Effect of Chitosan as Active Bio-colloidal Constituent on the Diffusion of Dyes in Agarose Hydrogel
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37232987
PubMed Central
PMC10217983
DOI
10.3390/gels9050395
PII: gels9050395
Knihovny.cz E-resources
Agarose hydrogel was enriched by chitosan as an active substance for the interactions with dyes. Direct blue 1, Sirius red F3B, and Reactive blue 49 were chosen as representative dyes for the study of the effect of their interaction with chitosan on their diffusion in hydrogel. Effective diffusion coefficients were determined and compared with the value obtained for pure agarose hydrogel. Simultaneously, sorption experiments were realized. The sorption ability of enriched hydrogel was several times higher in comparison with pure agarose hydrogel. Determined diffusion coefficients decreased with the addition of chitosan. Their values included the effects of hydrogel pore structure and interactions between chitosan and dyes. Diffusion experiments were realized at pH 3, 7, and 11. The effect of pH on the diffusivity of dyes in pure agarose hydrogel was negligible. Effective diffusion coefficients obtained for hydrogels enriched by chitosan increased gradually with increasing pH value. Electrostatic interactions between amino group of chitosan and sulfonic group of dyes resulted in the formation of zones with a sharp boundary between coloured and transparent hydrogel (mainly at lower pH values). A concentration jump was observed at a given distance from the interface between hydrogel and the donor dye solution.
See more in PubMed
Falk B., Garramone S., Shivkumar S. Diffusion coefficient of paracetamol in a chitosan hydrogel. Mater. Lett. 2004;58:3261–3265. doi: 10.1016/j.matlet.2004.05.072. DOI
Molinaro G., Leroux J., Damas J., Adam A. Biocompatibility of thermosensitive chitosan-based hydrogels: An in vivo experimental approach to injectable biomaterials. Biomaterials. 2002;23:2717–2722. doi: 10.1016/S0142-9612(02)00004-2. PubMed DOI
Wang J., Wang L., Yu H., Zain-Ul-Abdin, Chen Y., Chen Q., Zhou W., Zhang H., Chen X. Recent progress on synthesis, property and application of modified chitosan: An overview. Int. J. Biol. Macromol. 2016;88:333–344. doi: 10.1016/j.ijbiomac.2016.04.002. PubMed DOI
Jayakumar R., Prabaharan M., Reis R.L., Mano J.F. Graft copolymerized chitosan—Present status and applications. Carbohydr. Polym. 2005;62:142–158. doi: 10.1016/j.carbpol.2005.07.017. DOI
Ji J., Wang L., Yu H., Chen Y., Zhao Y., Zhang H., Amer W.A., Sun Y., Huang L., Saleem M. Chemical modifications of chitosan and its applications. Polym.-Plast. Technol. Eng. 2014;53:1494–1505. doi: 10.1080/03602559.2014.909486. DOI
An-Chong C., Shin-Shing S., Yu-Chuang L., Fwu-Long. M. Enzymatic grafting of carboxyl groups on to chitosan—To confer on chitosan the property of a cationic dye adsorbent. Bioresour. Technol. 2004;91:157–162. PubMed
Kyzas G.Z., Bikiaris D.N. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar. Drugs. 2015;13:312–337. doi: 10.3390/md13010312. PubMed DOI PMC
Kausar A. Scientific potential of chitosan blending with different polymeric materials: A review. J. Plast. Film Sheeting. 2017;33:384–412. doi: 10.1177/8756087916679691. DOI
Klučáková M. How the addition of chitosan affects the transport and rheological properties of agarose hydrogels. Gels. 2023;9:99. doi: 10.3390/gels9020099. PubMed DOI PMC
Sedláček P., Smilek J., Klučáková M. How interactions with polyelectrolytes affect mobility of low molecular ions—Results from diffusion cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI
Sedláček P., Smilek J., Klučáková M. How the interactions with humic acids affect the mobility of ionic dyes in hydrogels—2. Non-stationary diffusion experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI
