Agarose Hydrogels Enriched by Humic Acids as a Functional Model for the Transport of Pharmaceuticals in Nature Systems

. 2024 Dec 16 ; 29 (24) : . [epub] 20241216

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39770026

The presence of pharmaceuticals in nature systems poses a threat to the environment, plants, animals, and, last but not least, human health. Their transport in soils, waters, and sediments plays important roles in the toxicity and bioavailability of pharmaceuticals. The mobility of pharmaceuticals can be affected by their interactions with organic matter and other soil and water constituents. In this study, a model agarose hydrogel enriched by humic acid as a representative of organic matter is used as a transport medium for pharmaceuticals. Sulphapyridine (as a representative of sulphonamide antibiotics) and diclofenac (as a representative of widely used non-steroidal anti-inflammatory drugs) were chosen for experiments in diffusion cells. Pharmaceuticals were passed through the hydrogel from the donor solution to the acceptor compartment and could interact with humic acids incorporated in the hydrogel. The lag time was prolonged if the hydrogel was enriched by humic acids from 134 to 390 s for sulphapyridine and from 323 to 606 s for diclofenac. Similarly, the incorporation of humic acids in the hydrogel resulted in a decrease in the determined diffusion coefficients. The decrease was stronger in the first stage of the experiment when diffusing particles could interact with vacant binding sites.

Zobrazit více v PubMed

Djabourov M., Clark A.H., Rowlands D.W., Rossmurphy S.B. Small-angle X-ray-scattering characterization of agarose sols and gels. Macromolecules. 1989;22:180–188. doi: 10.1021/ma00191a035. DOI

Fatin-Rouge N., Milon A., Buffle J., Goulet R.R., Tessier A. Diffusion and partitioning of solutes in agarose hydrogels: The relative influence of electrostatic and specific interactions. J. Phys. Chem. B. 2003;107:12126–12137. doi: 10.1021/jp0303164. DOI

Aymard P., Martin D.R., Plucknett K., Foster T.J., Clark A.H., Norton I.T. Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers. 2001;59:131–144. doi: 10.1002/1097-0282(200109)59:3<131::AID-BIP1013>3.0.CO;2-8. PubMed DOI

Kim H., Kim H.J., Huh H.K., Hwang H.J., Lee S.J. Structural design of a double-layered porous hydrogel for effective mass transport. Biomicrofluidics. 2015;9:024104. doi: 10.1063/1.4914383. PubMed DOI PMC

Narayanan J., Xiong J.Y., Liu X.Y. Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques. J. Phys. Conf. Ser. 2006;28:83–86. doi: 10.1088/1742-6596/28/1/017. DOI

Singh T., Meena R., Kumar A. Effect of sodium sulfate on the gelling behavior of agarose and water structure inside the gel networks. J. Phys. Chem. B. 2009;113:2519–2525. doi: 10.1021/jp809294p. PubMed DOI

Fernandez E., Lopez D., Mijangos C., Dušková-Smrčková M., Ilavský M., Dušek K. Rheological and thermal properties of agarose aqueous solutions and hydrogels. J. Polym. Sci. B. 2008;46:322–328. doi: 10.1002/polb.21370. DOI

Barrangou L.M., Daubert C.R., Foegeding E.A. Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocolloid. 2006;20:184–195. doi: 10.1016/j.foodhyd.2005.02.019. DOI

Barrangou L.M., Drake M., Daubert C.R., Foegeding E.A. Textural properties of agarose gels. II. Relationships between rheological properties and sensory texture. Food Hydrocolloid. 2006;20:196–203. doi: 10.1016/j.foodhyd.2005.03.013. DOI

Pluen A., Netti P.A., Jain R.K., Berk D.A. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J. 1999;77:542–552. doi: 10.1016/S0006-3495(99)76911-0. PubMed DOI PMC

Gutenwik J., Nilsson B., Axelsson A. Determination of protein diffusion coefficients in agarose gel with a diffusion cell. Biochem. Eng. J. 2004;19:1–7. doi: 10.1016/j.bej.2003.09.004. DOI

Golmohamadi M., Davis T.A., Wilkinson K.J. Diffusion and partitioning of cations in an agarose hydrogel. J. Phys. Chem. A. 2012;116:6505–6510. doi: 10.1021/jp212343g. PubMed DOI

Klučáková M., Smilek J., Sedláček P. How humic acids affect the rheological and transport properties of hydrogels. Molecules. 2019;24:1545. doi: 10.3390/molecules24081545. PubMed DOI PMC

