The Effect of Supramolecular Humic Acids on the Diffusivity of Metal Ions in Agarose Hydrogel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1211
Czech Science Foundation
PubMed
35164280
PubMed Central
PMC8838780
DOI
10.3390/molecules27031019
PII: molecules27031019
Knihovny.cz E-zdroje
- Klíčová slova
- copper, diffusion, humic acids, interaction, self-assembly, supramolecular,
- Publikační typ
- časopisecké články MeSH
Humic acids are known as natural substances of a supramolecular nature. Their self-assembly ability can affect the migration of heavy metals and other pollutants in nature. The formation of metal-humic complexes can decrease their mobility and bioavailability. This study focuses on metal ions diffusion and immobilization in humic hydrogels. Humic acids were purchased from International Humic Substances Society (isolated from different matrices-peat, soil, leonardite, water) and extracted from lignite mined in Czech Republic. Copper(II) ions were chosen as a model example of reactive metals for the diffusion experiments. The model of instantaneous planar source was used for experimental data obtained from monitoring the time development of copper(II) ions distribution in hydrogel. The effective diffusion coefficients of copper(II) ions showed the significant dependence on reaction ability of humic hydrogels. Lower amounts of the acidic functional groups caused an increase in the effective diffusion coefficient. In general, diffusion experiments seem to act as a valuable method for reactivity mapping studies on humic substances.
Zobrazit více v PubMed
Manceau A., Matynia A. The nature of Cu bonding to natural organic matter. Geochim. Cosmochim. Acta. 2010;74:2556–2580. doi: 10.1016/j.gca.2010.01.027. DOI
Klucakova M., Pekar M. Study of structure and properties of humic and fulvic acids. IV. Study of complexation of Cu2+ ions with humic gels and final comparison. J. Polym. Mater. 2003;20:155–162.
Sierra J., Roig N., Gimenez Papiol G., Perez-Gallego E., Schuhmacher M. Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers. Sci. Total Environ. 2017;605:211–218. doi: 10.1016/j.scitotenv.2017.06.136. PubMed DOI
Baek K., Yang J.-W. Humic-substance-enhanced ultrafiltration for removal of heavy metals. Sep. Sci. Technol. 2005;40:699–708. doi: 10.1081/SS-200042665. DOI
Christl I., Metzger A., Heidmann I., Kretzschmar R. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environ. Sci. Technol. 2005;39:5319–5326. doi: 10.1021/es050018f. PubMed DOI
Vialykh E.A., Salahub D.R., Achari G. Metal ion binding by humic substances as emergent functions of labile supramolecular assemblies. Environ. Chem. 2020;17:252–265. doi: 10.1071/EN19198. DOI
Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810–832. doi: 10.1097/00010694-200111000-00007. DOI
Alvarez-Puebla R.A., Valenzuela-Calahorro C., Garrido J.J. Theoretical study on fulvic acid structure, conformation and aggregation: A molecular modelling approach. Sci. Total Environ. 2006;358:243–254. doi: 10.1016/j.scitotenv.2004.11.026. PubMed DOI
Conte P., Piccolo A. Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environ. Sci. Technol. 1999;33:1682–1690. doi: 10.1021/es9808604. DOI
Picollo A., Nardi S., Concheri G. Micelle-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere. 1996;33:595–602. doi: 10.1016/0045-6535(96)00210-X. PubMed DOI
Tarasevich Y.I., Dolenko S.A., Trifonova M.Y., Alexeenko E.Y. Association and colloid-chemical properties of humic acids in aqueous solutions. Colloid J. 2013;75:207–213. doi: 10.1134/S1061933X13020166. DOI
Baalousha M., Motelica-Heino M., Galaup S., LeCoustumer P. Supramolecular structure of humic acids by TEM with improved sample preparation and staining. Microsc. Res. Tech. 2005;66:299–306. doi: 10.1002/jemt.20173. PubMed DOI
Fischer T. Humic supramolecular structures have polar surfaces and unipolar cores in native soil. Chemosphere. 2017;183:437–443. doi: 10.1016/j.chemosphere.2017.05.125. PubMed DOI
Simpson A.J., Kingery W.L., Hayes M.H.B., Spraul M., Humpfer E., Dvortsak P., Kerssebaum R., Godejohann M., Hofman M. Molecular structure and associations of humic substances in the terrestrial environment. Naturwissenschaften. 2002;89:84–88. doi: 10.1007/s00114-001-0293-8. PubMed DOI
Simpson A.J. Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy. Magn. Reson. Chem. 2002;40:S72–S82. doi: 10.1002/mrc.1106. DOI
Jansen S.A., Malatz M., Nwbara S., Johnson E., Ghabbour E., Davies G., Varnum J.M. Structural modeling in humic acids. Mat. Sci. Eng. C. 1996;4:175–179. doi: 10.1016/S0928-4931(96)00151-8. DOI
Baigorri R., Fuentes M., Gonyaley-Gaitano G., Garcia-Mina J.M. Simultaneous presence of diverse molecular pattern in humic substances in solution. J. Phys. Chem. B. 2007;111:10577–10582. doi: 10.1021/jp0738154. PubMed DOI
Trubetskoi O.A., Trubetskaya O.E. Reversed-phase high-performance liquid chromatography of the stable electrophoretic fractions of soil humic acids. Eurasian Soil Sci. 2015;48:148–156. doi: 10.1134/S106422931502012X. DOI
Giachin G., Nepravishta R., Mandaliti W., Melino S., Margon A., Scaini D., Mazzei P., Piccolo A., Legname G., Paci M., et al. The mechanisms of humic substances selfassembly with biological molecules: The case study of the prion protein. PLoS ONE. 2017;14:e0213673 PubMed PMC
Nebbioso A., Piccolo A. Basis of a humeomics science: Chemical fractionation and molecular characteriazation of humic suprastructures. Biomacromolecules. 2011;12:1187–1199. doi: 10.1021/bm101488e. PubMed DOI
Chilom G., Baglieri A., Johnson-Edler C.A., Rice J.A. Hierarchical self-assembling properties of natural organic matter’s components. Org. Geochem. 2013;57:119–126. doi: 10.1016/j.orggeochem.2013.02.008. DOI
Klucakova M., Pekař M. Study of structure and properties of humic and fulvic acids. III. Study of complexation of Cu2+ ions with humic acid in sols. J. Polym. Mater. 2003;20:145–154.
