How the Addition of Chitosan Affects the Transport and Rheological Properties of Agarose Hydrogels
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36826269
PubMed Central
PMC9957402
DOI
10.3390/gels9020099
PII: gels9020099
Knihovny.cz E-zdroje
- Klíčová slova
- Liesegang pattern, chitosan, copper, diffusion, immobilization, solubility product,
- Publikační typ
- časopisecké články MeSH
Agarose hydrogels enriched by chitosan were studied from a point of view diffusion and the immobilization of metal ions. Copper was used as a model metal with a high affinity to chitosan. The influence of interactions between copper and chitosan on transport properties was investigated. Effective diffusion coefficients were determined and compared with values obtained from pure agarose hydrogel. Their values increased with the amount of chitosan added to agarose hydrogel and the lowest addition caused the decrease in diffusivity in comparison with hydrogel without chitosan. Liesegang patterns were observed in the hydrogels with higher contents of chitosan. The patterns were more distinct if the chitosan content increased. The formation of Liesegang patterns caused a local decrease in the concentration of copper ions and concentration profiles were affected by this phenomenon. Thus, the values of effective diffusion coefficient covered the influences of pore structure of hydrogels and the interactions between chitosan and metal ions, including precipitation on observed Liesegang rings. From the point of view of rheology, the addition of chitosan resulted in changes in storage and loss moduli, which can show on a "more liquid" character of enriched hydrogels. It can contribute to the increase in the effective diffusion coefficients for hydrogels with higher content of chitosan.
Zobrazit více v PubMed
Duarte M.L., Ferreira M.C., Marvao M.R., Rocha J. An Optimised Method to Determine the Degree of Acetylation of Chitin and Chitosan by FTIR Spectroscopy. Int. J. Biol. Macromol. 2002;31:1–8. doi: 10.1016/S0141-8130(02)00039-9. PubMed DOI
Paulino A.T., Simionato J.-I., Garcia J.C., Nozaki J. Characterization of Chitosan and Chitin Produced from Silkworm Crysalides. Carbohydr. Polym. 2006;64:98–103. doi: 10.1016/j.carbpol.2005.10.032. DOI
Martinez-Ruvalcaba A., Chornet E., Rodrigue D. Viscoelastic Properties of Dispersed Chitosan/Xanthan Hydrogels. Carbohydr. Polym. 2007;67:586–595. doi: 10.1016/j.carbpol.2006.06.033. DOI
Wan Ngah W.S., Fatinathan S. Adsorption of Cu(II) Ions in Aqueous Solution Using Chitosan Beads, Chitosan-GLA Beads and Chitosan-Alginate Beads. Chem. Eng. J. 2008;143:62–72. doi: 10.1016/j.cej.2007.12.006. DOI
Mourza V.K., Inamdar N.N. Chitosan-Modifications and Applications: Opportunities Galore. React. Funct. Polym. 2008;68:1013–1051. doi: 10.1016/j.reactfunctpolym.2008.03.002. DOI
Jayakumar R., Menon D., Manzoor K., Nair S.V., Tamura H. Biomedical Applications of Chitin and Chitosan Based Nanomaterials. Carbohydr. Polym. 2010;82:227–232. doi: 10.1016/j.carbpol.2010.04.074. DOI
Kamari A., Pulford I.D., Hargreaves J.S.J. Chitosan as a Potential Amendment to Remediate Metal Contaminated Soil—A Characterisation Study. Colloid. Surface. B. 2011;82:71–80. doi: 10.1016/j.colsurfb.2010.08.019. PubMed DOI
Bensaha S., Slimane S.K. A Comparative Study on the Chitosan Membranes Prepared from Acetic Acid and Glycine Hydrochloride for Removal of Copper. Russ. J. Appl. Chem. 2016;89:1991–2000. doi: 10.1134/S1070427216120107. DOI
