Lecithin as an Effective Modifier of the Transport Properties of Variously Crosslinked Hydrogels
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37232959
PubMed Central
PMC10217736
DOI
10.3390/gels9050367
PII: gels9050367
Knihovny.cz E-zdroje
- Klíčová slova
- diffusion, extracellular matrix, hydrogel, lecithin, model drugs, scanning electron microscopy, transport properties,
- Publikační typ
- časopisecké články MeSH
Transport properties are one of the most crucial assets of hydrogel samples, influencing their main application potential, i.e., as drug carriers. Depending on the type of drug or the application itself, it is very important to be able to control these transport properties in an appropriate manner. This study seeks to modify these properties by adding amphiphiles, specifically lecithin. Through its self-assembly, lecithin modifies the inner structure of the hydrogel, which affects its properties, especially the transport ones. In the proposed paper, these properties are studied mainly using various probes (organic dyes) to effectively simulate drugs in simple release diffusion experiments controlled by UV-Vis spectrophotometry. Scanning electron microscopy was used to help characterize the diffusion systems. The effects of lecithin and its concentrations, as well as the effects of variously charged model drugs, were discussed. Lecithin decreases the values of the diffusion coefficient independently of the dye used and the type of crosslinking. The ability to influence transport properties is better observed in xerogel samples. The results, complementing previously published conclusions, showed that lecithin can alter a hydrogel's structure and therefore its transport properties.
Zobrazit více v PubMed
Bashir S., Hina M., Iqbal J., Rajpar A.H., Mujtaba M.A., Alghamdi N.A., Wageh S., Ramesh K., Ramesh S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers. 2020;12:2702. doi: 10.3390/polym12112702. PubMed DOI PMC
Miyata T., Uragami T., Nakamae K. Biomolecule-sensitive hydrogels. Adv. Drug. Deliv. Rev. 2002;54:79–98. doi: 10.1016/S0169-409X(01)00241-1. PubMed DOI
Ahmed E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015;6:105–121. doi: 10.1016/j.jare.2013.07.006. PubMed DOI PMC
Li J., Mooney D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016;1:16071. doi: 10.1038/natrevmats.2016.71. PubMed DOI PMC
Nezhad-Mokhtari P., Ghorbani M., Roshangar L., Soleimani Rad J. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur. Polym. J. 2019;117:64–76. doi: 10.1016/j.eurpolymj.2019.05.004. DOI
Serrano-Aroca Á. Hydrogels. IntechOpen; London, UK: 2018. Enhancement of Hydrogels’ Properties for Biomedical Applications: Latest Achievements; pp. 91–120.
Jalageri M.B., Mohan Kumar G.C. Hydroxyapatite Reinforced Polyvinyl Alcohol/Polyvinyl Pyrrolidone Based Hydrogel for Cartilage Replacement. Gels. 2022;8:555. doi: 10.3390/gels8090555. PubMed DOI PMC
Jayash S.N., Cooper P.R., Shelton R.M., Kuehne S.A., Poologasundarampillai G. Novel Chitosan-Silica Hybrid Hydrogels for Cell Encapsulation and Drug Delivery. Int. J. Mol. Sci. 2021;22:12267. doi: 10.3390/ijms222212267. PubMed DOI PMC
Appel E.A., Tibbitt M.W., Webber M.J., Mattix B.A., Veiseh O., Langer R. Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nat. Commun. 2015;6:6295. doi: 10.1038/ncomms7295. PubMed DOI PMC
Heger R., Kadlec M., Trudicova M., Zinkovska N., Hajzler J., Pekar M., Smilek J. Novel Hydrogel Material with Tailored Internal Architecture Modified by “Bio” Amphiphilic Components—Design and Analysis by a Physico-Chemical Approach. Gels. 2022;8:115. doi: 10.3390/gels8020115. PubMed DOI PMC
Riazi M.R. Characterization and Properties of Petroleum Fractions. ASTM International; West Conshohocken, PA, USA: 2007. Chapter 8—Applications: Estimation of Transport Properties; pp. 329–336.
