The Role of Concentration and Solvent Character in the Molecular Organization of Humic Acids

. 2016 Oct 27 ; 21 (11) : . [epub] 20161027

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27801814

The molecular organization of humic acids in different aqueous solutions was studied over a wide concentration range (0.01-10 g·dm-3). Solutions of humic acids were prepared in three different media: NaOH, NaCl, and NaOH neutralized by HCl after dissolution of the humic sample. Potentiometry, conductometry, densitometry, and high resolution ultrasound spectrometry were used in order to investigate conformational changes in the humic systems. The molecular organization of humic acids in the studied systems could be divided into three concentration ranges. The rearrangements were observed at concentrations of ~0.02 g·dm-3 and ~1 g·dm-3. The first "switch-over point" was connected with changes in the hydration shells of humic particles resulting in changes in their elasticity. The compressibility of water in the hydration shells is less than the compressibility of bulk water. The transfer of hydration water into bulk water increased the total compressibility of the solution, reducing the ultrasonic velocity. The aggregation of humic particles and the formation of rigid structures in systems with concentrations higher than 1 g·dm-3 was detected.

Zobrazit více v PubMed

Jung A.V., Frochot C., Villieras F., Lartiges B.S., Parant S., Viriot M.L., Bersillon J.L. Interaction of pyrene fluoroprobe with natural and synthetic humic substances: Examining the local molecular organization from photophysical and interfacial processes. Chemosphere. 2010;80:228–234. doi: 10.1016/j.chemosphere.2010.04.035. PubMed DOI

Klučáková M., Kargerová A., Nováčková K. Conformational changes in aqueous solutions of humic acids. Chem. Pap. 2012;66:875–880. doi: 10.2478/s11696-012-0199-2. DOI

Shaffer R., Von Wandruszka R. The effects of conformational changes on the native fluorescence of aqueous humic materials. J. Am. Chem. Soc. 2014;4:326–336. doi: 10.9734/ACSJ/2014/7991. DOI

Engebretson R.R., Amos T., Von Wandruszka R. Quantitative approach to humic acid associations. Environ. Sci. Technol. 1996;30:990–997. doi: 10.1021/es950478g. DOI

Schlautman M.A., Morgan J.J. Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environ. Sci. Technol. 1993;27:961–969. doi: 10.1021/es00042a020. PubMed DOI

Wershaw R.L. Model for humus in soils and sediments. Environ. Sci. Technol. 1993;27:814–816. doi: 10.1021/es00042a603. DOI

Kang S.H., Xing B.S. Humic acid fractionation upon sequential adsorption onto goethite. Langmuir. 2008;24:2525–2531. doi: 10.1021/la702914q. PubMed DOI

Riggle J., Von Wandruszka R. Dynamic light scattering measurements of particle size development in aqueous humic materials. Fresen. J. Anal. Chem. 2001;371:951–954. PubMed

De Moreas S.L., Rezende M.O.O. Behavior of humic acid as a micellar phase in micellar electrokinetic chromatography (MEKC) Microchim. Acta. 2005;151:115–122. doi: 10.1007/s00604-005-0383-y. DOI

Engebretson R.R., Von Wandruszka R. Microorganization in dissolved humic acids. Environ. Sci. Technol. 1994;28:1934–1941. doi: 10.1021/es00060a026. PubMed DOI

Longstaffe J.G., Courtier-Murias D., Simpson A.J. The pH-dependence of organofluorine binding domain preference in dissolved humic acid. Chemosphere. 2013;90:270–275. doi: 10.1016/j.chemosphere.2012.07.004. PubMed DOI

Alvarez-Puebla R.A., Valenzuela-Calahorro C., Garrido J.J. Theoretical study on fulvic acid structure, conformation and aggregation: A molecular modelling approach. Sci. Total Environ. 2006;358:243–254. doi: 10.1016/j.scitotenv.2004.11.026. PubMed DOI

Colombo C., Palumbo G., Angelico R., Cho H.G., Francioso O., Ertani A., Nardi S. Spontaneous aggregation of humic acid observed with AFM at different pH. Chemosphere. 2015;138:821–828. doi: 10.1016/j.chemosphere.2015.08.010. PubMed DOI

Janoš P., Kozler J. Thermal stability of humic acids and some of their derivatives. Fuel. 1995;74:708–713. doi: 10.1016/0016-2361(94)00007-E. DOI

Maia C.M.B.F., Piccolo A., Mangrich A.S. Molecular size distribution of compost-derived humates as a function of concentration and different counterions. Chemosphere. 2008;73:1162–1166. doi: 10.1016/j.chemosphere.2008.07.069. PubMed DOI

Aristilde L., Sposito G. Binding of ciprofloxacin by humic substances: A molecular dynamics study. Environ. Toxicol. Chem. 2010;29:90–98. doi: 10.1002/etc.19. PubMed DOI

Buckin V.A., O’Driscoll B., Smyth C. Ultrasonic spectroscopy for material analysis: Recent advances. Spectrosc. Eur. 2003;15:20–25.

