, dyes can interact with acidic functional groups, and the condensed cyclic structures of the dye probes supported their interactions with the hydrophobic domains of humic substances.
Zobrazit více v PubMed
Djabourov M., Clark A.H., Rowlands D.W., Rossmurphy S.B. Small-angle X-ray-scattering characterization of agarose sols and gels. Macromolecules. 1989;22:180–188. doi: 10.1021/ma00191a035. DOI
Fatin-Rouge N., Milon A., Buffle J., Goulet R.R., Tessier A. Diffusion and partitioning of solutes in agarose hydrogels: The relative influence of electrostatic and specific interactions. J. Phys. Chem. B. 2003;107:12126–12137. doi: 10.1021/jp0303164. DOI
Singh T., Meena R., Kumar A. Effect of sodium sulfate on the gelling behavior of agarose and water structure inside the gel networks. J. Phys. Chem. B. 2009;113:2519–2525. doi: 10.1021/jp809294p. PubMed DOI
Sourbh T., Jyoti C., Vinod K., Vijay K.T. Progress in pectin based hydrogels for water purification: Trends and challenges. J. Environ. Manag. 2019;238:210–223. PubMed
Sourbh T., Bhawna S., Anki V., Jyoti C., Sigitas T., Vijay K.T. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J. Clean. Prod. 2018;198:143–159.
Sourbh T., Penny P.G., Messai A.M., Sigitas T., Yogendra K.M., Vijay K.T. Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives. Vacuum. 2017;146:342–355.
Fernandez E., Lopez D., Mijangos C., Duskova-Smrckova M., Ilavsky M., Dusek K. Rheological and thermal properties of agarose aqueous solutions and hydrogels. J. Polym. Sci. B. 2008;46:322–328. doi: 10.1002/polb.21370. DOI
Barrangou L.M., Daubert C.R., Foegeding E.A. Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocolloid. 2006;20:184–195. doi: 10.1016/j.foodhyd.2005.02.019. DOI
Barrangou L.M., Drake M., Daubert C.R., Foegeding E.A. Textural properties of agarose gels. II. Relationships between rheological properties and sensory texture. Food Hydrocolloid. 2006;20:196–203. doi: 10.1016/j.foodhyd.2005.03.013. DOI
Aymard P., Martin D.R., Plucknett K., Foster T.J., Clark A.H., Norton I.T. Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers. 2001;59:131–144. doi: 10.1002/1097-0282(200109)59:3<131::AID-BIP1013>3.0.CO;2-8. PubMed DOI
Kim H., Kim H.J., Huh H.K., Hwang H.J., Lee S.J. Structural design of a double-layered porous hydrogel for effective mass transport. Biomicrofluidisc. 2015;9:024104. doi: 10.1063/1.4914383. PubMed DOI PMC
Narayanan J., Xiong J.Y., Liu X.Y. Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques. J. Phys. Conf. Ser. 2006;28:83–86. doi: 10.1088/1742-6596/28/1/017. DOI
Gong J.P., Hirota N., Kakugo A., Narita T., Osada Y. Effect of aspect ratio on protein diffusion in hydrogels. J. Phys. Chem. B. 2000;104:9904–9908. doi: 10.1021/jp0014418. DOI
Pluen A., Netti P.A., Jain R.K., Berk D.A. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J. 1999;77:542–552. doi: 10.1016/S0006-3495(99)76911-0. PubMed DOI PMC
Gutenwik J., Nilsson B., Axelsson A. Determination of protein diffusion coefficients in agarose gel with a diffusion cell. Biochem. Eng. J. 2004;19:1–7. doi: 10.1016/j.bej.2003.09.004. DOI
Golmohamadi M., Davis T.A., Wilkinson K.J. Diffusion and partitioning of cations in an agarose hydrogel. J. Phys. Chem. A. 2012;116:6505–6510. doi: 10.1021/jp212343g. PubMed DOI
Doi M., Edwards S.F. The Theory of Polymer Dynamics. Oxford University Press; Oxford, UK: 1986.
De Gennes P.G. Sealing Concepts in Polymer Physics. Cornell University Press; Ithac, NY, USA: 1979.