Xiong J.Y., Narayanan J., Liu X.Z., Chong T.K., Chen S.B., Chung T.S. Topology evolution and gelation mechanism of agarose gel. J. Phys. Chem B. 2005;109:5638–5643. doi: 10.1021/jp044473u. PubMed DOI
Barrangou L.M., Daubert C.R., Foegeding E.A. Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocoll. 2006;20:184–195. doi: 10.1016/j.foodhyd.2005.02.019. DOI
Barrangou L.M., Drake N.A., Daubert C.R., Foegeding E.A. Textural properties of agarose gels. II. Relationships between rheological properties and sensory texture. Food Hydrocoll. 2006;20:196–203. doi: 10.1016/j.foodhyd.2005.03.013. DOI
Golmohamadi M., Davis T.A., Wilkinson K.J. Diffusion and partitioning of cations in an agarose hydrogel. J. Phys. Chem. A. 2012;116:6505–6510. doi: 10.1021/jp212343g. PubMed DOI
Lead J.R., Starchev K., Wilkinson K.J. Diffusion coefficients of humic substances in agarose gel and in water. Environ. Sci. Technol. 2003;37:482–487. doi: 10.1021/es025840n. PubMed DOI
Gutenwik J., Nilson B., Axxelson A. Determination of protein diffusion coefficients in agarose gel with a diffusion cell. Biochem. Eng. J. 2004;19:1–7. doi: 10.1016/j.bej.2003.09.004. DOI
Liang S.M., Xu J., Weng L., Dai H., Zhang X., Zhang L. Protein diffusion in agarose hydrogel in situ measured by improved refractive index method. J. Control. Release. 2006;115:189–196. doi: 10.1016/j.jconrel.2006.08.006. PubMed DOI
Tan S.X., Dai H.J., Wu J., Zhao N., Zhang X., Xu J. Optical investigation of diffusion of levofloxacin mesylate in agarose hydrogel. J. Biomed. Opt. 2009;14:050503. doi: 10.1117/1.3227034. PubMed DOI
Labille J., Fatin-Rouge N., Buffle J. Local and average diffusion of nanosolutes in agarose gel: The effect of the gel/solution interface structure. Langmuir. 2007;23:2083–2090. doi: 10.1021/la0611155. PubMed DOI
Karmaker S., Nag A.J., Saha T.K. Adsorption of reactive blue 4 dye onto Chitosan 10B in aqueous solution: Kinetic modeling and isotherm analysis. Russ. J. Phys. Chem. 2020;94:2349–2359. doi: 10.1134/S0036024420110126. DOI
Liu D., Cheng W., Yu J., Ding Y. Polyamine chitosan adsorbent for the enhanced adsorption of anionic dyes from water. J. Dispers. Sci. Technol. 2017;38:1832–1841.
Qin Y., Cai L., Feng D., Shi., Liu J., Zhang W., Shen Y. Combined use of chitosan and alginate in the treatment of wastewater. J. Appl. Polym. Sci. 2007;104:3581–3587. doi: 10.1002/app.26006. DOI
Pietrelli L., Francolini I., Piozzi A. Dyes adsorption from aqueous solutions by chitosan. Sep. Sci. Technol. 2015;50:1101–1107. doi: 10.1080/01496395.2014.964632. DOI
Bekci Z., Ozveri C., Seki Y., Yurdakoc K. Sorption of malachite green on chitosan bead. J. Hazard. Mater. 2008;154:254–261. doi: 10.1016/j.jhazmat.2007.10.021. PubMed DOI
Kekes T., Tzia C. Adsorption of indigo carmine on functional chitosan and β-cyclodextrin/chitosan beads: Equilibrium, kinetics and mechanism studies. J. Environ. Manag. 2020;262:110372. doi: 10.1016/j.jenvman.2020.110372. PubMed DOI
Sutirman Z.A., Sanagi M.M., Karim K.J.A., Naim A.A., Ibrahim W.A.W. Enhanced removal of Orange G from aqueous solutions by modified chitosan beads: Performance and mechanism. Int. J. Biol. Macromol. 2019;133:1260–1267. doi: 10.1016/j.ijbiomac.2019.04.188. PubMed DOI
Ren J., Wang X., Zhao L., Li M., Yang W. Double network gelatin/chitosan hydrogel effective removal of dyes from aqueous solutions. J. Polym. Environ. 2022;30:2007–2021. doi: 10.1007/s10924-021-02327-8. DOI
Cesco C.T., Valente A.J.M., Paulino A.T. Methylene blue release from chitosan/pectin and chitosan/DNA blend hydrogels. Pharmaceutics. 2021;13:842. doi: 10.3390/pharmaceutics13060842. PubMed DOI PMC
Gonçalves J.O., da Silva K.A., Rios E.C., Crispim M.M., Dotto G.L., de Almeida Pinto L.A. Single and binary adsorption of food dyes on chitosan/activated carbon hydrogels. Chem. Eng. Technol. 2019;42:454–464. doi: 10.1002/ceat.201800367. DOI
