Lecithin as an Effective Modifier of the Transport Properties of Variously Crosslinked Hydrogels

. 2023 Apr 27 ; 9 (5) : . [epub] 20230427

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37232959

Transport properties are one of the most crucial assets of hydrogel samples, influencing their main application potential, i.e., as drug carriers. Depending on the type of drug or the application itself, it is very important to be able to control these transport properties in an appropriate manner. This study seeks to modify these properties by adding amphiphiles, specifically lecithin. Through its self-assembly, lecithin modifies the inner structure of the hydrogel, which affects its properties, especially the transport ones. In the proposed paper, these properties are studied mainly using various probes (organic dyes) to effectively simulate drugs in simple release diffusion experiments controlled by UV-Vis spectrophotometry. Scanning electron microscopy was used to help characterize the diffusion systems. The effects of lecithin and its concentrations, as well as the effects of variously charged model drugs, were discussed. Lecithin decreases the values of the diffusion coefficient independently of the dye used and the type of crosslinking. The ability to influence transport properties is better observed in xerogel samples. The results, complementing previously published conclusions, showed that lecithin can alter a hydrogel's structure and therefore its transport properties.

Zobrazit více v PubMed

Bashir S., Hina M., Iqbal J., Rajpar A.H., Mujtaba M.A., Alghamdi N.A., Wageh S., Ramesh K., Ramesh S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers. 2020;12:2702. doi: 10.3390/polym12112702. PubMed DOI PMC

Miyata T., Uragami T., Nakamae K. Biomolecule-sensitive hydrogels. Adv. Drug. Deliv. Rev. 2002;54:79–98. doi: 10.1016/S0169-409X(01)00241-1. PubMed DOI

Ahmed E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015;6:105–121. doi: 10.1016/j.jare.2013.07.006. PubMed DOI PMC

Li J., Mooney D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016;1:16071. doi: 10.1038/natrevmats.2016.71. PubMed DOI PMC

Nezhad-Mokhtari P., Ghorbani M., Roshangar L., Soleimani Rad J. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur. Polym. J. 2019;117:64–76. doi: 10.1016/j.eurpolymj.2019.05.004. DOI

Serrano-Aroca Á. Hydrogels. IntechOpen; London, UK: 2018. Enhancement of Hydrogels’ Properties for Biomedical Applications: Latest Achievements; pp. 91–120.

Jalageri M.B., Mohan Kumar G.C. Hydroxyapatite Reinforced Polyvinyl Alcohol/Polyvinyl Pyrrolidone Based Hydrogel for Cartilage Replacement. Gels. 2022;8:555. doi: 10.3390/gels8090555. PubMed DOI PMC

Jayash S.N., Cooper P.R., Shelton R.M., Kuehne S.A., Poologasundarampillai G. Novel Chitosan-Silica Hybrid Hydrogels for Cell Encapsulation and Drug Delivery. Int. J. Mol. Sci. 2021;22:12267. doi: 10.3390/ijms222212267. PubMed DOI PMC

Appel E.A., Tibbitt M.W., Webber M.J., Mattix B.A., Veiseh O., Langer R. Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nat. Commun. 2015;6:6295. doi: 10.1038/ncomms7295. PubMed DOI PMC

Heger R., Kadlec M., Trudicova M., Zinkovska N., Hajzler J., Pekar M., Smilek J. Novel Hydrogel Material with Tailored Internal Architecture Modified by “Bio” Amphiphilic Components—Design and Analysis by a Physico-Chemical Approach. Gels. 2022;8:115. doi: 10.3390/gels8020115. PubMed DOI PMC

Riazi M.R. Characterization and Properties of Petroleum Fractions. ASTM International; West Conshohocken, PA, USA: 2007. Chapter 8—Applications: Estimation of Transport Properties; pp. 329–336.

Kuo C.K., Ma P.X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22:511–521. doi: 10.1016/S0142-9612(00)00201-5. PubMed DOI

Rahman F., Rafiquee M.Z.A., Aazam E.S., Alshabi A.M., Iqubal S.M.S., Khan A.A., Mohammed T., Dawoud A., Shaikh I.A., Maqbul M.S., et al. Determination of Rate of Release of Dye from the Hydrogels using Spectrophotometer Studies. Asian. J. Pharm. 2020;14:507–512. doi: 10.22377/ajp.v14i4.3817. DOI

Feng Y., Taraban M., Yu Y.B. The effect of ionic strength on the mechanical, structural and transport properties of peptide hydrogels. Soft Matter. 2012;8:11723. doi: 10.1039/c2sm26572a. PubMed DOI PMC

Price W.S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory. Concepts Magn. Reson. 1997;9:299–336. doi: 10.1002/(SICI)1099-0534(1997)9:5<299::AID-CMR2>3.0.CO;2-U. DOI

Evans S.M., Litzenberger A.L., Ellenberger A.E., Maneval J.E., Jablonski E.L., Vogel B.M. A microfluidic method to measure small molecule diffusion in hydrogels. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;35:322–334. doi: 10.1016/j.msec.2013.10.035. PubMed DOI

Richbourg N.R., Peppas N.A. High-Throughput FRAP Analysis of Solute Diffusion in Hydrogels. Macromolecules. 2021;54:10477–10486. doi: 10.1021/acs.macromol.1c01752. PubMed DOI PMC

