Agarose Hydrogels Enriched by Humic Acids as a Functional Model for the Transport of Pharmaceuticals in Nature Systems
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39770026
PubMed Central
PMC11678035
DOI
10.3390/molecules29245937
PII: molecules29245937
Knihovny.cz E-zdroje
- Klíčová slova
- diclofenac, humic acid, hydrogel, sulphapyridine, transport,
- MeSH
- difuze MeSH
- diklofenak * chemie MeSH
- huminové látky * analýza MeSH
- hydrogely * chemie MeSH
- léčivé přípravky chemie MeSH
- sefarosa * chemie MeSH
- sulfapyridin chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diklofenak * MeSH
- huminové látky * MeSH
- hydrogely * MeSH
- léčivé přípravky MeSH
- sefarosa * MeSH
- sulfapyridin MeSH
The presence of pharmaceuticals in nature systems poses a threat to the environment, plants, animals, and, last but not least, human health. Their transport in soils, waters, and sediments plays important roles in the toxicity and bioavailability of pharmaceuticals. The mobility of pharmaceuticals can be affected by their interactions with organic matter and other soil and water constituents. In this study, a model agarose hydrogel enriched by humic acid as a representative of organic matter is used as a transport medium for pharmaceuticals. Sulphapyridine (as a representative of sulphonamide antibiotics) and diclofenac (as a representative of widely used non-steroidal anti-inflammatory drugs) were chosen for experiments in diffusion cells. Pharmaceuticals were passed through the hydrogel from the donor solution to the acceptor compartment and could interact with humic acids incorporated in the hydrogel. The lag time was prolonged if the hydrogel was enriched by humic acids from 134 to 390 s for sulphapyridine and from 323 to 606 s for diclofenac. Similarly, the incorporation of humic acids in the hydrogel resulted in a decrease in the determined diffusion coefficients. The decrease was stronger in the first stage of the experiment when diffusing particles could interact with vacant binding sites.
Zobrazit více v PubMed
Djabourov M., Clark A.H., Rowlands D.W., Rossmurphy S.B. Small-angle X-ray-scattering characterization of agarose sols and gels. Macromolecules. 1989;22:180–188. doi: 10.1021/ma00191a035. DOI
Fatin-Rouge N., Milon A., Buffle J., Goulet R.R., Tessier A. Diffusion and partitioning of solutes in agarose hydrogels: The relative influence of electrostatic and specific interactions. J. Phys. Chem. B. 2003;107:12126–12137. doi: 10.1021/jp0303164. DOI
Aymard P., Martin D.R., Plucknett K., Foster T.J., Clark A.H., Norton I.T. Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers. 2001;59:131–144. doi: 10.1002/1097-0282(200109)59:3<131::AID-BIP1013>3.0.CO;2-8. PubMed DOI
Kim H., Kim H.J., Huh H.K., Hwang H.J., Lee S.J. Structural design of a double-layered porous hydrogel for effective mass transport. Biomicrofluidics. 2015;9:024104. doi: 10.1063/1.4914383. PubMed DOI PMC
Narayanan J., Xiong J.Y., Liu X.Y. Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques. J. Phys. Conf. Ser. 2006;28:83–86. doi: 10.1088/1742-6596/28/1/017. DOI
Singh T., Meena R., Kumar A. Effect of sodium sulfate on the gelling behavior of agarose and water structure inside the gel networks. J. Phys. Chem. B. 2009;113:2519–2525. doi: 10.1021/jp809294p. PubMed DOI
Fernandez E., Lopez D., Mijangos C., Dušková-Smrčková M., Ilavský M., Dušek K. Rheological and thermal properties of agarose aqueous solutions and hydrogels. J. Polym. Sci. B. 2008;46:322–328. doi: 10.1002/polb.21370. DOI
Barrangou L.M., Daubert C.R., Foegeding E.A. Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocolloid. 2006;20:184–195. doi: 10.1016/j.foodhyd.2005.02.019. DOI
Barrangou L.M., Drake M., Daubert C.R., Foegeding E.A. Textural properties of agarose gels. II. Relationships between rheological properties and sensory texture. Food Hydrocolloid. 2006;20:196–203. doi: 10.1016/j.foodhyd.2005.03.013. DOI
Pluen A., Netti P.A., Jain R.K., Berk D.A. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J. 1999;77:542–552. doi: 10.1016/S0006-3495(99)76911-0. PubMed DOI PMC