Wang Y., Ding S., Gong M., Xu S., Xu W., Zhang C. Diffusion characteristics of agarose hydrogel used in diffusive gradients in thin films for measurements of cations and anions. Anal. Chim. Acta. 2016;945:47–56. doi: 10.1016/j.aca.2016.10.003. PubMed DOI
Urík J., Vrána B. An improved design of a passive sampler for polar organic compounds based on diffusion in agarose hydrogel. Environ. Sci. Pollut. Res. 2019;26:15273–15284. doi: 10.1007/s11356-019-04843-6. PubMed DOI
Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of low molecular ions - Results from diffusion cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI
Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of low molecular ions – 2. Non-stationary diffusion experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI
Smilek J., Sedláček P., Kalina M., Klučáková M. On the role of humic acids’ carboxyl groups in the binding of charged organic compounds. Chemosphere. 2015;138:503–510. doi: 10.1016/j.chemosphere.2015.06.093. PubMed DOI
Klučáková M., Smilek J., Sedláček P. How humic acids affect the rheological and transport properties of hydrogels. Molecules. 2019;24:1545. doi: 10.3390/molecules24081545. PubMed DOI PMC
Klučáková M., Pekař M. Transport of copper (II) ions in humic gel—New results from diffusion couple. Colloid. Surf. A. 2009;349:96–101. doi: 10.1016/j.colsurfa.2009.08.001. DOI
Klučáková M., Jarábková S., Velcer T., Kalina M., Pekař M. Transport of a model diffusion probe in polyelectrolyte-surfactant hydrogels. Colloid. Surf. A. 2019;573:73–79. doi: 10.1016/j.colsurfa.2019.04.042. DOI
Klučáková M., Pekař M. Study of Structure and properties of humic and fulvic acids. III. Study of complexation of Cu2+ ions with humic acid in sols. J. Polym. Mater. 2003;20:145–154.
Klučáková M., Pekař M. Study of structure and properties of humic and fulvic acids. IV. Study of interactions of Cu2+ ions with humic gels and final comparison. J. Polym. Mater. 2003;20:155–162.
Klučáková M., Kalina M., Smilek J., Laštůvková M. The transport of metal ions in hydrogels containing humic acids as active complexation agent. Colloid. Surf. A. 2018;557:116–122. doi: 10.1016/j.colsurfa.2018.02.042. DOI
Manceau A., Matynia A. The nature of Cu bonding to natural organic matter. Geochim. Cosmochim. Acta. 2010;74:2556–2580. doi: 10.1016/j.gca.2010.01.027. DOI
Xu J., Tan W., Xiong J., Wang M., Fang L., Koopal L.K. Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra. J. Colloid Interface Sci. 2016;473:141–151. doi: 10.1016/j.jcis.2016.03.066. PubMed DOI
Sierra J., Roig N., Gimenez Papiol G., Perez-Gallego E., Schuhmacher M. Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers. Sci. Total Environ. 2017;605–606:211–218. doi: 10.1016/j.scitotenv.2017.06.136. PubMed DOI
Baek K., Yang J.-W. Humic-substance-enhanced ultrafiltration for removal of heavy metals. Sep. Sci. Technol. 2005;40:699–708. doi: 10.1081/SS-200042665. DOI
Humic-Substances.Org. [(accessed on 24 February 2020)]; Available online: https://www.humic-substances.org.
Ritchie J.D., Perdue E.M. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim. Cosmochim. Acta. 2003;67:85–96. doi: 10.1016/S0016-7037(02)01044-X. DOI
Crank J. The Mathematics of Diffusion. 2nd ed. Clarendon Press; Oxford, UK: 1975.
Cussler E.L. Diffusion: Mass Transfer in Fluid Systems. 2nd ed. Cambridge University Press; Cambridge, UK: 1984.
Haynes W.M. Handbook of Chemistry and Physics. 93rd ed. CRC Press; Boca Raton, FL, USA: 2012.
