Vaccine against Streptococcus suis Infection in Pig Based on Alternative Carrier Protein Conjugate
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
QK1810193; RO0518
Ministry of Agriculture of the Czech Republic
PubMed
36298485
PubMed Central
PMC9612095
DOI
10.3390/vaccines10101620
PII: vaccines10101620
Knihovny.cz E-resources
- Keywords
- CRM197, OVA, Streptococcus suis, conjugate vaccine, pig,
- Publication type
- Journal Article MeSH
Streptococcus suis is a serious pathogen in the pig industry with zoonotic potential. With respect to the current effort to reduce antibiotic use in animals, a prophylactic measure is needed to control the disease burden. Unfortunately, immunization against streptococcal pathogens is challenging due to nature of the interaction between the pathogen and the host immune system, but vaccines based on conjugates of capsular polysaccharide (CPS) and carrier protein were proved to be efficient. The main obstacle of these vaccines is manufacturing cost, limiting their use in animals. In this work, we tested an experimental vaccine against Streptococcus suis serotype 2 based on capsular polysaccharide conjugated to chicken ovalbumin (OVA) and compared its immunogenicity and protectivity with a vaccine based on CRM197 conjugate. Ovalbumin was selected as a cheap alternative to recombinant carrier proteins widely used in vaccines for human use. We found that the ovalbumin-based experimental vaccine successfully induced immune response in pigs, and the IgG antibody response was even higher than after immunization with capsular polysaccharide-CRM197 conjugate. Protectivity of vaccination against infection was evaluated in the challenge experiment and was found promising for both conjugates.
Department of Experimental Biology Faculty of Science Masaryk University 611 37 Brno Czech Republic
State Veterinary Institute Jihlava 586 01 Jihlava Czech Republic
See more in PubMed
Goyette-Desjardins G., Auger J.P., Xu J., Segura M., Gottschalk M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg. Microbes Infect. 2014;3:e45. doi: 10.1038/emi.2014.45. PubMed DOI PMC
Segura M., Aragon V., Brockmeier S.L., Gebhart C., Greeff A.d., Kerdsin A., O’Dea M.A., Okura M., Saléry M., Schultsz C., et al. Update on Streptococcus suis Research and Prevention in the Era of Antimicrobial Restriction: 4th International Workshop on S. suis. Pathogens. 2020;9:374. doi: 10.3390/pathogens9050374. PubMed DOI PMC
Okura M., Osaki M., Nomoto R., Arai S., Osawa R., Sekizaki T., Takamatsu D. Current Taxonomical Situation of Streptococcus suis. Pathogens. 2016;5:45. doi: 10.3390/pathogens5030045. PubMed DOI PMC
Zheng H., Ji S., Liu Z., Lan R., Huang Y., Bai X., Gottschalk M., Xu J. Eight Novel Capsular Polysaccharide Synthesis Gene Loci Identified in Nontypeable Streptococcus suis Isolates. Appl. Environ. Microbiol. 2015;81:4111–4119. doi: 10.1128/AEM.00315-15. PubMed DOI PMC
Goyette-Desjardins G., Calzas C., Shiao T.C., Neubauer A., Kempker J., Roy R., Gottschalk M., Segura M. Protection against Streptococcus suis Serotype 2 Infection Using a Capsular Polysaccharide Glycoconjugate Vaccine. Infect. Immun. 2016;84:2059–2075. doi: 10.1128/IAI.00139-16. PubMed DOI PMC
Segura M., Fittipaldi N., Calzas C., Gottschalk M. Critical Streptococcus suis Virulence Factors: Are They All Really Critical? Trends Microbiol. 2017;25:585–599. doi: 10.1016/j.tim.2017.02.005. PubMed DOI
Holt M.E., Enright M.R., Alexander T.J. Immunisation of pigs with live cultures of Streptococcus suis type 2. Res. Vet. Sci. 1988;45:349–352. doi: 10.1016/S0034-5288(18)30963-9. PubMed DOI
Blouin C., Higgins R., Gottschalk M., Simard J. Evaluation of the antibody response in pigs vaccinated against Streptococcus suis capsular type 2 using a double-antibody sandwich enzyme-linked immunosorbent assay. Can. J. Vet. Res. 1994;58:49–54. PubMed PMC
Cobb B.A., Wang Q., Tzianabos A.O., Kasper D.L. Polysaccharide processing and presentation by the MHCII pathway. Cell. 2004;117:677–687. doi: 10.1016/j.cell.2004.05.001. PubMed DOI PMC
Avci F.Y., Li X., Tsuji M., Kasper D.L. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat. Med. 2011;17:1602–1609. doi: 10.1038/nm.2535. PubMed DOI PMC
Avci F., Berti F., Dull P., Hennessey J., Pavliak V., Prasad A.K., Vann W., Wacker M., Marcq O. Glycoconjugates: What It Would Take To Master These Well-Known yet Little-Understood Immunogens for Vaccine Development. mSphere. 2019;4:e00520-19. doi: 10.1128/mSphere.00520-19. PubMed DOI PMC
Pichichero M.E. Protein carriers of conjugate vaccines: Characteristics, development, and clinical trials. Hum. Vaccin. Immunother. 2013;9:2505–2523. doi: 10.4161/hv.26109. PubMed DOI PMC