Gutenwik J., Nilsson B., Axelsson A. Determination of protein diffusion coefficients in agarose gel with a diffusion cell. Biochem. Eng. J. 2004;19:1–7. doi: 10.1016/j.bej.2003.09.004. DOI
Golmohamadi M., Davis T.A., Wilkinson K.J. Diffusion and partitioning of cations in an agarose hydrogel. J. Phys. Chem. A. 2012;116:6505–6510. doi: 10.1021/jp212343g. PubMed DOI
Klučáková M., Smilek J., Sedláček P. How humic acids affect the rheological and transport properties of hydrogels. Molecules. 2019;24:1545. doi: 10.3390/molecules24081545. PubMed DOI PMC
Klučáková M. Agarose hydrogels enriched by humic acids as complexation agent. Polymers. 2020;12:687–698. doi: 10.3390/polym12030687. PubMed DOI PMC
Wang Y., Ding S., Gong M., Xu S., Xu W., Zhang C. Diffusion characteristics of agarose hydrogel used in diffusive gradients in thin films for measurements of cations and anions. Anal. Chim. Acta. 2016;945:47–56. doi: 10.1016/j.aca.2016.10.003. PubMed DOI
Urík J., Vrána B. An improved design of a passive sampler for polar organic compounds based on diffusion in agarose hydrogel. Environ. Sci. Pollut. Res. 2019;26:15273–15284. doi: 10.1007/s11356-019-04843-6. PubMed DOI
Chui M.M., Phillips R.J., McCarthy M.J. Measurement of the porous microstructure of hydrogels by Nuclear Magnetic Resonance. J. Colloid Interface Sci. 1995;174:336–344. doi: 10.1006/jcis.1995.1399. DOI
Albro M.B., Chahine N.O., Li R., Yeager K., Hung C.T., Ateshian G. A Dynamic loading of deformable porous media can induce active solute transport. J. Biomech. 2008;41:3152–3157. doi: 10.1016/j.jbiomech.2008.08.023. PubMed DOI PMC
Urík J., Paschke A., Vrána B. Diffusion coefficients of polar organic compounds in agarose hydrogel and water and their use for estimating uptake in passive samplers. Chemosphere. 2020;249:126183. doi: 10.1016/j.chemosphere.2020.126183. PubMed DOI
Gong J.P., Hirota N., Kakugo A., Narita T., Osada Y. Effect of aspect ratio on protein diffusion in hydrogels. J. Phys. Chem. B. 2000;104:9904–9908. doi: 10.1021/jp0014418. DOI
Liang S.M., Xu J., Weng L.H., Dai H.J., Zhang X.L., Zhang L.N. Protein diffusion in agarose hydrogel in situ measured by improved refractive index method. J. Control. Release. 2006;115:189–196. doi: 10.1016/j.jconrel.2006.08.006. PubMed DOI
Wenger L., Hubbuch J. Investigation of lysozyme diffusion in agarose hydrogels employing a cicrofluidics-based UV imaging approach. Front. Bioeng. Biotechnol. 2022;10:849271. doi: 10.3389/fbioe.2022.849271. PubMed DOI PMC
Dai H.J., Wu J.J., Wang Y.X., Tan S.X., Liang S.M., Jiang B., Zhao N., Xu J. Diffusion of levofloxacin mesylate in agarose hydrogels monitored by a refractive-index method. J. Appl. Polym. Sci. 2011;122:3000–3006. doi: 10.1002/app.34113. DOI
Klučáková M., Závodská P. Diffusion of sulphonamide antibiotics in agarose hydrogels enriched by humic acids. Colloid. Surface A. 2023;673:131825. doi: 10.1016/j.colsurfa.2023.131825. DOI
Klučáková M. The effect of supramolecular humic acids on the diffusivity of metal ions in agarose hydrogel. Molecules. 2022;27:1019. doi: 10.3390/molecules27031019. PubMed DOI PMC
Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of low molecular ions—Results from diffusion cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI
Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of low molecular ions—2. Non-stationary Diffusion Experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI
Carvalho T.O., Matias A.E.B., Braga L.R., Evangelista S.M., Prado A.G.S. Calorimetric studies of removal of nonsteroidal anti-inflammatory drugs diclofenac and dipyrone from water. J. Therm. Anal. Calorim. 2011;106:475–481. doi: 10.1007/s10973-010-1243-5. DOI
Kümmerer K. The presence of pharmaceuticals in the environment due to human use—Present knowledge and future challenges. J. Environ. Manag. 2009;90:2354–2366. doi: 10.1016/j.jenvman.2009.01.023. PubMed DOI
Mompelat S., Le Bot S.B., Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 2009;35:803–814. doi: 10.1016/j.envint.2008.10.008. PubMed DOI
Jacobs L.E., Fimmen R.L., Chin Y.-P., Mash H.E., Weavers L.K. Fulvic acid mediated photolysis of ibuprofen in water. Water Res. 2011;45:4449–4458. doi: 10.1016/j.watres.2011.05.041. PubMed DOI