Jager M., Kaatye U., Kudrzashov E., O’Driscoll B., Buckin V.A. New capabilities of high-resolution ultrasonic spectroscopy: Titration analysis. Spectroscopy. 2005;20:24–26.

Klučáková M., Kalina M. Composition, particle size, charge and colloidals of pH-fractionated humic acids. J. Soil Sediment. 2015;15:1900–1908. doi: 10.1007/s11368-015-1142-2. DOI

Buckin V.A., Kankia B.I., Rentyeperis D., Marky L.A. Mg2+ recognizes the sequence of DNA through its hydration shell. J. Am. Chem. Soc. 1994;116:9423–9429. doi: 10.1021/ja00100a003. DOI

Klučáková M., Kaláb M., Pekař M., Lapčík L. Study of structure and properties of humic and fulvic acids. II. Complexation of Cu2+ ions with humic acid extracted from lignite. J. Polym. Mater. 2002;19:287–294.

Klučáková M., Pekař M. Study of structure and properties of humic and fulvic acids. III. Study of complexation of Cu2+ ions with humic acid in sols. J. Polym. Mater. 2003;20:145–154.

Klučáková M., Pekař M. Study of structure and properties of humic and fulvic acids. IV. Study of interactions of Cu2+ ions with humic gels and final comparison. J. Polym. Mater. 2003;20:155–162.

Urick R.J. A sound velocity method for determining the compressibility of finely divided substances. J. Appl. Phys. 1947;18:983–987. doi: 10.1063/1.1697584. DOI

Klučáková M. Comparative study of binding behaviour of Cu(II) with humic acid and simple organic compounds by ultrasound spectrometry. Open Colloid Sci. J. 2012;5:5–12. doi: 10.2174/1876530001205010005. DOI

Sutton R., Sposito G. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 2005;39:9009–9015. doi: 10.1021/es050778q. PubMed DOI

Christl I., Metzger A., Heidmann I., Kretzschmar R. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environ. Sci. Technol. 2005;39:5319–5326. doi: 10.1021/es050018f. PubMed DOI

Conte P., Piccolo A. Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environ. Sci. Technol. 1999;33:1682–1690. doi: 10.1021/es9808604. DOI

Picollo A., Nardi S., Concheri G. Micelle-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere. 1996;33:595–602. doi: 10.1016/0045-6535(96)00210-X. PubMed DOI

Simpson A.J., Kingery W.L., Hayes M.H.B., Spraul M., Humpfer E., Dvortsak P., Kerssebaum R., Godejohann M., Hofman M. Molecular structure and associations of humic substances in the terrestrial environment. Naturwissenschaften. 2002;89:84–88. doi: 10.1007/s00114-001-0293-8. PubMed DOI

Simpson A.J. Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy. Magn. Reson. Chem. 2002;40:S72–S82. doi: 10.1002/mrc.1106. DOI

Klučáková M. Adsorption of nitrate on humic acids studied by flow-through coulometry. Environ. Chem. Lett. 2010;8:145–148. doi: 10.1007/s10311-009-0201-6. DOI

Enev V., Pospíšilová L., Klučáková M., Liptaj T., Doskočil L. Spectral characterization of selected natural humic substances. Soil Water Res. 2014;9:9–17.

Klučáková M., Kolajová R. Dissociation ability of humic acids: Spectroscopic determination of pKa and comparison with multi-step mechanism. React. Funct. Polym. 2014;78:1–6. doi: 10.1016/j.reactfunctpolym.2014.02.005. DOI

Klučáková M., Omelka L. Study of sorption of metal ions on lignite and humic acids. Chem. Pap. 2004;58:170–175.

Klučáková M., Pekař M. Study of diffusion of metal cations in humic gels. In: Ghabbour E.A., Davies G., editors. Humic Substances: Nature’s Most Versatile Materials. Taylor & Francis; New York, NY, USA: 2004. pp. 263–273.

Klučáková M., Pekař M. Transport of copper(II) ions in humic gel—New results from diffusion couple. Colloids Surfaces A. 2009;349:96–101. doi: 10.1016/j.colsurfa.2009.08.001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...