How Humic Acids Affect the Rheological and Transport Properties of Hydrogels
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
REG LO1211
Ministry of Education, Youth and Sports, Czech Republic
PubMed
31010124
PubMed Central
PMC6515218
DOI
10.3390/molecules24081545
PII: molecules24081545
Knihovny.cz E-resources
- Keywords
- diffusion, humic acid, hydrogel, rheology, secondary structure,
- MeSH
- Humic Substances * MeSH
- Hydrogels chemistry MeSH
- Copper chemistry MeSH
- Methylene Blue chemistry MeSH
- Nickel chemistry MeSH
- Rheology MeSH
- Rhodamines chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Humic Substances * MeSH
- Hydrogels MeSH
- Copper MeSH
- Methylene Blue MeSH
- Nickel MeSH
- Rhodamines MeSH
Humic acids are often regarded as substances with a supramolecular structure which plays an important role in Nature. Their addition into hydrogels can affect their behavior and functioning in different applications. This work is focused on the properties of widely-used hydrogel based on agarose after addition of humic acids-the protonated H-form of humic acids and humic acids with methylated carboxylic groups. Hydrogels enriched by humic acids were studied in terms of their viscoelastic and transport properties. Rotational rheometry and methods employing diffusion cells were used in order to describe the influence of humic acids on the properties and behavior of hydrogels. From the point of view of rheology the addition of humic acids mainly affected the loss modulus corresponding to the relaxation of hydrogel connected with its flow. In the case of diffusion experiments, the transport of dyes (methylene blue and rhodamine) and metal ions (copper and nickel) through the hydrogel was affected by interactions between humic acids and the diffusion probes. The time lag in the hydrogel enriched by humic acids was prolonged for copper, methylene blue and rhodamine. In contrast, the presence of humic acids in hydrogel slightly increased the mobility of nickel. The strongest influence of the methylation of humic acids on diffusion was observed for methylene blue.
See more in PubMed
Giachin G., Nepravishta R., Mandaliti W., Melino S., Margon A., Scaini D., Mazzei P., Piccolo A., Legname G., Paci M., et al. The mechanisms of humic substances selfassembly with biological molecules: The case study of the prion protein. PLoS ONE. 2017;14:e0213673 PubMed PMC
Cao X., Drosos M., Leenheer J.A., Mao J. Secondary structures in a freeze-dried lignite humic acid fraction caused by hydrogen-bonding of acicic protons with aromatic rings. Environ. Sci. Technol. 2016;50:1663–1669. doi: 10.1021/acs.est.5b02859. PubMed DOI
Khutsishvili S.S., Lesnichaya M.V., Vakul’skaya T.I., Dolmaa G., Aleksandrova G.P., Rakevich A.L., Sukhov B.G. Humic-based bionanocomposites containing stable paramagnetic gold nanoparticles for prospective use in pharmaceuticals. Spectrosc. Lett. 2018;51:169–173. doi: 10.1080/00387010.2018.1442356. DOI
Perminova I.V., Shirshin E.A., Konstantinov A.I., Zherebker A., Lebedev V.A., Dubinenkov I.V., Kulikova N.A., Nikolaev E.N., Bulygina E., Holmes R.M. The structural arrangement and relative abundance of aliphatic units may effect long-wave absorbance of natural organic matter as revealed by 1H NMR spectroscopy. Environ. Sci. Technol. 2018;52:12526–12537. doi: 10.1021/acs.est.8b01029. PubMed DOI
Conte P., Piccolo A. Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environ. Sci. Technol. 1999;33:1682–1690. doi: 10.1021/es9808604. DOI
Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810–832. doi: 10.1097/00010694-200111000-00007. DOI
Varga B., Kiss G., Galambos I., Gelencser A., Hlavay J., Krivacsy Z. Secondary structure of humic acids. Can micelle-like conformation be proved by aqueous size exclusion chromatography? Environ. Sci. Technol. 2000;34:3303–3306. doi: 10.1021/es991286e. DOI
Ramirez Coutino V.A., Torres Bustillos L.G., Godinez Mora Tovar L.A., Guerra Sanchez R.J., Rodriguez Valadez F.J. pH effect on surfactant properties and supramolecular structure of humic substances obtained from sewage sludge composting. Rev. Int. Contam. Ambient. 2013;29:191–199.