Kolpin D.W., Furlong E.T., Meyer M.T., Thurman E.M., Zaugg S.D., Barber L.B., Buxton H.T. Pharmaceuticals, hormones, and other organic, wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002;36:1202–1211. doi: 10.1021/es011055j. PubMed DOI
Nikolaou A., Meric S., Fatta D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 2007;387:1225–1234. doi: 10.1007/s00216-006-1035-8. PubMed DOI
Lindqvist N., Tuhkanen T., Kronberg L. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res. 2005;39:2219–2228. doi: 10.1016/j.watres.2005.04.003. PubMed DOI
Nakada N., Tanishima T., Shinohara H., Kiri K., Takada H. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res. 2006;40:3297–3303. doi: 10.1016/j.watres.2006.06.039. PubMed DOI
Winker M., Faika D., Gulyas H., Otterpohl R. A comparison of pharmaceutical concentrations in raw municipal wastewater and yellow water. Sci. Total Environ. 2008;399:96–104. doi: 10.1016/j.scitotenv.2008.03.027. PubMed DOI
Vulava V.M., Cory W.C., Murphey V.L., Ulmer C.Z. Sorption, photodegradation, and chemical transformation of naproxen and ibuprofen in soils and water. Sci. Total Environ. 2016;565:1063–1070. doi: 10.1016/j.scitotenv.2016.05.132. PubMed DOI
Bialk H.M., Pedersen J.A. NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances. Environ. Sci. Technol. 2008;42:106–112. doi: 10.1021/es070779d. PubMed DOI
Li Y., Chen J., Qiao X., Zhang H., Zhang Y., Zhou C. Insights into photolytic mechanism of sulfapyridine induced by triplet-excited dissolved organic matter. Chemosphere. 2016;147:305–310. doi: 10.1016/j.chemosphere.2015.12.115. PubMed DOI
Chen K.L., Liu L.C., Chen W.R. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils. Environ. Pollut. 2017;231:1163–1171. doi: 10.1016/j.envpol.2017.08.011. PubMed DOI
Gworek B., Kijeńska M., Wrzosek J., Graniewska M. Pharmaceuticals in the soil and plant environment: A review. Water Air Soil Pollut. 2021;232:145. doi: 10.1007/s11270-020-04954-8. DOI
Aust M.-O., Thiele-Bruhn S., Seeger J., Godlinski F., Meissner R., Leinweber P. Sulfonamides leach from sandy loam soils under common agricultural practice. Water Air Soil Pollut. 2010;211:143–156. doi: 10.1007/s11270-009-0288-1. DOI
Monteleone M., Fuoco A., Esposito E., Rose I., Chen J., Comesaña-Gándara B., Grazia Bezzu C., Carta M., McKeown N.B., Shalygin M.G., et al. Advanced methods for analysis of mixed gas diffusion in polymeric membranes. J. Membr. Sci. 2022;648:120356. doi: 10.1016/j.memsci.2022.120356. DOI
Raheem H., Craster B., Seshia A. A comparison of calculation methods for the diffusion coefficient as a potential tool for identifying material alteration with time. Polym. Test. 2024;132:108356. doi: 10.1016/j.polymertesting.2024.108356. DOI
Crank J. The Mathematics of Diffusion. 2nd ed. Oxford University Press; London, UK: 1975. pp. 1–26.
Chen C.E., Zhang H., Ying G.G., Jones K.C. Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters. Environ. Sci. Technol. 2013;47:13587–13593. doi: 10.1021/es402662g. PubMed DOI
Pygall S.R., Griffiths P.C., Wolf B., Timmins P., Melia C.D. Solution interactions of diclofenac sodium and meclofenamic acid sodium with hydroxypropyl methylcellulose (HPMC) Int. J. Pharm. 2011;405:55–62. doi: 10.1016/j.ijpharm.2010.11.043. PubMed DOI
Almbrok E.M., Yusof N.A., Abdullah J., Zawawi R.M. Electrochemical and thermodynamic properties of diclofenac and dibucaine ions across water|1,6-dichlorohexane interface. Int. J. Electrochem. Sci. 2021;16:210246. doi: 10.20964/2021.02.26. DOI
Parsaee S., Sarbolouki M.N., Parnianpour M. In-vitro release of diclofenac diethylammonium from lipid-based formulations. Int. J. Pharm. 2002;241:185–190. doi: 10.1016/S0378-5173(02)00238-7. PubMed DOI
Nokhodchi A., Sharabiani K., Rashidi M.R., Ghafourian T. The effect of terpene concentrations on the skin penetration of diclofenac sodium. Int. J. Pharm. 2007;335:97–105. doi: 10.1016/j.ijpharm.2006.10.041. PubMed DOI
Cussler E.L. Diffusion Mass Transfer in Fluid Systems. 2nd ed. Cambridge University Press; Cambridge, UK: 1997. pp. 17–31.