Zhang J., Wang Q., Wang A. Synthesis and Characterization of Chitosan-g-poly(acrylic acid)/Attapulgite Superabsorbent Composites. Carbohydr. Polym. 2007;68:367–374. doi: 10.1016/j.carbpol.2006.11.018. DOI
Narayanan A., Kartik R., Sangeetha E., Dhamodharan R. Super Water Absorbing Polymeric Gel from Chitosan, Citric Acid and Urea: Synthesis and Mechanism of Water Absorption. Carbohydr. Polym. 2018;191:152–160. doi: 10.1016/j.carbpol.2018.03.028. PubMed DOI
Funakoshi T., Majima T., Iwasaki N., Yamane S., Masuko T., Minami A., Harada K., Tamura H., Tokura S., Nishimura S.-I. Novel Chitosan-Based Hyaluronan Hybrid Polymer Fibers as a Scaffold in Ligament Tissue Engineering. J. Biomed. Mater. Res. A. 2005;74:338–346. doi: 10.1002/jbm.a.30237. PubMed DOI
Yu K., Ho J., McCandlish E., Buckley B., Patel R., Li Z., Shapley N.C. Copper Ion Adsorption by Chitosan Nanoparticles and Alginate Microparticles for Water Purification Applications. Colloid. Surface. A. 2013;425:31–41. doi: 10.1016/j.colsurfa.2012.12.043. DOI
Yasmeen S., Lo M.K., Bajracharya S., Roldo M. Injectable Scaffolds for Bone Regeneration. Langmuir. 2014;30:12977–12985. doi: 10.1021/la503057w. PubMed DOI
Kyzas G.Z., Bikiaris D.N., Lambropoulou D. Effect of Humic Acid on Pharmaceuticals Adsorption using Sulfonic Acid Grafted Chitosan. J. Mol. Liq. 2017;230:1–5. doi: 10.1016/j.molliq.2017.01.015. DOI
Jakubec M., Klimša V., Hanuš J., Biegaj K., Heng J.Y.Y., Štěpánek F. Formation of Multi-Compartmental Drug Carriers by Hetero-Aggregation of Polyelectrolyte Microgels. Colloid. Surface. A. 2017;522:250–259. doi: 10.1016/j.colsurfa.2017.03.002. DOI
Zhao F., Binyu Y., Zhengrong Y., Wang T., Wen X., Liu Z., Zhao C. Preparation of Porous Chitosan Gel Beads for Copper(II) Ion Adsorption. J. Hazard. Mater. 2007;147:67–73. doi: 10.1016/j.jhazmat.2006.12.045. PubMed DOI
Babel S., Kurniawan T.A. Low-Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review. J. Hazard. Mater. 2003;97:219–243. doi: 10.1016/S0304-3894(02)00263-7. PubMed DOI
Li N., Bai R. Copper Adsorption on Chitosan-Cellulose Hydrogel Beads: Behaviors and Mechanisms. Sep. Purif. Technol. 2005;42:237–247. doi: 10.1016/j.seppur.2004.08.002. DOI
Schmuhl R., Krieg H.M., Keizer K. Adsorption of Cu(II) and Cr(VI) Ions by Chitosan: Kinetics and Equilibrium Studies. Water SA. 2001;27:1–8. doi: 10.4314/wsa.v27i1.5002. DOI
Elshaarawy R.F.M., El-Azim H.A., Hegazy W.H., Mustafa F.H.A., Talkhan T.A. Poly(Ammonium/ Pyridinium)-Chitosan Schiff Base as a Smart Biosorbent for Scavenging of Cu2+ Ions from Aqueous Effluents. Polym. Test. 2020;83:106244. doi: 10.1016/j.polymertesting.2019.106244. DOI
Kara A., Demirbel E. Physicochemical Parameters of Cu2+ Ions Adsorption from Aqueous Solution by Magnetic-Poly(Divinylbenzene-N-vinylimidazole) Microbeads. Sep. Sci. Technol. 2012;47:709–722. doi: 10.1080/01496395.2011.626011. DOI
Bassi R., Prasher S.O., Simpson B.K. Removal of Selected Metal Ions from Aqueous Solutions Using Chitosan Flakes. Sep. Sci. Technol. 2000;35:547–560. doi: 10.1081/SS-100100175. DOI
Ahmad M., Manzoor K., Ikram S. Versatile Nature of Hetero-Chitosan Based Derivatives as Biodegradable Adsorbent for Heavy Metal Ions; A Review. Int. J. Biol. Macromol. 2017;105:190–203. doi: 10.1016/j.ijbiomac.2017.07.008. PubMed DOI