Klučáková M. Agarose hydrogels enriched by humic acids as complexation agent. Polymers. 2020;12:687–698. doi: 10.3390/polym12030687. PubMed DOI PMC

Wang Y., Ding S., Gong M., Xu S., Xu W., Zhang C. Diffusion characteristics of agarose hydrogel used in diffusive gradients in thin films for measurements of cations and anions. Anal. Chim. Acta. 2016;945:47–56. doi: 10.1016/j.aca.2016.10.003. PubMed DOI

Urík J., Vrána B. An improved design of a passive sampler for polar organic compounds based on diffusion in agarose hydrogel. Environ. Sci. Pollut. Res. 2019;26:15273–15284. doi: 10.1007/s11356-019-04843-6. PubMed DOI

Chui M.M., Phillips R.J., McCarthy M.J. Measurement of the porous microstructure of hydrogels by Nuclear Magnetic Resonance. J. Colloid Interface Sci. 1995;174:336–344. doi: 10.1006/jcis.1995.1399. DOI

Albro M.B., Chahine N.O., Li R., Yeager K., Hung C.T., Ateshian G. A Dynamic loading of deformable porous media can induce active solute transport. J. Biomech. 2008;41:3152–3157. doi: 10.1016/j.jbiomech.2008.08.023. PubMed DOI PMC

Urík J., Paschke A., Vrána B. Diffusion coefficients of polar organic compounds in agarose hydrogel and water and their use for estimating uptake in passive samplers. Chemosphere. 2020;249:126183. doi: 10.1016/j.chemosphere.2020.126183. PubMed DOI

Gong J.P., Hirota N., Kakugo A., Narita T., Osada Y. Effect of aspect ratio on protein diffusion in hydrogels. J. Phys. Chem. B. 2000;104:9904–9908. doi: 10.1021/jp0014418. DOI

Liang S.M., Xu J., Weng L.H., Dai H.J., Zhang X.L., Zhang L.N. Protein diffusion in agarose hydrogel in situ measured by improved refractive index method. J. Control. Release. 2006;115:189–196. doi: 10.1016/j.jconrel.2006.08.006. PubMed DOI

Wenger L., Hubbuch J. Investigation of lysozyme diffusion in agarose hydrogels employing a cicrofluidics-based UV imaging approach. Front. Bioeng. Biotechnol. 2022;10:849271. doi: 10.3389/fbioe.2022.849271. PubMed DOI PMC

Dai H.J., Wu J.J., Wang Y.X., Tan S.X., Liang S.M., Jiang B., Zhao N., Xu J. Diffusion of levofloxacin mesylate in agarose hydrogels monitored by a refractive-index method. J. Appl. Polym. Sci. 2011;122:3000–3006. doi: 10.1002/app.34113. DOI

Klučáková M., Závodská P. Diffusion of sulphonamide antibiotics in agarose hydrogels enriched by humic acids. Colloid. Surface A. 2023;673:131825. doi: 10.1016/j.colsurfa.2023.131825. DOI

Klučáková M. The effect of supramolecular humic acids on the diffusivity of metal ions in agarose hydrogel. Molecules. 2022;27:1019. doi: 10.3390/molecules27031019. PubMed DOI PMC

Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of low molecular ions—Results from diffusion cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI

Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of low molecular ions—2. Non-stationary Diffusion Experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI

Carvalho T.O., Matias A.E.B., Braga L.R., Evangelista S.M., Prado A.G.S. Calorimetric studies of removal of nonsteroidal anti-inflammatory drugs diclofenac and dipyrone from water. J. Therm. Anal. Calorim. 2011;106:475–481. doi: 10.1007/s10973-010-1243-5. DOI

Kümmerer K. The presence of pharmaceuticals in the environment due to human use—Present knowledge and future challenges. J. Environ. Manag. 2009;90:2354–2366. doi: 10.1016/j.jenvman.2009.01.023. PubMed DOI

Mompelat S., Le Bot S.B., Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 2009;35:803–814. doi: 10.1016/j.envint.2008.10.008. PubMed DOI

Jacobs L.E., Fimmen R.L., Chin Y.-P., Mash H.E., Weavers L.K. Fulvic acid mediated photolysis of ibuprofen in water. Water Res. 2011;45:4449–4458. doi: 10.1016/j.watres.2011.05.041. PubMed DOI

Kolpin D.W., Furlong E.T., Meyer M.T., Thurman E.M., Zaugg S.D., Barber L.B., Buxton H.T. Pharmaceuticals, hormones, and other organic, wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002;36:1202–1211. doi: 10.1021/es011055j. PubMed DOI