Leaist D.G. The effect of aggregation, counterion binding, and added NaCl on diffusion of aqueous methylene blue. Can. J. Chem. 1988;66:2452–2456. doi: 10.1139/v88-386. DOI
Samprovalaki K., Robbins P.T., Fryer P.J. Investigation of the diffusion of dyes in agar gels. J. Food Eng. 2012;111:537–545. doi: 10.1016/j.jfoodeng.2012.03.024. DOI
Gendron P.O., Avaltroni F., Wilkinson K.J. Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. J. Fluoresc. 2008;18:1093–1101. doi: 10.1007/s10895-008-0357-7. PubMed DOI
Chakraborty P., Manek A., Nizogi S., Hudson J. Determination of dynamic metal complexes and their diffusion coefficients in the presence of different humic substances by combining two analytical techniques. Anal. Lett. 2014;47:1224–1241. doi: 10.1080/00032719.2013.865204. DOI
Zhang H., Davison W. Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta. 1999;398:329–340. doi: 10.1016/S0003-2670(99)00458-4. DOI
Majer G., Melchior J.P. Characterization of the fluorescence correlation spectroscopy (FCS) standard Rhodamine 6G and calibration of its diffusion coefficient in aqueous solutions. J. Chem. Phys. 2014;140:094201. doi: 10.1063/1.4867096. PubMed DOI
Klucakova M., Veznikova K. The role of concentration and solvent character in the molecular organization of humic acids. Molecules. 2016;21:1410. doi: 10.3390/molecules21111410. PubMed DOI PMC
Klucakova M., Veznikova K. Micro-organization of humic acids in aqueous solutions. J. Mol. Struct. 2017;1144:33–40. doi: 10.1016/j.molstruc.2017.05.012. DOI
Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810–832. doi: 10.1097/00010694-200111000-00007. DOI
Ramirez Coutino V.A., Torres Bustillos L.G., Godinez Mora Tovar L.A., Guerra Sanchez R.J., Rodriguez Valadez F.J. pH effect on surfactant properties and supramolecular structure of humic substances obtained from sewage sludge composting. Rev. Int. Contam. Ambie. 2013;29:191–199.
Fischer T. Humic supramolecular structures have polar surfaces and unpolar cores in native soil. Chemosphere. 2017;183:437–443. doi: 10.1016/j.chemosphere.2017.05.125. PubMed DOI
Tarasevich Y.I., Dolenko S.A., Trifonova M.Y., Alekseenko E.Y. Association and colloid-chemical properties of humic acids in aqueous solutions. Colloid J. 2013;75:207–213. doi: 10.1134/S1061933X13020166. DOI
Baalousha M., Motelica-Heino M., Galaup S., Le Coustumer P. Supramolecular structure of humic acids by TEM with improved sample preparation and staining. Microsc. Res. Technol. 2005;66:299–306. doi: 10.1002/jemt.20173. PubMed DOI
Klucakova M., Kalina M. Diffusivity of Cu (II) ions in humic gels—influence of reactive functional groups of humic acids. Colloid. Surface. A. 2015;483:162–170. doi: 10.1016/j.colsurfa.2015.05.041. DOI
Terdale S., Tantray A. Spectroscopic study of the dimerization of rhodamine 6G in water and different organic solvents. J. Mol. Liq. 2017;225:662–671. doi: 10.1016/j.molliq.2016.10.090. DOI
Talap P.D. Self-aggregation of Rhodamine—6G in aqueous medium and aqueous solution of Bu4NBr. Arch. Appl. Sci. Res. 2014;6:183–187.
Florence N., Naorem H. Study on the effect of an electrolyte on the self-aggregation and the geometry of the dye aggregates of methylene blue in aqueous media. J. Surf. Sci. Technol. 2016;32:28–34. doi: 10.18311/jsst/2016/6599. DOI
Moreno-Vasilda I., Torres-Gallegos C., Araya-Hermosilla R., Nishide H. Influence of the linear aromatic density on methylene blue aggregation around polyanions containing sulfonate groups. J. Phys. Chem. B. 2010;114:4151–4158. doi: 10.1021/jp909105r. PubMed DOI
Marras-Marquez T., Pena J., Veiga-Ochoa M.D. Agarose drug delivery systems upgraded by surfactants inclusion: Critical role of the pore architecture. Carbohydr. Polym. 2014;103:359–368. doi: 10.1016/j.carbpol.2013.12.026. PubMed DOI
Li X., Li Y., Chen C., Zhao D., Wang X., Zhao L., Shi H., Ma G., Su Z. Pore size analysis from low field NMR spin–spin relaxation measurements of porous microspheres. J. Porous Mater. 2015;22:11–20. doi: 10.1007/s10934-014-9864-x. DOI
Effect of Chitosan as Active Bio-colloidal Constituent on the Diffusion of Dyes in Agarose Hydrogel
Lecithin as an Effective Modifier of the Transport Properties of Variously Crosslinked Hydrogels
How the Addition of Chitosan Affects the Transport and Rheological Properties of Agarose Hydrogels
The Effect of Supramolecular Humic Acids on the Diffusivity of Metal Ions in Agarose Hydrogel
How the Supramolecular Nature of Lignohumate Affects Its Diffusion in Agarose Hydrogel