Klucakova M., Veznikova K. The role of concentration and solvent character in the molecular organization of humic acids. Molecules. 2016;21:1410. doi: 10.3390/molecules21111410. PubMed DOI PMC
Klucakova M., Veznikova K. Micro-organization of humic acids in aqueous solutions. J. Mol. Struct. 2017;1144:33–40. doi: 10.1016/j.molstruc.2017.05.012. DOI
Klucakova M., Kalina M. Composition, particle size, charge and colloidal stability of pH-fractionated humic acids. J. Soils Sediments. 2015;15:1900–1908. doi: 10.1007/s11368-015-1142-2. DOI
Klucakova M. Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact. Front. Chem. 2018;6:235. doi: 10.3389/fchem.2018.00235. PubMed DOI PMC
Varga B., Kiss G., Galambos I., Gelencser A., Hlavay J., Krivacsy Z. Secondary structure of humic acids. Can micelle-like conformation be proved by aqueous size exclusion chromatography? Environ. Sci. Technol. 2000;34:3303–3306. doi: 10.1021/es991286e. DOI
Jung A.V., Frochot C., Villieras F., Lartiges B.S., Parant S., Viriot M.L., Bersilion J.L. Interaction of pyrene fluoroprobe with natural and synthetic humic substances: Examining the local molecular organization from photophysical and interfacial processes. Chemosphere. 2010;80:228–234. doi: 10.1016/j.chemosphere.2010.04.035. PubMed DOI
Vashurina I.Y., Kochkina N.E., Kalinnikov Y.A. Effect of humic acid microadditives on the properties of starch hydrogels and films from them. Fibre Chem. 2004;36:338–342. doi: 10.1007/s10692-005-0005-9. DOI
Zielinska K., Town R.M., Yasadi K., Van Leeuven H.P. Partitioning of humic acids between aqueous solution and hydrogel: Concentration profiling of humic acids in hydrogel phase. Langmuir. 2014;30:2084–2092. doi: 10.1021/la4050094. PubMed DOI
Kanmaz N., Saloglu D., Hizal J. Humic acid embedded chitosan/poly (vinyl alcohol) pH-sensitive hydrogel: Synthesis, characterization, swelling kinetic and diffusion coefficient. Chem. Eng. Commun. 2018;206:1168–1180. doi: 10.1080/00986445.2018.1550396. DOI
Ma J., Luo J., Liu Z., Wei Z., Cai T., Zu X., Liu H., Crittenden J.C. Pb (II), Cu (II) and Cd (II) removal using a humic substance-based double network hydrogel in individual and multicomponent systems. J. Mater. Chem. A. 2018;6:20110–20120. doi: 10.1039/C8TA07250G. DOI
Hou M., Yang R., Zhang L., Liu G., Xu Z., Kang Y., Xue P. Injectable and natural humic acid/agarose hybrid hydrogel for localized light-driven photothermal ablation and chemotheraphy of cancer. ACS Biomater. Sci. Eng. 2018;4:4266–4277. doi: 10.1021/acsbiomaterials.8b01147. PubMed DOI
Sedlacek P., Smilek J., Klucakova M. How interactions with polyelectrolytes affect mobility of low molecular ions—Results from diffusion cells. React. Funct. Polym. 2013;73:1500–1509. doi: 10.1016/j.reactfunctpolym.2013.07.008. DOI
Sedlacek P., Smilek J., Klucakova M. How interactions with polyelectrolytes affect mobility of low molecular ions—2. Non-stationery diffusion experiments. React. Funct. Polym. 2014;75:41–50. doi: 10.1016/j.reactfunctpolym.2013.12.002. DOI
Chen R., Zhang Y., Shen L., Wang X., Chen J., Ma A., Jiang W. Lead (II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid. Chem. Eng. J. 2015;268:348–355. doi: 10.1016/j.cej.2015.01.081. DOI
Klucakova M., Smilek J., Sedlacek P. How humic acids affect the rheological and transport properties of hydrogels. Molecules. 2019;24:1545. doi: 10.3390/molecules24081545. PubMed DOI PMC
Klucakova M. Agarose hydrogels enriched by humic acids as complexation agent. Polymers. 2020;12:687. doi: 10.3390/polym12030687. PubMed DOI PMC
