How the Addition of Chitosan Affects the Transport and Rheological Properties of Agarose Hydrogels

. 2023 Jan 23 ; 9 (2) : . [epub] 20230123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36826269

Agarose hydrogels enriched by chitosan were studied from a point of view diffusion and the immobilization of metal ions. Copper was used as a model metal with a high affinity to chitosan. The influence of interactions between copper and chitosan on transport properties was investigated. Effective diffusion coefficients were determined and compared with values obtained from pure agarose hydrogel. Their values increased with the amount of chitosan added to agarose hydrogel and the lowest addition caused the decrease in diffusivity in comparison with hydrogel without chitosan. Liesegang patterns were observed in the hydrogels with higher contents of chitosan. The patterns were more distinct if the chitosan content increased. The formation of Liesegang patterns caused a local decrease in the concentration of copper ions and concentration profiles were affected by this phenomenon. Thus, the values of effective diffusion coefficient covered the influences of pore structure of hydrogels and the interactions between chitosan and metal ions, including precipitation on observed Liesegang rings. From the point of view of rheology, the addition of chitosan resulted in changes in storage and loss moduli, which can show on a "more liquid" character of enriched hydrogels. It can contribute to the increase in the effective diffusion coefficients for hydrogels with higher content of chitosan.

Zobrazit více v PubMed

Duarte M.L., Ferreira M.C., Marvao M.R., Rocha J. An Optimised Method to Determine the Degree of Acetylation of Chitin and Chitosan by FTIR Spectroscopy. Int. J. Biol. Macromol. 2002;31:1–8. doi: 10.1016/S0141-8130(02)00039-9. PubMed DOI

Paulino A.T., Simionato J.-I., Garcia J.C., Nozaki J. Characterization of Chitosan and Chitin Produced from Silkworm Crysalides. Carbohydr. Polym. 2006;64:98–103. doi: 10.1016/j.carbpol.2005.10.032. DOI

Martinez-Ruvalcaba A., Chornet E., Rodrigue D. Viscoelastic Properties of Dispersed Chitosan/Xanthan Hydrogels. Carbohydr. Polym. 2007;67:586–595. doi: 10.1016/j.carbpol.2006.06.033. DOI

Wan Ngah W.S., Fatinathan S. Adsorption of Cu(II) Ions in Aqueous Solution Using Chitosan Beads, Chitosan-GLA Beads and Chitosan-Alginate Beads. Chem. Eng. J. 2008;143:62–72. doi: 10.1016/j.cej.2007.12.006. DOI

Mourza V.K., Inamdar N.N. Chitosan-Modifications and Applications: Opportunities Galore. React. Funct. Polym. 2008;68:1013–1051. doi: 10.1016/j.reactfunctpolym.2008.03.002. DOI

Jayakumar R., Menon D., Manzoor K., Nair S.V., Tamura H. Biomedical Applications of Chitin and Chitosan Based Nanomaterials. Carbohydr. Polym. 2010;82:227–232. doi: 10.1016/j.carbpol.2010.04.074. DOI

Kamari A., Pulford I.D., Hargreaves J.S.J. Chitosan as a Potential Amendment to Remediate Metal Contaminated Soil—A Characterisation Study. Colloid. Surface. B. 2011;82:71–80. doi: 10.1016/j.colsurfb.2010.08.019. PubMed DOI

Bensaha S., Slimane S.K. A Comparative Study on the Chitosan Membranes Prepared from Acetic Acid and Glycine Hydrochloride for Removal of Copper. Russ. J. Appl. Chem. 2016;89:1991–2000. doi: 10.1134/S1070427216120107. DOI

Zhang J., Wang Q., Wang A. Synthesis and Characterization of Chitosan-g-poly(acrylic acid)/Attapulgite Superabsorbent Composites. Carbohydr. Polym. 2007;68:367–374. doi: 10.1016/j.carbpol.2006.11.018. DOI