Yang X., Wan Y., Zheng Y., He F., Yu Z., Huang J., Wang H., Ok Y.S., Jiang Y., Gao B. Surface Functional Groups of Carbon-Based Adsorbents and Their Roles in the Removal of Heavy Metals from Aqueous Solutions: A Critical Review. Chem. Eng. J. 2019;366:608–621. doi: 10.1016/j.cej.2019.02.119. PubMed DOI PMC
Zhang Y., Zhao M., Cheng Q., Wan C., Han X., Fan Z., Su G., Pan D., Li Z. Research Progress of Adsorption and Removal of Heavy Metals by Chitosan and Its Derivatives: A Review. Chemosphere. 2021;279:130927. doi: 10.1016/j.chemosphere.2021.130927. PubMed DOI
Lee S.T., Mi F.L., Shen Z.J., Shyu S.S. Equilibrium and Kinetic Studies of Copper(II) Ion Uptake by Chitosan-Tripolyphosphate Chelating Resin. Polymer. 2021;42:1879–1892. doi: 10.1016/S0032-3861(00)00402-X. DOI
Guibal E. Interactions of Metal Ions with Chitosan-Based Sorbents: A Review. Sep. Purif. Technol. 2004;38:43–74. doi: 10.1016/j.seppur.2003.10.004. DOI
Guibal E., Jansson-Charrier M., Saucedo I., Le Cloirec P. Enhancement of Metal Ion Sorption Performances of Chitosan: Effect of the Structure on the Diffusion Properties. Langmuir. 1995;11:591–598. doi: 10.1021/la00002a039. DOI
Jansson-Charrier M., Guibal E., Roussy J., Delanghe B., Le Cloirec P. Vanadium (IV) Sorption by Chitosan: Kinetics and Equilibrium. Wat. Res. 1996;30:465–475. doi: 10.1016/0043-1354(95)00154-9. DOI
Karthikeyan G., Anbalagan K., Muthulakshmi Andal N. Adsorption Dynamics and Equilibrium Studies of Zn (II) onto Chitosan. J. Chem. Sci. 2004;116:119–127. doi: 10.1007/BF02708205. DOI
Milosavljevic N.B., Ristic M.D., Peric-Grujic A.A., Filipovic J.M., Strbac S.B., Rakocevic Z.L., Kalagasidis Krusic M.T. Removal of Cu2+ Ions Using Hydrogels of Chitosan, Itaconic and Methacrylic Acid: FTIR, SEM/EDX, AFM, Kinetic and Equilibrium Study. Colloid. Surface. A. 2011;388:59–69. doi: 10.1016/j.colsurfa.2011.08.011. DOI
de Vasconcelos C.L., Rocha A.N.L., Pereira M.R., Foncesa J.L.C. Electrolyte Diffusion in a Chitosan Membrane. Polym. Int. 2001;50:309–312. doi: 10.1002/pi.627. DOI
Krajewska B. Diffusion of Metal Ions through Gel Chitosan Membranes. React. Funct. Polym. 2001;47:37–47. doi: 10.1016/S1381-5148(00)00068-7. DOI
Yoshida C.M.P., Bastos C.E.N., Franco T.T. Modeling of Potassium Sorbate Diffusion through Chitosan Films. LWT—Food Sci. Technol. 2010;43:584–589. doi: 10.1016/j.lwt.2009.10.005. DOI
Modrzejewska Z., Rogacki G., Sujka W., Zarzycky R. Sorption of Copper by Chitosan Hydrogel: Kinetics and Equilibrium. Chem. Eng. Process. 2016;109:104–113. doi: 10.1016/j.cep.2016.08.014. DOI
Mankidy B.D., Coutinho C.A., Gupta V.K. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment. J. Chem. Educ. 2010;87:515–518. doi: 10.1021/ed800159k. DOI
Klučáková M., Smilek J., Sedláček P. How Humic Acids Affect the Rheological and Transport Properties of Hydrogels. Molecules. 2019;24:1545. doi: 10.3390/molecules24081545. PubMed DOI PMC
Klučáková M. Agarose Hydrogels Enriched by Humic Acids as Complexation Agent. Polymers. 2020;12:687. doi: 10.3390/polym12030687. PubMed DOI PMC
Sedláček P., Smilek J., Klučáková M. How the Interactions with Humic Acids Affect the Mobility of Ionic Dyes in Hydrogels—2. Non-Stationary Diffusion Experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI
Klučáková M., Pekař M. Study of Structure and Properties of Humic and Fulvic Acids. IV. Study of Interactions of Cu2+ Ions with Humic Gels and Final Comparison. J. Polym. Mater. 2003;20:155–162.
