An improved design of a passive sampler for polar organic compounds based on diffusion in agarose hydrogel

. 2019 May ; 26 (15) : 15273-15284. [epub] 20190330

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30929173

Grantová podpora
603437 FP7-ENV-2013
LM2015051 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001761 European Structural and Investment Funds, Operational Programme Research, Development, Education

Odkazy

PubMed 30929173
DOI 10.1007/s11356-019-04843-6
PII: 10.1007/s11356-019-04843-6
Knihovny.cz E-zdroje

Passive samplers based on diffusive gradients in thin hydrogel films (DGT) were recently modified for sampling of polar organic compounds in water. However, since the sampling rates of the commonly used DGT design with the surface area of 3.1 cm2 are low, we propose to increase them by applying a two-sided design with a larger sampling surface area of 22.7 cm2. The sampler design consists of two sorptive hydrogel disks compressed between two diffusive hydrogel disk layers strengthened by nylon netting and held together by two stainless steel rings. Sorbent/water distribution coefficients (KSW) were determined, and the sampler was calibrated for monitoring 11 perfluoroalkyl substances and 12 pharmaceuticals and personal care products in water at laboratory conditions using a closed system with artificial flow generated by submersible pumps. A field performance test was conducted at five locations in the Morava River basin in Czech Republic. The median value of laboratory-derived sampling rates was 43 mL day-1 with extreme values of 2 mL day-1 and 90 mL day-1 for perfluorotridecanoic and perfluoroheptanoic acids, respectively. The log KSW values of tested compounds ranged from 3.18 to 5.47 L kg-1, and the estimated halftime to attain sampler-water equilibrium ranged from 2 days to more than 28 days, which is the maximum recommended exposure period, considering potential issues with the stability of hydrogel. The sampler can be used for assessment of spatial trends as well as estimation of aqueous concentration of investigated polar compounds.

Zobrazit více v PubMed

J Environ Monit. 2000 Oct;2(5):487-95 PubMed

Environ Sci Technol. 2002 Jan 1;36(1):85-91 PubMed

Environ Toxicol Chem. 2004 Jul;23(7):1640-8 PubMed

Chemosphere. 2005 Nov;61(5):610-22 PubMed

Anal Chem. 2007 Sep 1;79(17):6734-41 PubMed

Water Res. 2008 May;42(10-11):2707-17 PubMed

J Environ Monit. 2009 Jan;11(1):212-9 PubMed

Environ Sci Technol. 2010 Jan 1;44(1):362-7 PubMed

Environ Sci Technol. 2010 Sep 1;44(17):6789-94 PubMed

Mar Pollut Bull. 2012 May;64(5):1005-11 PubMed

Environ Pollut. 2012 Jul;166:157-66 PubMed

J Environ Monit. 2012 May;14(6):1523-30 PubMed

Environ Sci Technol. 2012 Jun 19;46(12):6759-66 PubMed

Environ Pollut. 2012 Oct;169:98-104 PubMed

Environ Toxicol Chem. 2012 Dec;31(12):2724-38 PubMed

Environ Sci Technol. 2013;47(23):13587-93 PubMed

Sci Total Environ. 2014 Aug 1;488-489:188-96 PubMed

Talanta. 2015 Jan;132:902-8 PubMed

Mar Environ Res. 2015 Aug;109:148-58 PubMed

Environ Sci Technol. 2016 Jan 5;50(1):3-17 PubMed

Talanta. 2016 Feb 1;148:556-71 PubMed

Talanta. 2016 May 15;152:90-7 PubMed

Environ Int. 2016 Sep;94:315-324 PubMed

Anal Chem. 2016 Nov 1;88(21):10583-10591 PubMed

Talanta. 2016 Dec 1;161:405-412 PubMed

Environ Toxicol Chem. 2017 Jun;36(6):1517-1524 PubMed

Talanta. 2017 Apr 1;165:1-9 PubMed

Chemosphere. 2017 May;174:297-305 PubMed

Anal Chim Acta. 2017 May 8;966:1-10 PubMed

Environ Sci Technol. 2017 Aug 15;51(16):9101-9108 PubMed

Chemosphere. 2017 Dec;188:241-248 PubMed

Water Res. 2018 Jun 15;137:211-219 PubMed

Anal Chim Acta. 2018 Aug 14;1018:45-53 PubMed

Sci Total Environ. 2018 Sep 15;636:1597-1607 PubMed

Water Res. 2018 Nov 1;144:162-171 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...