Narayanan A., Kartik R., Sangeetha E., Dhamodharan R. Super Water Absorbing Polymeric Gel from Chitosan, Citric Acid and Urea: Synthesis and Mechanism of Water Absorption. Carbohydr. Polym. 2018;191:152–160. doi: 10.1016/j.carbpol.2018.03.028. PubMed DOI

Funakoshi T., Majima T., Iwasaki N., Yamane S., Masuko T., Minami A., Harada K., Tamura H., Tokura S., Nishimura S.-I. Novel Chitosan-Based Hyaluronan Hybrid Polymer Fibers as a Scaffold in Ligament Tissue Engineering. J. Biomed. Mater. Res. A. 2005;74:338–346. doi: 10.1002/jbm.a.30237. PubMed DOI

Yu K., Ho J., McCandlish E., Buckley B., Patel R., Li Z., Shapley N.C. Copper Ion Adsorption by Chitosan Nanoparticles and Alginate Microparticles for Water Purification Applications. Colloid. Surface. A. 2013;425:31–41. doi: 10.1016/j.colsurfa.2012.12.043. DOI

Yasmeen S., Lo M.K., Bajracharya S., Roldo M. Injectable Scaffolds for Bone Regeneration. Langmuir. 2014;30:12977–12985. doi: 10.1021/la503057w. PubMed DOI

Kyzas G.Z., Bikiaris D.N., Lambropoulou D. Effect of Humic Acid on Pharmaceuticals Adsorption using Sulfonic Acid Grafted Chitosan. J. Mol. Liq. 2017;230:1–5. doi: 10.1016/j.molliq.2017.01.015. DOI

Jakubec M., Klimša V., Hanuš J., Biegaj K., Heng J.Y.Y., Štěpánek F. Formation of Multi-Compartmental Drug Carriers by Hetero-Aggregation of Polyelectrolyte Microgels. Colloid. Surface. A. 2017;522:250–259. doi: 10.1016/j.colsurfa.2017.03.002. DOI

Zhao F., Binyu Y., Zhengrong Y., Wang T., Wen X., Liu Z., Zhao C. Preparation of Porous Chitosan Gel Beads for Copper(II) Ion Adsorption. J. Hazard. Mater. 2007;147:67–73. doi: 10.1016/j.jhazmat.2006.12.045. PubMed DOI

Babel S., Kurniawan T.A. Low-Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review. J. Hazard. Mater. 2003;97:219–243. doi: 10.1016/S0304-3894(02)00263-7. PubMed DOI

Li N., Bai R. Copper Adsorption on Chitosan-Cellulose Hydrogel Beads: Behaviors and Mechanisms. Sep. Purif. Technol. 2005;42:237–247. doi: 10.1016/j.seppur.2004.08.002. DOI

Schmuhl R., Krieg H.M., Keizer K. Adsorption of Cu(II) and Cr(VI) Ions by Chitosan: Kinetics and Equilibrium Studies. Water SA. 2001;27:1–8. doi: 10.4314/wsa.v27i1.5002. DOI

Elshaarawy R.F.M., El-Azim H.A., Hegazy W.H., Mustafa F.H.A., Talkhan T.A. Poly(Ammonium/ Pyridinium)-Chitosan Schiff Base as a Smart Biosorbent for Scavenging of Cu2+ Ions from Aqueous Effluents. Polym. Test. 2020;83:106244. doi: 10.1016/j.polymertesting.2019.106244. DOI

Kara A., Demirbel E. Physicochemical Parameters of Cu2+ Ions Adsorption from Aqueous Solution by Magnetic-Poly(Divinylbenzene-N-vinylimidazole) Microbeads. Sep. Sci. Technol. 2012;47:709–722. doi: 10.1080/01496395.2011.626011. DOI

Bassi R., Prasher S.O., Simpson B.K. Removal of Selected Metal Ions from Aqueous Solutions Using Chitosan Flakes. Sep. Sci. Technol. 2000;35:547–560. doi: 10.1081/SS-100100175. DOI