Klucakova M., Kalina M., Sedlacek P. Grasset, L. Reactivity and transport mapping of Cu (II) ions in humic hydrogels. J. Soils Sediments. 2014;14:368–376. doi: 10.1007/s11368-013-0730-2. DOI
Klucakova M., Kalina M. Diffusivity of Cu (II) ions in humic gels-influence of reactive functional groups of humic acids. Colloids Surf. A. 2015;483:162–170. doi: 10.1016/j.colsurfa.2015.05.041. DOI
Iglesias A., Lopez R., Antelo J., Fiol S., Arce F. Effect of pH and ionic strength on the binding of paraquat and MCPA by soil fulvic and humic acids. Chemosphere. 2009;76:107–113. doi: 10.1016/j.chemosphere.2009.02.012. PubMed DOI
Paradelo M., Perez-Rodriguez P., Fernandez-Calvino D., Ariaz-Estevez M., Lopez-Periago J.E. Coupled transport of humic acids and copper through saturated porous media. Eur. J. Soil Sci. 2012;63:708–716. doi: 10.1111/j.1365-2389.2012.01481.x. DOI
Crank J. The Mathematics of Diffusion. Clarendon Press; Oxford, UK: 1956. pp. 9–26.
Cussler E.L. Diffusion: Mass Transfer in Fluid Systems. 2nd ed. Cambridge University Press; Cambridge, UK: 1984. pp. 35–37.
IHSS Natural Organic Matter Research. [(accessed on 21 February 2021)]. Available online: http:/www.Humic-substances.org.
Haynes W.M. Handbook of Chemistry and Physics. 93rd ed. CRC Press; Boca Raton, FL, USA: 2012. pp. 5-77–5-79.
Scally S., Davison W., Zhang H. Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films. Anal. Chim. Acta. 2006;558:222–229. doi: 10.1016/j.aca.2005.11.020. DOI
Yasadi K., Pinheiro J.P., Zielińska K., Town R.M., Van Leeuwen H.P. Partitioning of humic acids between aqueous solution and hydrogel. 3. Microelectrodic dynamic speciation analysis of free and bound humic metal complexes in the gel phase. Langmuir. 2015;31:1737–1745. doi: 10.1021/la504885v. PubMed DOI
Wang Y., Ding S., Gong M., Xu S., Xu W., Zhang C. Diffusion characteristics of agarose hydrogel used in diffusive gradients in thin films for measurements of cations and anions. Anal. Chim. Acta. 2016;945:47–56. doi: 10.1016/j.aca.2016.10.003. PubMed DOI
Garmo O.A., Royset O., Steinnes E., Flaten T.P. Performance study of diffusive gradients in thin films for 55 elements. Anal. Chem. 2003;75:3573–3580. doi: 10.1021/ac026374n. PubMed DOI
Tang J., Huang J., Tun T., Liu S., Hu J., Zhou G. Cu (II) and Cd (II) capture using novel thermosensitive hydrogel microspheres: Adsorption behavior study and mechanism investigation. J. Chem. Technol. Biotechnol. 2021;96:2382–2389. doi: 10.1002/jctb.6767. DOI
Zhang W., Song J., He Q., Wang H., Lyu W., Feng H., Xiong W., Guo W., Wu J., Chen L. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu (II) removal. J. Hazard. Mater. 2020;384:121445. doi: 10.1016/j.jhazmat.2019.121445. PubMed DOI
Ramirez Coutino V.A., Torres Bustillos L.G., Godinez Mora Tovar L.A., Guerra Sanchez R.J., Rodriguez Valadez F.J. pH effect on surfactant properties and supramolecular structure of humic substances obtained from sewage sludge composting. Rev. Int. Contam. Ambient. 2013;29:191–199.
Nuzzo A., Sanchez A., Fontaine B., Piccolo A. Conformational changes of dissolved humic and fulvic superstructures with compressive iron complexation. J. Geochem. Explor. 2013;129:1–5. doi: 10.1016/j.gexplo.2013.01.010. DOI
Peuravuori J., Zbankova P., Pihlaja K. Aspects of structural features in lignite and lignite humic acids. Fuel Process. Technol. 2006;87:829–839. doi: 10.1016/j.fuproc.2006.05.003. DOI