Tarasevich Y.I., Dolenko S.A., Trifonova M.Yu., Alekseenko E.Y. Association and colloid-chemical properties of humic acids in aqueous solutions. Colloid J. 2013;75:207–213. doi: 10.1134/S1061933X13020166. DOI
Nuzzo A., Sanchez A., Fontaine B., Piccolo A. Conformational changes of dissolved humic and fulvic superstructures with compressive iron complexation. J. Geochem. Explor. 2013;129:1–5. doi: 10.1016/j.gexplo.2013.01.010. DOI
Fischer T. Humic supramolecular structures have polar surfaces and unpolar cores in native soil. Chemosphere. 2017;183:437–443. doi: 10.1016/j.chemosphere.2017.05.125. PubMed DOI
Nebbioso A., Piccolo A. Basis of a humeomics science: Chemical fractionation and molecular characteriazation of humic suprastructures. Biomacromolecules. 2011;12:1187–1199. doi: 10.1021/bm101488e. PubMed DOI
Baalousha M., Motelica-Heino M., Galaup S., Le Coustumer P. Supramolecular structure of humic acids by TEM with improved sample preparation and staining. Microsc. Res. Tech. 2005;66:299–306. doi: 10.1002/jemt.20173. PubMed DOI
Jansen S.A., Malatz M., Nwbara S., Johnson E., Ghabbour E., Davies G., Varnum J.M. Structural modeling in humic acids. Mater. Sci. Eng. C. 1996;4:175–179. doi: 10.1016/S0928-4931(96)00151-8. DOI
Baigorri R., Fuentes M., Gonyaley-Gaitano G., Garcia-Mina J.M. Simultaneous presence of diverse molecular pattern in humic substances in solution. J. Phys. Chem. B. 2007;111:10577–10582. doi: 10.1021/jp0738154. PubMed DOI
Trubetskoi O.A., Trubetskaya O.E. Reversed-phase high-performance liquid chromatography of the stable electrophoretic fractions of soil humic acids. Eurasian Soil Sci. 2015;48:148–156. doi: 10.1134/S106422931502012X. DOI
Swiech W.M., Hamerton I., Zeng H., Watson D.J., Mason E., Taylor S.E. Water-based fractionation of a commercial humic acid. Solid-state and colloidal characterization of the solubility fractions. J. Colloid Interface Sci. 2017;508:28–38. doi: 10.1016/j.jcis.2017.08.031. PubMed DOI
Hankins N.P., Lu N., Hilal N. Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation. Sep. Purif. Technol. 2006;51:48–56. doi: 10.1016/j.seppur.2005.12.022. DOI
Schaumann G.E., Thiele-Bruhn S. Molecular modeling of soil organic matter: Squaring the circle? Geoderma. 2011;166:1–14. doi: 10.1016/j.geoderma.2011.04.024. DOI
Klucakova M., Kargerova A., Novackova K. Conformational changes in aqueous solutions of humic acids. Chem. Pap. 2012;66:875–880. doi: 10.2478/s11696-012-0199-2. DOI
Klucakova M., Veznikova K. The role of concentration and solvent character in the molecular organization of humic acids. Molecules. 2016;21:1410. doi: 10.3390/molecules21111410. PubMed DOI PMC
Klucakova M., Veznikova K. Micro-organization of humic acids in aqueous solutions. J. Mol. Struct. 2017;1144:33–40. doi: 10.1016/j.molstruc.2017.05.012. DOI
Piccolo A., Nardi S., Concheri G. Micelle-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere. 1996;33:595–602. doi: 10.1016/0045-6535(96)00210-X. PubMed DOI
Simpson A.J. Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy. Magn. Reson. Chem. 2002;40:S72–S82. doi: 10.1002/mrc.1106. DOI
Christl I., Metzger A., Heidmann I., Kretzschmar R. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environ. Sci. Technol. 2005;39:5319–5326. doi: 10.1021/es050018f. PubMed DOI
Jung A.V., Frochot C., Villieras F., Lartiges B.S., Parant S., Viriot M.L., Bersilion J.L. Interaction of pyrene fluoroprobe with natural and synthetic humic substances: Examining the local molecular organization from photophysical and interfacial processes. Chemosphere. 2010;80:228–234. doi: 10.1016/j.chemosphere.2010.04.035. PubMed DOI
Alvarez-Puebla R.A., Valenzuela-Calahorro C., Garrido J.J. Theoretical study on fulvic acid structure, conformation and aggregation: A molecular modelling approach. Sci. Total Environ. 2006;358:243–254. doi: 10.1016/j.scitotenv.2004.11.026. PubMed DOI
Klucakova M., Pekar M. Transport of copper(II) ions in humic gel—New results from diffusion couple. Colloids Surf. A. 2009;349:96–101. doi: 10.1016/j.colsurfa.2009.08.001. DOI
Vashurina I.Y., Kochkina N.E., Kalinnikov Y.A. Effect of humic acid microadditives on the properties of starch hydrogels and films from them. Fibre Chem. 2004;36:338–342. doi: 10.1007/s10692-005-0005-9. DOI
Zielinska K., Town R.M., Yasadi K., van Leeuven H.P. Partitioning of humic acids between aqueous solution and hydrogel: Concentration profiling of humic acids in hydrogel phase. Langmuir. 2014;30:2084–2092. doi: 10.1021/la4050094. PubMed DOI
Chen R., Zhang Y., Shen L., Wang X., Chen J., Ma A., Jiang W. Lead(II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid. Chem. Eng. J. 2015;268:348–355. doi: 10.1016/j.cej.2015.01.081. DOI
Kanmaz N., Saloglu D., Hizal J. Humic aid embedded chitosan/poly (vinyl alcohol) pH-sensitive hydrogel: Synthesis, characterization, swelling kinetic and diffusion coefficient. Cem. Eng. Commun. 2018 doi: 10.1080/00986445.2018.1550396. DOI
Ma J., Luo J., Liu Z., Wei Z., Cai T., Zu X., Liu H., Crittenden J.C. Pb(II), Cu(II) and Cd(II) removal using a humic substance-based double network hydrogel in individual and multicomponent systems. J. Mater. Chem. A. 2018;6:20110–20120. doi: 10.1039/C8TA07250G. DOI
Hou M., Yang R., Zhang L., Liu G., Xu Z., Kang Y., Xue P. injectable and natural humic acid/agarose hybrid hydrogel for localized light-driven photothermal ablation and chemotheraphy of cancer. ACS Biomater. Sci. Eng. 2018;4:4266–4277. doi: 10.1021/acsbiomaterials.8b01147. PubMed DOI
Klucakova M., Pekar M. Study of structure and properties of humic and fulvic acids. IV. Study of interactions of Cu2+ ions with humic gels and final comparison. J. Polym. Mater. 2003;20:155–162.
