The Role of Concentration and Solvent Character in the Molecular Organization of Humic Acids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27801814
PubMed Central
PMC6273730
DOI
10.3390/molecules21111410
PII: molecules21111410
Knihovny.cz E-zdroje
- Klíčová slova
- aggregation, conformation, humic acid, molecular organization, ultrasound spectrometry,
- MeSH
- chlorid sodný chemie MeSH
- huminové látky * MeSH
- hydroxid sodný chemie MeSH
- molekulární struktura MeSH
- rozpouštědla chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
- huminové látky * MeSH
- hydroxid sodný MeSH
- rozpouštědla MeSH
The molecular organization of humic acids in different aqueous solutions was studied over a wide concentration range (0.01-10 g·dm-3). Solutions of humic acids were prepared in three different media: NaOH, NaCl, and NaOH neutralized by HCl after dissolution of the humic sample. Potentiometry, conductometry, densitometry, and high resolution ultrasound spectrometry were used in order to investigate conformational changes in the humic systems. The molecular organization of humic acids in the studied systems could be divided into three concentration ranges. The rearrangements were observed at concentrations of ~0.02 g·dm-3 and ~1 g·dm-3. The first "switch-over point" was connected with changes in the hydration shells of humic particles resulting in changes in their elasticity. The compressibility of water in the hydration shells is less than the compressibility of bulk water. The transfer of hydration water into bulk water increased the total compressibility of the solution, reducing the ultrasonic velocity. The aggregation of humic particles and the formation of rigid structures in systems with concentrations higher than 1 g·dm-3 was detected.
Zobrazit více v PubMed
Jung A.V., Frochot C., Villieras F., Lartiges B.S., Parant S., Viriot M.L., Bersillon J.L. Interaction of pyrene fluoroprobe with natural and synthetic humic substances: Examining the local molecular organization from photophysical and interfacial processes. Chemosphere. 2010;80:228–234. doi: 10.1016/j.chemosphere.2010.04.035. PubMed DOI
Klučáková M., Kargerová A., Nováčková K. Conformational changes in aqueous solutions of humic acids. Chem. Pap. 2012;66:875–880. doi: 10.2478/s11696-012-0199-2. DOI
Shaffer R., Von Wandruszka R. The effects of conformational changes on the native fluorescence of aqueous humic materials. J. Am. Chem. Soc. 2014;4:326–336. doi: 10.9734/ACSJ/2014/7991. DOI
Engebretson R.R., Amos T., Von Wandruszka R. Quantitative approach to humic acid associations. Environ. Sci. Technol. 1996;30:990–997. doi: 10.1021/es950478g. DOI
Schlautman M.A., Morgan J.J. Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environ. Sci. Technol. 1993;27:961–969. doi: 10.1021/es00042a020. PubMed DOI
Wershaw R.L. Model for humus in soils and sediments. Environ. Sci. Technol. 1993;27:814–816. doi: 10.1021/es00042a603. DOI
Kang S.H., Xing B.S. Humic acid fractionation upon sequential adsorption onto goethite. Langmuir. 2008;24:2525–2531. doi: 10.1021/la702914q. PubMed DOI
Riggle J., Von Wandruszka R. Dynamic light scattering measurements of particle size development in aqueous humic materials. Fresen. J. Anal. Chem. 2001;371:951–954. PubMed
De Moreas S.L., Rezende M.O.O. Behavior of humic acid as a micellar phase in micellar electrokinetic chromatography (MEKC) Microchim. Acta. 2005;151:115–122. doi: 10.1007/s00604-005-0383-y. DOI
Engebretson R.R., Von Wandruszka R. Microorganization in dissolved humic acids. Environ. Sci. Technol. 1994;28:1934–1941. doi: 10.1021/es00060a026. PubMed DOI
Longstaffe J.G., Courtier-Murias D., Simpson A.J. The pH-dependence of organofluorine binding domain preference in dissolved humic acid. Chemosphere. 2013;90:270–275. doi: 10.1016/j.chemosphere.2012.07.004. PubMed DOI
Alvarez-Puebla R.A., Valenzuela-Calahorro C., Garrido J.J. Theoretical study on fulvic acid structure, conformation and aggregation: A molecular modelling approach. Sci. Total Environ. 2006;358:243–254. doi: 10.1016/j.scitotenv.2004.11.026. PubMed DOI
Colombo C., Palumbo G., Angelico R., Cho H.G., Francioso O., Ertani A., Nardi S. Spontaneous aggregation of humic acid observed with AFM at different pH. Chemosphere. 2015;138:821–828. doi: 10.1016/j.chemosphere.2015.08.010. PubMed DOI
Janoš P., Kozler J. Thermal stability of humic acids and some of their derivatives. Fuel. 1995;74:708–713. doi: 10.1016/0016-2361(94)00007-E. DOI
Maia C.M.B.F., Piccolo A., Mangrich A.S. Molecular size distribution of compost-derived humates as a function of concentration and different counterions. Chemosphere. 2008;73:1162–1166. doi: 10.1016/j.chemosphere.2008.07.069. PubMed DOI
Aristilde L., Sposito G. Binding of ciprofloxacin by humic substances: A molecular dynamics study. Environ. Toxicol. Chem. 2010;29:90–98. doi: 10.1002/etc.19. PubMed DOI
Buckin V.A., O’Driscoll B., Smyth C. Ultrasonic spectroscopy for material analysis: Recent advances. Spectrosc. Eur. 2003;15:20–25.