Ahmad M., Manzoor K., Ikram S. Versatile Nature of Hetero-Chitosan Based Derivatives as Biodegradable Adsorbent for Heavy Metal Ions; A Review. Int. J. Biol. Macromol. 2017;105:190–203. doi: 10.1016/j.ijbiomac.2017.07.008. PubMed DOI

Yang X., Wan Y., Zheng Y., He F., Yu Z., Huang J., Wang H., Ok Y.S., Jiang Y., Gao B. Surface Functional Groups of Carbon-Based Adsorbents and Their Roles in the Removal of Heavy Metals from Aqueous Solutions: A Critical Review. Chem. Eng. J. 2019;366:608–621. doi: 10.1016/j.cej.2019.02.119. PubMed DOI PMC

Zhang Y., Zhao M., Cheng Q., Wan C., Han X., Fan Z., Su G., Pan D., Li Z. Research Progress of Adsorption and Removal of Heavy Metals by Chitosan and Its Derivatives: A Review. Chemosphere. 2021;279:130927. doi: 10.1016/j.chemosphere.2021.130927. PubMed DOI

Lee S.T., Mi F.L., Shen Z.J., Shyu S.S. Equilibrium and Kinetic Studies of Copper(II) Ion Uptake by Chitosan-Tripolyphosphate Chelating Resin. Polymer. 2021;42:1879–1892. doi: 10.1016/S0032-3861(00)00402-X. DOI

Guibal E. Interactions of Metal Ions with Chitosan-Based Sorbents: A Review. Sep. Purif. Technol. 2004;38:43–74. doi: 10.1016/j.seppur.2003.10.004. DOI

Guibal E., Jansson-Charrier M., Saucedo I., Le Cloirec P. Enhancement of Metal Ion Sorption Performances of Chitosan: Effect of the Structure on the Diffusion Properties. Langmuir. 1995;11:591–598. doi: 10.1021/la00002a039. DOI

Jansson-Charrier M., Guibal E., Roussy J., Delanghe B., Le Cloirec P. Vanadium (IV) Sorption by Chitosan: Kinetics and Equilibrium. Wat. Res. 1996;30:465–475. doi: 10.1016/0043-1354(95)00154-9. DOI

Karthikeyan G., Anbalagan K., Muthulakshmi Andal N. Adsorption Dynamics and Equilibrium Studies of Zn (II) onto Chitosan. J. Chem. Sci. 2004;116:119–127. doi: 10.1007/BF02708205. DOI

Milosavljevic N.B., Ristic M.D., Peric-Grujic A.A., Filipovic J.M., Strbac S.B., Rakocevic Z.L., Kalagasidis Krusic M.T. Removal of Cu2+ Ions Using Hydrogels of Chitosan, Itaconic and Methacrylic Acid: FTIR, SEM/EDX, AFM, Kinetic and Equilibrium Study. Colloid. Surface. A. 2011;388:59–69. doi: 10.1016/j.colsurfa.2011.08.011. DOI

de Vasconcelos C.L., Rocha A.N.L., Pereira M.R., Foncesa J.L.C. Electrolyte Diffusion in a Chitosan Membrane. Polym. Int. 2001;50:309–312. doi: 10.1002/pi.627. DOI

Krajewska B. Diffusion of Metal Ions through Gel Chitosan Membranes. React. Funct. Polym. 2001;47:37–47. doi: 10.1016/S1381-5148(00)00068-7. DOI

Yoshida C.M.P., Bastos C.E.N., Franco T.T. Modeling of Potassium Sorbate Diffusion through Chitosan Films. LWT—Food Sci. Technol. 2010;43:584–589. doi: 10.1016/j.lwt.2009.10.005. DOI

Modrzejewska Z., Rogacki G., Sujka W., Zarzycky R. Sorption of Copper by Chitosan Hydrogel: Kinetics and Equilibrium. Chem. Eng. Process. 2016;109:104–113. doi: 10.1016/j.cep.2016.08.014. DOI