Klucakova M., Pekar M. Study of diffusion of metal cations in humic gels. In: Ghabbour E.A., Davies G., editors. Humic Substances Nature’s Most Versatile materials. Taylor & Francis; New York, NY, USA: 2004. pp. 263–273.
Sedlacek P., Klucakova M. Simple diffusion method applied evaluation of metal transport in model humic matrices. Geoderma. 2009;153:286–292. doi: 10.1016/j.geoderma.2009.07.002. DOI
Kalina M., Klucakova M., Sedlacek P. Utilization of fractional extraction for characterization of the interactions between humic acids and metals. Geoderma. 2013;207–208:92–98. doi: 10.1016/j.geoderma.2013.04.031. DOI
Klucakova M., Kalina M., Sedlacek P., Grasset L. Reactivity and transport mapping of Cu(II) ions in humic hydrogels. J. Soil. Sediments. 2014;14:368–376. doi: 10.1007/s11368-013-0730-2. DOI
Klucakova M., Kalina M. Diffusivity of Cu(II) ions in humic gels—Influence of reactive functional groups of humic acids. Colloids Surf. A. 2015;483:162–170. doi: 10.1016/j.colsurfa.2015.05.041. DOI
Sedlacek P., Smilek J., Klucakova M. How interactions with polyelectrolytes affect mobility of low molecular ions—Results from diffusion cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI
Sedlacek P., Smilek J., Klucakova M. How interactions with polyelectrolytes affect mobility of low molecular ions—2. Non-stationery diffusion experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI
Smilek J., Sedlacek P., Kalina P., Klucakova M. On the role of humic acids’ carboxyl groups in the binding of charged organic compounds. Chemosphere. 2015;138:503–510. doi: 10.1016/j.chemosphere.2015.06.093. PubMed DOI
Frisch H.L. The time lag in diffusion. J. Phys. Chem. 1957;61:93–95. doi: 10.1021/j150547a018. DOI
Cussler E.L. Diffusion: Mass Transfer in Fluid Systems. 2nd ed. Cambridge University Press; Cambridge, UK: 1984.
Gendron P.O., Avaltroni F., Wilkinson K.J. Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. J. Fluoresc. 2008;18:1093–1101. doi: 10.1007/s10895-008-0357-7. PubMed DOI
Golmohamadi M., Davis T.A., Wilkinson K.J. Diffusion and partitioning of cations in an agarose hydrogel. J. Phys. Chem. A. 2012;116:6505–6510. doi: 10.1021/jp212343g. PubMed DOI
Haynes W.M. Handbook of Chemistry and Physics. 93rd ed. CRC Press; Boca Raton, USA: 2012.
Leaist D.G. The effect of aggregation, counterion binding, and added NaCl on diffusion of aqueous methylene blue. Can. J. Chem. 1988;66:2452–2456. doi: 10.1139/v88-386. DOI
Samprovalaki K., Robbins P.T., Fryer P.J. Investigation of the diffusion of dyes in agar gels. J. Food Eng. 2012;111:537–545. doi: 10.1016/j.jfoodeng.2012.03.024. DOI
Petrov D., Tunega D., Gerzabek M.H., Oostenbrink C. Molecular dynamics simulations of the standard leonardite humic acid: Microscopic analysis of the structure and dynamics. Environ. Sci. Technol. 2017;51:5414–5424. doi: 10.1021/acs.est.7b00266. PubMed DOI
Effect of Chitosan as Active Bio-colloidal Constituent on the Diffusion of Dyes in Agarose Hydrogel
How the Addition of Chitosan Affects the Transport and Rheological Properties of Agarose Hydrogels
The Effect of Supramolecular Humic Acids on the Diffusivity of Metal Ions in Agarose Hydrogel
How the Supramolecular Nature of Lignohumate Affects Its Diffusion in Agarose Hydrogel
Agarose Hydrogels Enriched by Humic Acids as the Complexation Agent