Shen C., Shen Y., Wen Y., Wang H., Liu W. Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel. Water Res. 2011;45:5200–5210. doi: 10.1016/j.watres.2011.07.018. PubMed DOI
Kim U.J., Kimura S., Wada M. Characterization of cellulose–chitosan gels prepared using a LiOH/urea aqueous solution. Cellulose. 2019;26:6189–6199. doi: 10.1007/s10570-019-02527-5. DOI
Le H.Q., Sekiguchi Y., Ardiyanta D., Shimoyama Y. CO2-activated adsorption: A new approach to dye removal by chitosan hydrogel. ACS Omega. 2018;3:14103–14110. doi: 10.1021/acsomega.8b01825. PubMed DOI PMC
Sacco P., Furlani F., De Marzo G., Marsich E., Paoletti S., Donati I. Concepts for developing physical gels of chitosan and of chitosan derivatives. Gels. 2018;4:67. doi: 10.3390/gels4030067. PubMed DOI PMC
Barron-Zambrano J., Szygula A., Ruiz M., Sastre A.M., Guibal E. Biosorption of Reactive Black 5 from aqueous solutions by chitosan: Column studies. J. Environ. Manag. 2010;91:2669–2675. doi: 10.1016/j.jenvman.2010.07.033. PubMed DOI
Lazaridis N.K., Keenan H. Chitosan beads as barriers to the transport of azo dye in soil column. J. Hazard. Mater. 2010;173:144–150. doi: 10.1016/j.jhazmat.2009.08.062. PubMed DOI
García-Aparicio C., Quijada-Garrido I., Garrido L. Diffusion of small molecules in a chitosan/water gel determined by proton localized NMR spectroscopy. J. Colloid Interface Sci. 2012;268:14–20. doi: 10.1016/j.jcis.2011.11.028. PubMed DOI
Cheung W.H., Szeto Y.S., McKay G. Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 2007;98:2897–2904. doi: 10.1016/j.biortech.2006.09.045. PubMed DOI
Coura J.C., Profeti D., Profeti L.P.R. Eco-friendly chitosan/quartzite composite as adsorbent for dye removal. Mater. Chem. Phys. 2020;256:123711. doi: 10.1016/j.matchemphys.2020.123711. DOI
Vanamudan A., Pamidimukkala P. Chitosan, nanoclay and chitosan–nanoclay composite as adsorbents for Rhodamine-6G and the resulting optical properties. Int. J. Biol. Macromol. 2015;74:127–135. doi: 10.1016/j.ijbiomac.2014.11.009. PubMed DOI
Sadiq A.C., Rahim N.Y., Suah F.B.M. Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. Int. J. Biol. Macromol. 2020;164:3965–3973. doi: 10.1016/j.ijbiomac.2020.09.029. PubMed DOI
Bilal M., Rasheed T., Zhao Y., Iqbal H.M.N. Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int. J. Biol. Macromol. 2019;124:742–749. doi: 10.1016/j.ijbiomac.2018.11.220. PubMed DOI
Hartig D., Hacke S., Scholl S. Concentration-dependent diffusion coefficients for fructose in highly permeable chitosan polymers. Chem. Eng. Technol. 2018;41:454–460. doi: 10.1002/ceat.201600583. DOI
Yang J.M., Su W.Y., Leu T.L., Yang M.C. Evaluation of chitosan/PVA blended hydrogel membranes. J. Membr. Sci. 2004;236:39–51. doi: 10.1016/j.memsci.2004.02.005. DOI
Waluga T., Scholl S. Diffusion of saccharides and the sugar alcohol sorbitol in chitosan membranes and beads. Chem. Eng. Technol. 2013;36:681–686. doi: 10.1002/ceat.201200522. DOI
Xu D., Loo L.S., Wang K. Characterization and diffusion behavior of chitosan–POSS composite membranes. J. Appl. Polym. Sci. 2011;122:427–435. doi: 10.1002/app.34146. DOI
Carlough M., Hudson S., Smith B., Spadgenske D. Diffusion coefficients of direct dyes in chitosan. J. Appl. Polym. Sci. 1991;42:3035–3038. doi: 10.1002/app.1991.070421122. DOI
Klučáková M., Smilek J., Sedláček P. How humic acids affect the rheological and transport properties of hydrogels. Molecules. 2019;24:1545. doi: 10.3390/molecules24081545. PubMed DOI PMC
Klučáková M. Agarose hydrogels enriched by humic acids as complexation agent. Polymers. 2020;12:687. doi: 10.3390/polym12030687. PubMed DOI PMC
Crank J. The Mathematics of Diffusion. 1st ed. Clarendon Press; Oxford, UK: 1956. pp. 26–41.