Klučáková M., Kalina M., Sedláček P., Grasset L. Reactivity and Transport Mapping of Cu(II) Ions in Humic Hydrogels. J. Soil. Sediment. 2014;14:368–376. doi: 10.1007/s11368-013-0730-2. DOI
Klučáková M., Kalina M., Smilek J., Laštůvková M. The Transport of Metal Ions in Hydrogels Containing Humic Acids as Active Complexation Agent. Colloid. Surface. A. 2018;557:116–122. doi: 10.1016/j.colsurfa.2018.02.042. DOI
Chiessi E., Paradossi G., Venanzi M., Pispisa B. Copper Complexes Immobilized to Chitosan. J. Inorg. Biochem. 1992;46:109–118. doi: 10.1016/0162-0134(92)80014-M. PubMed DOI
Monteiro Jr O.A.C., Airoldi C. Some Thermodynamic Data on Copper–Chitin and Copper–Chitosan Biopolymer Interactions. J. Colloid Interface Sci. 1999;212:212–219. doi: 10.1006/jcis.1998.6063. PubMed DOI
Onsoyen E., Skaugrud O. Metal Recovery Using Chitosan. J. Chem. Technol. Biotechnol. 1990;49:395–404. doi: 10.1002/jctb.280490410. PubMed DOI
Crank J. The Mathematics of Diffusion. 1st ed. Clarendon Press; Oxford, UK: 1956. pp. 26–41.
Cussler E.L. Diffusion: Mass Transfer in Fluid Systems. 2nd ed. Cambridge University Press; Cambridge, MA, USA: 1984. pp. 13–49.
Kyzas G.Z., Kostoglou M., Layaridis N.K. Copper and Chromium(VI) Removal by Chitosan Derivatives—Equilibrium and Kinetic Studies. Chem. Eng. J. 2009;152:440–448. doi: 10.1016/j.cej.2009.05.005. DOI
Lobo V.M.M., Quaresma J.L. Handbook of Electrolyte Solutions. Elsevier; Amsterdam, The Netherlands: 1989. (Physical Science Data Series 41).
