Diffusion coefficients of polar organic compounds in agarose hydrogel and water and their use for estimating uptake in passive samplers
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32088466
DOI
10.1016/j.chemosphere.2020.126183
PII: S0045-6535(20)30376-3
Knihovny.cz E-zdroje
- Klíčová slova
- Agarose hydrogel, DGT, Diffusion coefficient, Passive sampling, Polar organic compounds, Taylor dispersion,
- MeSH
- biologický transport MeSH
- chemické látky znečišťující vodu analýza MeSH
- difuze MeSH
- hydrogely MeSH
- kinetika MeSH
- kosmetické přípravky MeSH
- monitorování životního prostředí přístrojové vybavení metody MeSH
- organické látky MeSH
- pesticidy analýza MeSH
- sefarosa analýza MeSH
- teplota MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- hydrogely MeSH
- kosmetické přípravky MeSH
- organické látky MeSH
- pesticidy MeSH
- sefarosa MeSH
- voda MeSH
Diffusion coefficient (D) is an important parameter for prediction of micropollutant uptake kinetics in passive samplers. Passive samplers are nowadays commonly used for monitoring trace organic pollutants in different environmental matrices. Samplers utilising a hydrogel layer to control compound diffusion are gaining popularity. In this work we investigated diffusion of several perfluoroalkyl substances, currently used pesticides, pharmaceuticals and personal care products in 1.5% agarose hydrogel by measuring diffusion coefficients using two methods: a diffusion cell and a sheet stacking technique. Further, diffusion coefficients in water were measured using Taylor dispersion method. The sheet stacking method was used to measure D at 5, 12, 24, and 33 °C in order to investigate temperature effect on diffusion. Median D values ranged from 2.0 to 8.6 × 10-6 cm2 s-1 and from 2.1 to 8.5 × 10-6 cm2 s-1 for the diffusion cell and sheet stack methods respectively. For most compounds, the variability between replicates was higher than the difference between values obtained by the two methods. Rising temperature from 10 to 20 °C increases the diffusion rate by the factor of 1.41 ± 0.10 in average. In water, average D values ranged from 3.03 to 10.0 × 10-6 cm2 s-1 and were comparable to values in hydrogel, but some compounds including perfluoroalkyl substances with a long aliphatic chain could not be evaluated properly due to sorptive interactions with capillary walls in the Taylor dispersion method. Sampling rates estimated using the measured D values were systematically higher than values estimated from laboratory sampler calibration in our previously published study, by the factor of 2.2 ± 1.0 in average.
Citace poskytuje Crossref.org