Cussler E.L. Diffusion: Mass Transfer in Fluid Systems. 2nd ed. Cambridge University Press; Cambridge, MA, USA: 1984. pp. 13–49.
Klučáková M., Pekař M. Study of structure and properties of humic and fulvic acids. IV. Study of interactions of Cu2+ ions with humic gels and final comparison. J. Polym. Mater. 2003;20:155–162.
Klučáková M., Pekař M. Study of diffusion of metal cations in humic gels. In: Ghabbour E.A., Davies G., editors. Humic Substances: Nature’s Most Versatile Materials. 1st ed. Taylor & Francis; New York, NY, USA: 2004. pp. 263–273.
Maekawa M., Kamada C. Mixture diffusion of sulfonated dyes into cellulose membrane: IV. Effects of complex formation between a couple of dyes. Colloids Surf. A Physicochem. Eng. Asp. 2003;216:83–90. doi: 10.1016/S0927-7757(02)00502-2. DOI
Mansurov R.R., Zverev V.S., Safronov A.P. Dynamics of diffusion-limited photocatalytic degradation of dye by polymeric hydrogel with embedded TiO2 nanoparticles. J. Catal. 2022;406:9–18. doi: 10.1016/j.jcat.2021.12.026. DOI
Şolpan D., Duran S., Torun M. Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions. Radiat. Phys. Chem. 2008;77:447–452. doi: 10.1016/j.radphyschem.2007.08.006. DOI
Abdel-Aal S.E. Synthesis of copolymeric hydrogels using gamma radiation and their utilization in the removal of some dyes in wastewater. J. Appl. Polym. Sci. 2006;102:3720–3731. doi: 10.1002/app.24536. DOI
Al-Mubaddel F.S., Haider S., Aijaz M.O., Haider A., Kamal T., Almasry W., Javid M., Khan S.U.-D. Preparation of the chitosan/polyacrylonitrile semi-IPN hydrogel via glutaraldehyde vapors for the removal of Rhodamine B dye. Polym. Bull. 2017;74:1535–1551. doi: 10.1007/s00289-016-1788-y. DOI
Sandrin D., Wagner D., Sitta C.E., Thoma R., Felekyan S., Hermes H.E., Janiak C., de Sousa Amadeu N., Kühnemuth R., Löwen H., et al. Diffusion of macromolecules in a polymer hydrogel: From microscopic to macroscopic scales. Phys. Chem. Chem. Phys. 2016;18:12860–12876. doi: 10.1039/C5CP07781H. PubMed DOI
Roussy J., Van Vooren M., Dempsey B.A., Guibal E. Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions. Water Res. 2005;39:3247–3258. doi: 10.1016/j.watres.2005.05.039. PubMed DOI
Chen K., Muthukamar M. Entropic barrier of topologically immobilized DNA in hydrogels. Proc. Natl. Acad. Sci. USA. 2021;118:e210638011. doi: 10.1073/pnas.2106380118. PubMed DOI PMC
Garcia L.G.S., de Melo Guedes G.M., da Silva M.L.Q., Castelo-Branco D.S.C.M., Sidrim J.J.C., de Aguiar Cordeiro R., Rocha M.F.G., Vieira R.S., Brilhante R.S.N. Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm. Carbohydr. Polym. 2018;195:662–669. doi: 10.1016/j.carbpol.2018.04.091. PubMed DOI