Zhang H., Davison W. Diffusional Characteristics of Hydrogels Used in DGT and DET Techniques. Anal. Chim. Acta. 1999;398:329–340. doi: 10.1016/S0003-2670(99)00458-4. DOI
Chu H.H. Removal of Copper from Aqueous Solution by Chitosan in Prawn Shell: Adsorption Equilibrium and Kinetics. J. Hazard. Mater. 2002;90:77–95. doi: 10.1016/S0304-3894(01)00332-6. PubMed DOI
Modrzejewska Z. Sorption Mechanism of Copper in Chitosan Hydrogel. React. Funct. Polym. 2013;73:719–729. doi: 10.1016/j.reactfunctpolym.2013.02.014. DOI
Guzman J., Saucedo I., Revilla J., Navarro R., Guibal E. Copper Sorption by Chitosan in the Presence of Citrate Ions: Influence of Metal Speciation on Sorption Mechanism and Uptake Capacities. Int. J. Biol. Macromol. 2003;33:57–65. doi: 10.1016/S0141-8130(03)00067-9. PubMed DOI
Lagzi I. Controlling and Engineering Precipitation Patterns. Langmuir. 2012;28:3350–3354. doi: 10.1021/la2049025. PubMed DOI
Meng X., Mi Y., Jia D., Guo N., An Y., Miao Y. Polymorphs Co Hydroxides Formed between Hydrazine and Co2+ as Liesegang Bands in Semisolid Agar Gel. J. Mol. Liq. 2019;285:416–423. doi: 10.1016/j.molliq.2019.04.114. DOI
Izsák F., Lagzi I. A New Universal Law for the Liesegang Pattern Formation. J. Chem. Phys. 2005;122:184707. doi: 10.1063/1.1893606. PubMed DOI
Li B., Gao Y., Feng Y., Ma B., Zhu R., Zhou Y. Formation of Concentric Multilayers in a Chitosan Hydrogel Inspired by Liesegang Ring Phenomen. J. Biomater. Sci. 2011;22:2295–2304. doi: 10.1163/092050610X538425. PubMed DOI
Gegel N., Babicheva T., Shipovskaya A. Morphology of Chitosan-Based Hollow Cylindrical Materials with a Layered Structure. BioNanoScience. 2018;8:661–667. doi: 10.1007/s12668-017-0415-1. DOI
Babicheva T.S., Konduktorova A.A., Shmakov S.L., Shipovskaya A.B. Formation of Liesegang Structures under the Conditions of the Spatiotemporal Reaction of Polymer-Analogous Transformation (Salt Base) of Chitosan. J. Phys. Chem. B. 2020;124:9255–9266. doi: 10.1021/acs.jpcb.0c07173. PubMed DOI
Kumar P., Sebok D., Kukovecs A., Horvath D., Toth A. Hierarchical Self-Assembly of Metal-Ion-Modulated Chitosan Tubules. Langmuir. 2021;37:12690–12696. doi: 10.1021/acs.langmuir.1c02097. PubMed DOI PMC
Nabika H., Itatani M., Lagzi I. Pattern Formation in Precipitation Reactions: The Liesegang Phenomenon. Langmuir. 2020;36:481–497. doi: 10.1021/acs.langmuir.9b03018. PubMed DOI
Shimizu Y., Matsui J., Unoura K., Nabika H. Liesegang Mechanism with a Gradual Phase Transition. J. Phys. Chem. B. 2017;121:2495–2501. doi: 10.1021/acs.jpcb.7b01275. PubMed DOI
Monk P. Physical Chemistry. Understanding Our Chemical World. 1st ed. John Wiley & Sons Ltd.; Chichester, UK: 2004. pp. 177–229.
Saad M., Safieddine A., Sultan R. Revisited Chaos in a Diffusion-Precipitation-Redissolution Liesegang System. J. Phys. Chem. B. 2018;122:6043–6047. doi: 10.1021/acs.jpca.8b03229. PubMed DOI
Nakouzi E., Steinbock O. Self-Organization in Precipitation Reactions Far from the Equilibrium. Sci. Adv. 2016;2:e1601144. doi: 10.1126/sciadv.1601144. PubMed DOI PMC
Sedláček P., Smilek J., Klučáková M. How Interactions with Polyelectrolytes Affect Mobility of Low Molecular Ions—Results from Diffusion Cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI
Garcia L.G.S., de Melo Guedes G.M., da Silva M.L.Q., Castelo-Branco D.S.C.M., Sidrim J.J.C., de Aguiar Cordeiro R., Rocha M.F.G., Vieira R.S., Brilhante R.S.N. Effect of the Molecular Weight of Chitosan on its Antifungal Activity against Candida spp. in Planktonic Cells and Biofilm. Carbohydr. Polym. 2018;195:662–669. doi: 10.1016/j.carbpol.2018.04.091. PubMed DOI