Mean Activity Coefficients of Humic Acids as Physicochemical Characteristics of Their Behavior in Water Environment
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33344803
PubMed Central
PMC7745220
DOI
10.1021/acsomega.0c03311
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this work, the dissociation of humic acids is investigated from the point of view of their mean activity coefficients. They are determined on the basis of two different concepts: sparingly soluble substance and multistep mechanism. It was found that the mean activity coefficients are generally higher, if the traditional concept is applied to the data, excepting the HA-A sample. Both the used concepts provide the mean activity coefficients dependent on the ionic strength, the amount of dissolved humic acids, and the types of electrolyte added in the studied suspensions. Their values based on the concept of a multistep mechanism and determined for humic acids in NaCl and NaI form a continuous curve and the individual character of their ions did not assert. It means that activity coefficients were affected only by the ionic strength and valence factor of the electrolytes irrespective of their chemical composition. The mean activity coefficients obtained for humic acids in HCl are lower in comparison with NaCl and NaI due to the common ion H+. Comparing the results obtained for individual humic acids, we can state that the results obtained for the HA-E sample are very different from those of other samples. It seems that its solubility is very high, but the majority of the dissolved particles remained in the molecular form and only a small amount of ions is formed.
Zobrazit více v PubMed
Atalay Y. B.; Carbonaro R. F.; Di Toro D. M. Distribution of proton dissociation constants for model humic and fulvic acid molecules. Environ. Sci. Technol. 2009, 43, 3626–3631. 10.1021/es803057r. PubMed DOI
Badr M. H.; El-Halafawi M. H.; Zeid E. R. A. E. Comparison between the effect of ionic strength on acidity and dissociation constants of humic acids extracted from sewage sludge and Nile water hyacinth composts. Global J. Environ. Res. 2012, 6, 36–43. 10.5829/idosi.gjer.2012.6.1.64117. DOI
Klučáková M.; Kolajová R. Dissociation ability of humic acids: Spectroscopic determination of pKa and comparison with multi-step mechanism. React. Funct. Polym. 2014, 78, 1–6. 10.1016/j.reactfunctpolym.2014.02.005. DOI
Kipton H.; Powell J.; Town R. M. Solubility and fractionation of humic acid – effect of pH and ionic medium. Anal. Chim. Acta 1992, 267, 47–54. 10.1016/0003-2670(92)85005-Q. DOI
Klučáková M.; Pekař M. Solubility and dissociation of lignitic humic acids in water suspension. Colloids Surf., A 2005, 252, 157–164. 10.1016/j.colsurfa.2004.10.019. DOI
Moore W. J.Physical Chemistry; Longman Publishing Group: London, 1998.
Conte P.; Spaccini R.; Šmejkalová D.; Nebbioso A.; Piccolo A. Spectroscopic and conformational properties of size-fractions separated from a lignite humic acid. Chemosphere 2007, 69, 1032–1039. 10.1016/j.chemosphere.2007.04.043. PubMed DOI
Piccolo A.; Conte P.; Cozzolino A. Chromatographic and spectrophotometric properties of dissolved humic substances compared with macromolecular polymers. Soil Sci. 2001, 166, 174–185. 10.1097/00010694-200103000-00003. DOI
Klučáková M.; Kalina M. Composition, particle size, charge and colloidal stability of pH-fractionated humic acids. J. Soils Sediments 2015, 15, 1900–1908. 10.1007/s11368-015-1142-2. DOI
Klučáková M. Characterization of pH-fractionated humic acids with respect to their dissociation behaviour. Environ. Sci. Pollut. Res. 2016, 23, 7722–7731. 10.1007/s11356-015-5932-2. PubMed DOI
Collazo-Lopez H.; Yates R. R.; Cooper W. T. Applications of inverse chromatography in organic geochemistry. II. Measurement of solute activity coefficients in organic geopolymers by gas chromatography. Org. Geochem. 1989, 14, 165–170. 10.1016/0146-6380(89)90070-3. DOI
Ames T. T.; Grulke E. A. Group contribution method for predicting equilibria of nonionic organic compounds between soil organic matter and water. Environ. Sci. Technol. 1995, 29, 2273–2279. 10.1021/es00009a018. PubMed DOI
Klučáková M.; Pekař M. Behaviour of partially soluble humic acids in aqueous suspension. Colloids Surf., A 2008, 318, 106–110. 10.1016/j.colsurfa.2007.12.023. DOI
Boguta P.; Sokołowska Z. Interactions of Zn(II) Ions with humic acids isolated from various type of soils. Effect of pH, Zn concentrations and humic acids chemical properties. PLoS One 2016, 11, e015362610.1371/journal.pone.0153626. PubMed DOI PMC
Bonn B. A.; Fish W. Variability in the measurement of humic carboxyl content. Environ. Sci. Technol. 1991, 25, 232–240. 10.1021/es00014a003. DOI