Jager M., Kaatye U., Kudrzashov E., O’Driscoll B., Buckin V.A. New capabilities of high-resolution ultrasonic spectroscopy: Titration analysis. Spectroscopy. 2005;20:24–26.
Klučáková M., Kalina M. Composition, particle size, charge and colloidals of pH-fractionated humic acids. J. Soil Sediment. 2015;15:1900–1908. doi: 10.1007/s11368-015-1142-2. DOI
Buckin V.A., Kankia B.I., Rentyeperis D., Marky L.A. Mg2+ recognizes the sequence of DNA through its hydration shell. J. Am. Chem. Soc. 1994;116:9423–9429. doi: 10.1021/ja00100a003. DOI
Klučáková M., Kaláb M., Pekař M., Lapčík L. Study of structure and properties of humic and fulvic acids. II. Complexation of Cu2+ ions with humic acid extracted from lignite. J. Polym. Mater. 2002;19:287–294.
Klučáková M., Pekař M. Study of structure and properties of humic and fulvic acids. III. Study of complexation of Cu2+ ions with humic acid in sols. J. Polym. Mater. 2003;20:145–154.
Klučáková M., Pekař M. Study of structure and properties of humic and fulvic acids. IV. Study of interactions of Cu2+ ions with humic gels and final comparison. J. Polym. Mater. 2003;20:155–162.
Urick R.J. A sound velocity method for determining the compressibility of finely divided substances. J. Appl. Phys. 1947;18:983–987. doi: 10.1063/1.1697584. DOI
Klučáková M. Comparative study of binding behaviour of Cu(II) with humic acid and simple organic compounds by ultrasound spectrometry. Open Colloid Sci. J. 2012;5:5–12. doi: 10.2174/1876530001205010005. DOI
Sutton R., Sposito G. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 2005;39:9009–9015. doi: 10.1021/es050778q. PubMed DOI
Christl I., Metzger A., Heidmann I., Kretzschmar R. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environ. Sci. Technol. 2005;39:5319–5326. doi: 10.1021/es050018f. PubMed DOI
Conte P., Piccolo A. Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environ. Sci. Technol. 1999;33:1682–1690. doi: 10.1021/es9808604. DOI
Picollo A., Nardi S., Concheri G. Micelle-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere. 1996;33:595–602. doi: 10.1016/0045-6535(96)00210-X. PubMed DOI
Simpson A.J., Kingery W.L., Hayes M.H.B., Spraul M., Humpfer E., Dvortsak P., Kerssebaum R., Godejohann M., Hofman M. Molecular structure and associations of humic substances in the terrestrial environment. Naturwissenschaften. 2002;89:84–88. doi: 10.1007/s00114-001-0293-8. PubMed DOI
Simpson A.J. Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy. Magn. Reson. Chem. 2002;40:S72–S82. doi: 10.1002/mrc.1106. DOI
Klučáková M. Adsorption of nitrate on humic acids studied by flow-through coulometry. Environ. Chem. Lett. 2010;8:145–148. doi: 10.1007/s10311-009-0201-6. DOI
Enev V., Pospíšilová L., Klučáková M., Liptaj T., Doskočil L. Spectral characterization of selected natural humic substances. Soil Water Res. 2014;9:9–17.
Klučáková M., Kolajová R. Dissociation ability of humic acids: Spectroscopic determination of pKa and comparison with multi-step mechanism. React. Funct. Polym. 2014;78:1–6. doi: 10.1016/j.reactfunctpolym.2014.02.005. DOI
Klučáková M., Omelka L. Study of sorption of metal ions on lignite and humic acids. Chem. Pap. 2004;58:170–175.
Klučáková M., Pekař M. Study of diffusion of metal cations in humic gels. In: Ghabbour E.A., Davies G., editors. Humic Substances: Nature’s Most Versatile Materials. Taylor & Francis; New York, NY, USA: 2004. pp. 263–273.
Klučáková M., Pekař M. Transport of copper(II) ions in humic gel—New results from diffusion couple. Colloids Surfaces A. 2009;349:96–101. doi: 10.1016/j.colsurfa.2009.08.001. DOI
The Effect of Supramolecular Humic Acids on the Diffusivity of Metal Ions in Agarose Hydrogel
How the Supramolecular Nature of Lignohumate Affects Its Diffusion in Agarose Hydrogel
Agarose Hydrogels Enriched by Humic Acids as the Complexation Agent
How Humic Acids Affect the Rheological and Transport Properties of Hydrogels