Romano M.R., Leuzzi R., Cappelletti E., Tontini M., Nilo A., Proietti D., Berti F., Costantino P., Adamo R., Scarselli M. Recombinant Clostridium difficile toxin fragments as carrier protein for PSII surface polysaccharide preserve their neutralizing activity. Toxins. 2014;6:1385–1396. doi: 10.3390/toxins6041385. PubMed DOI PMC
Sun X., Stefanetti G., Berti F., Kasper D.L. Polysaccharide structure dictates mechanism of adaptive immune response to glycoconjugate vaccines. Proc. Natl. Acad. Sci. USA. 2019;116:193–198. doi: 10.1073/pnas.1816401115. PubMed DOI PMC
Hermanson G.T. Chapter 19—Vaccines and Immunogen Conjugates. In: Hermanson G.T., editor. Bioconjugate Techniques. 3rd ed. Academic Press; Cambridge, MA, USA: 2013. pp. 839–865. DOI
Kerdsin A., Akeda Y., Hatrongjit R., Detchawna U., Sekizaki T., Hamada S., Gottschalk M., Oishi K. Streptococcus suis serotyping by a new multiplex PCR. Pt 6J. Med. Microbiol. 2014;63:824–830. doi: 10.1099/jmm.0.069757-0. PubMed DOI
Matiasovic J., Zouharova M., Nedbalcova K., Kralova N., Matiaskova K., Simek B., Kucharovicova I., Gottschalk M. Resolution of Streptococcus suis Serotypes 1/2 versus 2 and 1 versus 14 by PCR-Restriction Fragment Length Polymorphism Method. J. Clin. Microbiol. 2020;58:e00480-20. doi: 10.1128/JCM.00480-20. PubMed DOI PMC
Elliott S.D., Tai J.Y. The type-specific polysaccharides of Streptococcus suis. J. Exp. Med. 1978;148:1699–1704. doi: 10.1084/jem.148.6.1699. PubMed DOI PMC
Hermanson G.T. Chapter 2—Functional Targets for Bioconjugation. In: Hermanson G.T., editor. Bioconjugate Techniques. 3rd ed. Volume 3. Academic Press; Cambridge, MA, USA: 2013. pp. 127–228. DOI
Jarosova R., Ondrackova P., Patocka Z., Sládek Z. Comparison of cryoprotective methods for histological examination of rat and porcine lung tissue. Acta Vet. Brno. 2021;90:225–231. doi: 10.2754/avb202190020225. DOI
Neila-Ibáñez C., Casal J., Hennig-Pauka I., Stockhofe-Zurwieden N., Gottschalk M., Migura-García L., Pailler-García L., Napp S. Stochastic Assessment of the Economic Impact of Streptococcus suis-Associated Disease in German, Dutch and Spanish Swine Farms. Front. Vet. Sci. 2021;8:676002. doi: 10.3389/fvets.2021.676002. PubMed DOI PMC
Pollard A.J., Perrett K.P., Beverley P.C. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat. Rev. Immunol. 2009;9:213–220. doi: 10.1038/nri2494. PubMed DOI
Waite E.R., March J.B. Capsular polysaccharide conjugate vaccines against contagious bovine pleuropneumonia: Immune responses and protection in mice. J. Comp. Pathol. 2002;126:171–182. doi: 10.1053/jcpa.2001.0540. PubMed DOI
Cress B.F., Englaender J.A., He W., Kasper D., Linhardt R.J., Koffas M.A. Masquerading microbial pathogens: Capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol. Rev. 2014;38:660–697. doi: 10.1111/1574-6976.12056. PubMed DOI PMC
Goyette-Desjardins G., Auger J.P., Dolbec D., Vinogradov E., Okura M., Takamatsu D., Van Calsteren M.R., Gottschalk M., Segura M. Comparative Study of Immunogenic Properties of Purified Capsular Polysaccharides from Streptococcus suis Serotypes 3, 7, 8, and 9: The Serotype 3 Polysaccharide Induces an Opsonizing IgG Response. Infect. Immun. 2020;88:e00377-20. doi: 10.1128/IAI.00377-20. PubMed DOI PMC
Lecours M.P., Letendre C., Clarke D., Lemire P., Galbas T., Benoit-Biancamano M.O., Thibodeau J., Gottschalk M., Segura M. Immune-responsiveness of CD4+ T cells during Streptococcus suis serotype 2 infection. Sci. Rep. 2016;6:38061. doi: 10.1038/srep38061. PubMed DOI PMC
Elliott S.D., Clifton-Hadley F., Tai J. Streptococcal infection in young pigs. V. An immunogenic polysaccharide from Streptococcus suis type 2 with particular reference to vaccination against streptococcal meningitis in pigs. J. Hyg. 1980;85:275–285. doi: 10.1017/S0022172400063312. PubMed DOI PMC
Calzas C., Lemire P., Auray G., Gerdts V., Gottschalk M., Segura M. Antibody response specific to the capsular polysaccharide is impaired in Streptococcus suis serotype 2-infected animals. Infect. Immun. 2015;83:441–453. doi: 10.1128/IAI.02427-14. PubMed DOI PMC
Calzas C., Taillardet M., Fourati I.S., Roy D., Gottschalk M., Soudeyns H., Defrance T., Segura M. Evaluation of the Immunomodulatory Properties of Streptococcus suis and Group B Streptococcus Capsular Polysaccharides on the Humoral Response. Pathogens. 2017;6:16. doi: 10.3390/pathogens6020016. PubMed DOI PMC
Mond J.J., Kokai-Kun J.F. The multifunctional role of antibodies in the protective response to bacterial T cell-independent antigens. In: Manser T., editor. Specialization and Complementation of Humoral Immune Responses to Infection. Volume 319. Springer; Berlin/Heidelberg, Germany: 2008. pp. 17–40. PubMed
Rieckmann K., Pendzialek S.M., Vahlenkamp T., Baums C.G. A critical review speculating on the protective efficacies of autogenous Streptococcus suis bacterins as used in Europe. Porc. Health Manag. 2020;6:12. doi: 10.1186/s40813-020-00150-6. PubMed DOI PMC