Orsetti S.; Andrade E. M.; Molina F. V. Modeling ion binding to humic substances: Elastic polyelectrolyte network model. Langmuir 2010, 26, 3134–3144. 10.1021/la903086s. PubMed DOI
Leenheer J. A.; Wershaw R. L.; Brown G. K.; Reddy M. M. Characterization and diagenesis of strong-acid carboxyl groups in humic substances. Appl. Geochem. 2003, 18, 471–482. 10.1016/S0883-2927(02)00100-2. DOI
Klučáková M. Dissociation properties and behavior of active humic fractions dissolved in aqueous systems. React. Funct. Polym. 2016, 109, 9–14. 10.1016/j.reactfunctpolym.2016.09.004. DOI
Klučáková M. Conductometric study of the dissociation behavior of humic and fulvic acids. React. Funct. Polym. 2018, 128, 24–28. 10.1016/j.reactfunctpolym.2018.04.017. DOI
Jung A. V.; Frochot C.; Villieras F.; Lartiges B. S.; Parant S.; Viriot M. L.; Bersillon J. L. Interaction of pyrene fluoroprobe with natural and synthetic humic substances: Examining the local molecular organization from photophysical and interfacial processes. Chemosphere 2010, 80, 228–234. 10.1016/j.chemosphere.2010.04.035. PubMed DOI
Shaffer L.; Von Wandruszka R. The effects of conformational changes on the native fluorescence of aqueous humic materials. Chem. Sci. Int. J. 2014, 4, 326–336. 10.9734/ACSJ/2014/7991. DOI
Aquino A. J. A.; Tunega D.; Pasalic H.; Schaumann G. E.; Haberhauer G.; Gerzabek M. H.; Lischka H. Molecular dynamics simulations of water molecule-bridges in polar domains of humic acids. Environ. Sci. Technol. 2011, 45, 8411–8419. 10.1021/es201831g. PubMed DOI
Salma I.; Lang G. G. How many carboxyl groups does an average molecule of humic-like substances contain?. Atmos. Chem. Phys. 2008, 8, 5997–6002. 10.5194/acp-8-5997-2008. DOI
Klučáková M.; Věžníková K. The role of concentration and solvent character in the molecular organization of humic acids. Molecules 2016, 21, 141010.3390/molecules21111410. PubMed DOI PMC
Klučáková M.; Věžníková K. Micro-organization of humic acids in aqueous solutions. J. Mol. Struct. 2017, 1144, 33–40. 10.1016/j.molstruc.2017.05.012. DOI
Spurlocl F. C.; Biggar J. W. Thermodynamics of organic chemical partition in soils. 1. Development of a general partition model and application to linear isotherms. Environ. Sci. Technol. 1994, 28, 989–995. 10.1021/es00055a005. PubMed DOI
Spurlocl F. C.; Biggar J. W. Thermodynamics of organic chemical partition in soils. 2. Nonlinear partition of substituted phenylureas from aqueous solution. Environ. Sci. Technol. 1994, 28, 996–1002. 10.1021/es00055a006. PubMed DOI
Spurlocl F. C.; Biggar J. W. Thermodynamics of organic chemical partition in soils. 3. Nonlinear partition from water-miscible cosolvent solutions. Environ. Sci. Technol. 1994, 28, 1003–1009. 10.1021/es00055a007. PubMed DOI
Zhu D.; Hyun S.; Pignatello J. J.; Lee L. S. Evidence for π–π electron donor-acceptor interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter through pH effects on sorption. Environ. Sci. Technol. 2004, 38, 4361–4368. 10.1021/es035379e. PubMed DOI
Shoba V. N.; Sen’kov A. A. Equilibrium composition and properties of soil solutions. Eurasian Soil Sci. 2011, 44, 1068–1076. 10.1134/S1064229311100139. DOI
Shoba V. N.; Chudnenko K. V. Physicochemical simulation of the ion exchange between humus acids and cations of different valencies. Eurasian Soil Sci. 2012, 45, 1138–1146. 10.1134/S1064229312120095. DOI
Shoba V. N.; Chudnenko K. V. Ion exchange properties of humus acids. Eurasian Soil Sci. 2014, 47, 761–771. 10.1134/S1064229314080110. DOI
Fukushima M.; Tanaka S.; Hasebe K.; Taga M.; Nakamura H. Interpretation of the acid-base-equilibrium of humic-acid by a continuous pK distribution and electrostatic model. Anal. Chim. Acta 1995, 302, 365–373. 10.1016/0003-2670(94)00471-W. DOI
Fukushima M.; Tanaka S.; Nakamura H.; Ito S. Acid-base characterization of molecular weight fractionated humic acid. Talanta 1996, 43, 383–390. 10.1016/0039-9140(95)01727-5. PubMed DOI
Sutheimer S. H.; Ferraco M. J.; Cabaniss S. E. Molecular size effects on carboxyl acidity: Implications for humic substances. Anal. Chim. Acta 1995, 304, 187–194. 10.1016/0003-2670(94)00593-B. DOI
Santos E. B. H.; Esteves V. I.; Rodrigues J. P. C.; Duarte A. C. Humic substances’ proton-binding equilibria: Assessment of errors and limitations of potentiometric data. Anal. Chim. Acta 1999, 392, 333–341. 10.1016/S0003-2670(99)00227-5. DOI
Porasso R. D.; Benegas J. C.; van den Hoop M. A. G. T.; Paoletti S. Analysis of potentiometric titrations of heterogeneous natural polyelectrolytes in terms of counterion condensation theory: Application to humic acid. Biophys. Chem. 2000, 86, 59–69. 10.1016/S0301-4622(00)00159-9. PubMed DOI
Atkins P.; de Paula J.. Physical Chemistry; Oxford University Press: Oxford, 2010.
Monk P.Physical Chemistry. Understanding Our Chemical World; John Wiley & Sons, Ltd.: Chichester, 2004.