Mankidy B.D., Coutinho C.A., Gupta V.K. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment. J. Chem. Educ. 2010;87:515–518. doi: 10.1021/ed800159k. DOI

Klučáková M., Smilek J., Sedláček P. How Humic Acids Affect the Rheological and Transport Properties of Hydrogels. Molecules. 2019;24:1545. doi: 10.3390/molecules24081545. PubMed DOI PMC

Klučáková M. Agarose Hydrogels Enriched by Humic Acids as Complexation Agent. Polymers. 2020;12:687. doi: 10.3390/polym12030687. PubMed DOI PMC

Sedláček P., Smilek J., Klučáková M. How the Interactions with Humic Acids Affect the Mobility of Ionic Dyes in Hydrogels—2. Non-Stationary Diffusion Experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI

Klučáková M., Pekař M. Study of Structure and Properties of Humic and Fulvic Acids. IV. Study of Interactions of Cu2+ Ions with Humic Gels and Final Comparison. J. Polym. Mater. 2003;20:155–162.

Klučáková M., Kalina M., Sedláček P., Grasset L. Reactivity and Transport Mapping of Cu(II) Ions in Humic Hydrogels. J. Soil. Sediment. 2014;14:368–376. doi: 10.1007/s11368-013-0730-2. DOI

Klučáková M., Kalina M., Smilek J., Laštůvková M. The Transport of Metal Ions in Hydrogels Containing Humic Acids as Active Complexation Agent. Colloid. Surface. A. 2018;557:116–122. doi: 10.1016/j.colsurfa.2018.02.042. DOI

Chiessi E., Paradossi G., Venanzi M., Pispisa B. Copper Complexes Immobilized to Chitosan. J. Inorg. Biochem. 1992;46:109–118. doi: 10.1016/0162-0134(92)80014-M. PubMed DOI

Monteiro Jr O.A.C., Airoldi C. Some Thermodynamic Data on Copper–Chitin and Copper–Chitosan Biopolymer Interactions. J. Colloid Interface Sci. 1999;212:212–219. doi: 10.1006/jcis.1998.6063. PubMed DOI

Onsoyen E., Skaugrud O. Metal Recovery Using Chitosan. J. Chem. Technol. Biotechnol. 1990;49:395–404. doi: 10.1002/jctb.280490410. PubMed DOI

Crank J. The Mathematics of Diffusion. 1st ed. Clarendon Press; Oxford, UK: 1956. pp. 26–41.

Cussler E.L. Diffusion: Mass Transfer in Fluid Systems. 2nd ed. Cambridge University Press; Cambridge, MA, USA: 1984. pp. 13–49.

Kyzas G.Z., Kostoglou M., Layaridis N.K. Copper and Chromium(VI) Removal by Chitosan Derivatives—Equilibrium and Kinetic Studies. Chem. Eng. J. 2009;152:440–448. doi: 10.1016/j.cej.2009.05.005. DOI

Lobo V.M.M., Quaresma J.L. Handbook of Electrolyte Solutions. Elsevier; Amsterdam, The Netherlands: 1989. (Physical Science Data Series 41).

Zhang H., Davison W. Diffusional Characteristics of Hydrogels Used in DGT and DET Techniques. Anal. Chim. Acta. 1999;398:329–340. doi: 10.1016/S0003-2670(99)00458-4. DOI

Chu H.H. Removal of Copper from Aqueous Solution by Chitosan in Prawn Shell: Adsorption Equilibrium and Kinetics. J. Hazard. Mater. 2002;90:77–95. doi: 10.1016/S0304-3894(01)00332-6. PubMed DOI

Modrzejewska Z. Sorption Mechanism of Copper in Chitosan Hydrogel. React. Funct. Polym. 2013;73:719–729. doi: 10.1016/j.reactfunctpolym.2013.02.014. DOI