Piechocki K., Koynov K., Piechocka J., Chamerski K., Filipecki J., Maczugowska P., Kozanecki M. Small molecule diffusion in poly-(olygo ethylene glycol methacrylate) based hydrogels studied by fluorescence correlation spectroscopy. Polymer. 2022;244:124628. doi: 10.1016/j.polymer.2022.124628. DOI

Jain E., Flanagan M., Sheth S., Patel S., Gan Q., Patel B., Montaño A.M., Zustiak S.P. Biodegradable polyethylene glycol hydrogels for sustained release and enhanced stability of rhGALNS enzyme. Drug Deliv. Transl. Res. 2020;10:1341–1352. doi: 10.1007/s13346-020-00714-7. PubMed DOI

Quesada-Pérez M., Martín-Molina A. Solute diffusion in gels: Thirty years of simulations. Adv. Colloid Interface Sci. 2021;287:102320. doi: 10.1016/j.cis.2020.102320. PubMed DOI

Jang S.S., Goddard W.A., Kalani M.Y.S. Mechanical and Transport Properties of the Poly(ethylene oxide)−Poly(acrylic acid) Double Network Hydrogel from Molecular Dynamic Simulations. J. Phys. Chem. B. 2007;111:1729–1737. doi: 10.1021/jp0656330. PubMed DOI

Pomfret R., Sillay K., Miranpuri G. An Exploration of the Electrical Properties of Agarose Gel: Characterization of Concentration Using Nyquist Plot Phase Angle and the Implications of a More Comprehensive In Vitro Model of the Brain. Ann. Neurosci. 2013;20:99–107. doi: 10.5214/ans.0972.7531.200305. PubMed DOI PMC

Smilek J., Sedláček P., Kalina M., Klučáková M. On the role of humic acids’ carboxyl groups in the binding of charged organic compounds. Chemosphere. 2015;138:503–510. doi: 10.1016/j.chemosphere.2015.06.093. PubMed DOI

Klučáková M. Agarose Hydrogels Enriched by Humic Acids as the Complexation Agent. Polymers. 2020;12:687. doi: 10.3390/polym12030687. PubMed DOI PMC

Fatin-Rouge N., Starchev K., Buffle J. Size Effects on Diffusion Processes within Agarose Gels. Biophys. J. 2004;86:2710–2719. doi: 10.1016/S0006-3495(04)74325-8. PubMed DOI PMC

Lai M., Lü B. Tissue Preparation for Microscopy and Histology. Compr. Sampl. Sample Prep. 2012;3:53–93. doi: 10.1016/B978-0-12-381373-2.00070-3. DOI

Trudicova M., Smilek J., Kalina M., Smilkova M., Adamkova K., Hrubanova K., Krzyzanek V., Sedlacek P. Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tunable Rheological and Transport Performance. Polymers. 2020;12:2561. doi: 10.3390/polym12112561. PubMed DOI PMC

Rowley J.A., Madlambayan G., Mooney D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53. doi: 10.1016/S0142-9612(98)00107-0. PubMed DOI

Golmohamadi M., Wilkinson K.J. Diffusion of ions in a calcium alginate hydrogel-structure is the primary factor controlling diffusion. Carbohydr. Polym. 2013;94:82–87. doi: 10.1016/j.carbpol.2013.01.046. PubMed DOI

Cohen S., Bañó M.C., Chow M., Langer R. Lipid-alginate interactions render changes in phospholipid bilayer permeability. Biochim. Et Biophys. Acta (BBA)—Biomembr. 1991;1063:95–102. doi: 10.1016/0005-2736(91)90358-F. PubMed DOI

Klak M.-C., Lefebvre E., Rémy L., Agniel R., Picard J., Giraudier S., Larreta-Garde V. Gelatin-Alginate Gels and Their Enzymatic Modifications: Controlling the Delivery of Small Molecules. Macromol. Biosci. 2013;13:687–695. doi: 10.1002/mabi.201200386. PubMed DOI

Kaberova Z., Karpushkin E., Nevoralová M., Vetrík M., Šlouf M., Dušková-Smrčková M. Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality. Polymers. 2020;12:578. doi: 10.3390/polym12030578. PubMed DOI PMC

Garnica-Palafox I.M., Sánchez-Arévalo F.M., Velasquillo C., García-Carvajal Z.Y., García-López J., Ortega-Sánchez C., Ibarra C., Luna-Bárcenas G., Solís-Arrieta L. Mechanical and structural response of a hybrid hydrogel based on chitosan and poly(vinyl alcohol) cross-linked with epichlorohydrin for potential use in tissue engineering. J. Biomater. Sci. Polym. Ed. 2014;25:32–50. doi: 10.1080/09205063.2013.833441. PubMed DOI

Hezaveh H., Muhamad I.I. Controlled drug release via minimization of burst release in pH-response kappa-carrageenan/polyvinyl alcohol hydrogels. Chem. Eng. Res. Des. 2013;91:508–519. doi: 10.1016/j.cherd.2012.08.014. DOI

Crank J. The Mathematics of Diffusion. 2nd ed. Oxford University Press USA; New York, NY, USA: 1979.

Mlynáriková K., Samek O., Bernatová S., Růžička F., Ježek J., Hároniková A., Šiler M., Zemánek P., Holá V. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. Sensors. 2015;15:29635–29647. doi: 10.3390/s151129635. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...