Nikolaou A., Meric S., Fatta D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 2007;387:1225–1234. doi: 10.1007/s00216-006-1035-8. PubMed DOI

Lindqvist N., Tuhkanen T., Kronberg L. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res. 2005;39:2219–2228. doi: 10.1016/j.watres.2005.04.003. PubMed DOI

Nakada N., Tanishima T., Shinohara H., Kiri K., Takada H. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res. 2006;40:3297–3303. doi: 10.1016/j.watres.2006.06.039. PubMed DOI

Winker M., Faika D., Gulyas H., Otterpohl R. A comparison of pharmaceutical concentrations in raw municipal wastewater and yellow water. Sci. Total Environ. 2008;399:96–104. doi: 10.1016/j.scitotenv.2008.03.027. PubMed DOI

Vulava V.M., Cory W.C., Murphey V.L., Ulmer C.Z. Sorption, photodegradation, and chemical transformation of naproxen and ibuprofen in soils and water. Sci. Total Environ. 2016;565:1063–1070. doi: 10.1016/j.scitotenv.2016.05.132. PubMed DOI

Bialk H.M., Pedersen J.A. NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances. Environ. Sci. Technol. 2008;42:106–112. doi: 10.1021/es070779d. PubMed DOI

Li Y., Chen J., Qiao X., Zhang H., Zhang Y., Zhou C. Insights into photolytic mechanism of sulfapyridine induced by triplet-excited dissolved organic matter. Chemosphere. 2016;147:305–310. doi: 10.1016/j.chemosphere.2015.12.115. PubMed DOI

Chen K.L., Liu L.C., Chen W.R. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils. Environ. Pollut. 2017;231:1163–1171. doi: 10.1016/j.envpol.2017.08.011. PubMed DOI

Gworek B., Kijeńska M., Wrzosek J., Graniewska M. Pharmaceuticals in the soil and plant environment: A review. Water Air Soil Pollut. 2021;232:145. doi: 10.1007/s11270-020-04954-8. DOI

Aust M.-O., Thiele-Bruhn S., Seeger J., Godlinski F., Meissner R., Leinweber P. Sulfonamides leach from sandy loam soils under common agricultural practice. Water Air Soil Pollut. 2010;211:143–156. doi: 10.1007/s11270-009-0288-1. DOI

Monteleone M., Fuoco A., Esposito E., Rose I., Chen J., Comesaña-Gándara B., Grazia Bezzu C., Carta M., McKeown N.B., Shalygin M.G., et al. Advanced methods for analysis of mixed gas diffusion in polymeric membranes. J. Membr. Sci. 2022;648:120356. doi: 10.1016/j.memsci.2022.120356. DOI

Raheem H., Craster B., Seshia A. A comparison of calculation methods for the diffusion coefficient as a potential tool for identifying material alteration with time. Polym. Test. 2024;132:108356. doi: 10.1016/j.polymertesting.2024.108356. DOI

Crank J. The Mathematics of Diffusion. 2nd ed. Oxford University Press; London, UK: 1975. pp. 1–26.

Chen C.E., Zhang H., Ying G.G., Jones K.C. Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters. Environ. Sci. Technol. 2013;47:13587–13593. doi: 10.1021/es402662g. PubMed DOI

Pygall S.R., Griffiths P.C., Wolf B., Timmins P., Melia C.D. Solution interactions of diclofenac sodium and meclofenamic acid sodium with hydroxypropyl methylcellulose (HPMC) Int. J. Pharm. 2011;405:55–62. doi: 10.1016/j.ijpharm.2010.11.043. PubMed DOI

Almbrok E.M., Yusof N.A., Abdullah J., Zawawi R.M. Electrochemical and thermodynamic properties of diclofenac and dibucaine ions across water|1,6-dichlorohexane interface. Int. J. Electrochem. Sci. 2021;16:210246. doi: 10.20964/2021.02.26. DOI

Parsaee S., Sarbolouki M.N., Parnianpour M. In-vitro release of diclofenac diethylammonium from lipid-based formulations. Int. J. Pharm. 2002;241:185–190. doi: 10.1016/S0378-5173(02)00238-7. PubMed DOI

Nokhodchi A., Sharabiani K., Rashidi M.R., Ghafourian T. The effect of terpene concentrations on the skin penetration of diclofenac sodium. Int. J. Pharm. 2007;335:97–105. doi: 10.1016/j.ijpharm.2006.10.041. PubMed DOI

Cussler E.L. Diffusion Mass Transfer in Fluid Systems. 2nd ed. Cambridge University Press; Cambridge, UK: 1997. pp. 17–31.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...