Guzman J., Saucedo I., Revilla J., Navarro R., Guibal E. Copper Sorption by Chitosan in the Presence of Citrate Ions: Influence of Metal Speciation on Sorption Mechanism and Uptake Capacities. Int. J. Biol. Macromol. 2003;33:57–65. doi: 10.1016/S0141-8130(03)00067-9. PubMed DOI

Lagzi I. Controlling and Engineering Precipitation Patterns. Langmuir. 2012;28:3350–3354. doi: 10.1021/la2049025. PubMed DOI

Meng X., Mi Y., Jia D., Guo N., An Y., Miao Y. Polymorphs Co Hydroxides Formed between Hydrazine and Co2+ as Liesegang Bands in Semisolid Agar Gel. J. Mol. Liq. 2019;285:416–423. doi: 10.1016/j.molliq.2019.04.114. DOI

Izsák F., Lagzi I. A New Universal Law for the Liesegang Pattern Formation. J. Chem. Phys. 2005;122:184707. doi: 10.1063/1.1893606. PubMed DOI

Li B., Gao Y., Feng Y., Ma B., Zhu R., Zhou Y. Formation of Concentric Multilayers in a Chitosan Hydrogel Inspired by Liesegang Ring Phenomen. J. Biomater. Sci. 2011;22:2295–2304. doi: 10.1163/092050610X538425. PubMed DOI

Gegel N., Babicheva T., Shipovskaya A. Morphology of Chitosan-Based Hollow Cylindrical Materials with a Layered Structure. BioNanoScience. 2018;8:661–667. doi: 10.1007/s12668-017-0415-1. DOI

Babicheva T.S., Konduktorova A.A., Shmakov S.L., Shipovskaya A.B. Formation of Liesegang Structures under the Conditions of the Spatiotemporal Reaction of Polymer-Analogous Transformation (Salt Base) of Chitosan. J. Phys. Chem. B. 2020;124:9255–9266. doi: 10.1021/acs.jpcb.0c07173. PubMed DOI

Kumar P., Sebok D., Kukovecs A., Horvath D., Toth A. Hierarchical Self-Assembly of Metal-Ion-Modulated Chitosan Tubules. Langmuir. 2021;37:12690–12696. doi: 10.1021/acs.langmuir.1c02097. PubMed DOI PMC

Nabika H., Itatani M., Lagzi I. Pattern Formation in Precipitation Reactions: The Liesegang Phenomenon. Langmuir. 2020;36:481–497. doi: 10.1021/acs.langmuir.9b03018. PubMed DOI

Shimizu Y., Matsui J., Unoura K., Nabika H. Liesegang Mechanism with a Gradual Phase Transition. J. Phys. Chem. B. 2017;121:2495–2501. doi: 10.1021/acs.jpcb.7b01275. PubMed DOI

Monk P. Physical Chemistry. Understanding Our Chemical World. 1st ed. John Wiley & Sons Ltd.; Chichester, UK: 2004. pp. 177–229.

Saad M., Safieddine A., Sultan R. Revisited Chaos in a Diffusion-Precipitation-Redissolution Liesegang System. J. Phys. Chem. B. 2018;122:6043–6047. doi: 10.1021/acs.jpca.8b03229. PubMed DOI

Nakouzi E., Steinbock O. Self-Organization in Precipitation Reactions Far from the Equilibrium. Sci. Adv. 2016;2:e1601144. doi: 10.1126/sciadv.1601144. PubMed DOI PMC

Sedláček P., Smilek J., Klučáková M. How Interactions with Polyelectrolytes Affect Mobility of Low Molecular Ions—Results from Diffusion Cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI

Garcia L.G.S., de Melo Guedes G.M., da Silva M.L.Q., Castelo-Branco D.S.C.M., Sidrim J.J.C., de Aguiar Cordeiro R., Rocha M.F.G., Vieira R.S., Brilhante R.S.N. Effect of the Molecular Weight of Chitosan on its Antifungal Activity against Candida spp. in Planktonic Cells and Biofilm. Carbohydr. Polym. 2018;195:662–669. doi: 10.1016/j.carbpol.2018.04.091. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...