Kuo C.K., Ma P.X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22:511–521. doi: 10.1016/S0142-9612(00)00201-5. PubMed DOI
Rahman F., Rafiquee M.Z.A., Aazam E.S., Alshabi A.M., Iqubal S.M.S., Khan A.A., Mohammed T., Dawoud A., Shaikh I.A., Maqbul M.S., et al. Determination of Rate of Release of Dye from the Hydrogels using Spectrophotometer Studies. Asian. J. Pharm. 2020;14:507–512. doi: 10.22377/ajp.v14i4.3817. DOI
Feng Y., Taraban M., Yu Y.B. The effect of ionic strength on the mechanical, structural and transport properties of peptide hydrogels. Soft Matter. 2012;8:11723. doi: 10.1039/c2sm26572a. PubMed DOI PMC
Price W.S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory. Concepts Magn. Reson. 1997;9:299–336. doi: 10.1002/(SICI)1099-0534(1997)9:5<299::AID-CMR2>3.0.CO;2-U. DOI
Evans S.M., Litzenberger A.L., Ellenberger A.E., Maneval J.E., Jablonski E.L., Vogel B.M. A microfluidic method to measure small molecule diffusion in hydrogels. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;35:322–334. doi: 10.1016/j.msec.2013.10.035. PubMed DOI
Richbourg N.R., Peppas N.A. High-Throughput FRAP Analysis of Solute Diffusion in Hydrogels. Macromolecules. 2021;54:10477–10486. doi: 10.1021/acs.macromol.1c01752. PubMed DOI PMC
Piechocki K., Koynov K., Piechocka J., Chamerski K., Filipecki J., Maczugowska P., Kozanecki M. Small molecule diffusion in poly-(olygo ethylene glycol methacrylate) based hydrogels studied by fluorescence correlation spectroscopy. Polymer. 2022;244:124628. doi: 10.1016/j.polymer.2022.124628. DOI
Jain E., Flanagan M., Sheth S., Patel S., Gan Q., Patel B., Montaño A.M., Zustiak S.P. Biodegradable polyethylene glycol hydrogels for sustained release and enhanced stability of rhGALNS enzyme. Drug Deliv. Transl. Res. 2020;10:1341–1352. doi: 10.1007/s13346-020-00714-7. PubMed DOI
Quesada-Pérez M., Martín-Molina A. Solute diffusion in gels: Thirty years of simulations. Adv. Colloid Interface Sci. 2021;287:102320. doi: 10.1016/j.cis.2020.102320. PubMed DOI
Jang S.S., Goddard W.A., Kalani M.Y.S. Mechanical and Transport Properties of the Poly(ethylene oxide)−Poly(acrylic acid) Double Network Hydrogel from Molecular Dynamic Simulations. J. Phys. Chem. B. 2007;111:1729–1737. doi: 10.1021/jp0656330. PubMed DOI
Pomfret R., Sillay K., Miranpuri G. An Exploration of the Electrical Properties of Agarose Gel: Characterization of Concentration Using Nyquist Plot Phase Angle and the Implications of a More Comprehensive In Vitro Model of the Brain. Ann. Neurosci. 2013;20:99–107. doi: 10.5214/ans.0972.7531.200305. PubMed DOI PMC
Smilek J., Sedláček P., Kalina M., Klučáková M. On the role of humic acids’ carboxyl groups in the binding of charged organic compounds. Chemosphere. 2015;138:503–510. doi: 10.1016/j.chemosphere.2015.06.093. PubMed DOI
Klučáková M. Agarose Hydrogels Enriched by Humic Acids as the Complexation Agent. Polymers. 2020;12:687. doi: 10.3390/polym12030687. PubMed DOI PMC
Fatin-Rouge N., Starchev K., Buffle J. Size Effects on Diffusion Processes within Agarose Gels. Biophys. J. 2004;86:2710–2719. doi: 10.1016/S0006-3495(04)74325-8. PubMed DOI PMC
Lai M., Lü B. Tissue Preparation for Microscopy and Histology. Compr. Sampl. Sample Prep. 2012;3:53–93. doi: 10.1016/B978-0-12-381373-2.00070-3. DOI
Trudicova M., Smilek J., Kalina M., Smilkova M., Adamkova K., Hrubanova K., Krzyzanek V., Sedlacek P. Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tunable Rheological and Transport Performance. Polymers. 2020;12:2561. doi: 10.3390/polym12112561. PubMed DOI PMC
Rowley J.A., Madlambayan G., Mooney D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53. doi: 10.1016/S0142-9612(98)00107-0. PubMed DOI
Golmohamadi M., Wilkinson K.J. Diffusion of ions in a calcium alginate hydrogel-structure is the primary factor controlling diffusion. Carbohydr. Polym. 2013;94:82–87. doi: 10.1016/j.carbpol.2013.01.046. PubMed DOI
Cohen S., Bañó M.C., Chow M., Langer R. Lipid-alginate interactions render changes in phospholipid bilayer permeability. Biochim. Et Biophys. Acta (BBA)—Biomembr. 1991;1063:95–102. doi: 10.1016/0005-2736(91)90358-F. PubMed DOI
Klak M.-C., Lefebvre E., Rémy L., Agniel R., Picard J., Giraudier S., Larreta-Garde V. Gelatin-Alginate Gels and Their Enzymatic Modifications: Controlling the Delivery of Small Molecules. Macromol. Biosci. 2013;13:687–695. doi: 10.1002/mabi.201200386. PubMed DOI
Kaberova Z., Karpushkin E., Nevoralová M., Vetrík M., Šlouf M., Dušková-Smrčková M. Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality. Polymers. 2020;12:578. doi: 10.3390/polym12030578. PubMed DOI PMC
Garnica-Palafox I.M., Sánchez-Arévalo F.M., Velasquillo C., García-Carvajal Z.Y., García-López J., Ortega-Sánchez C., Ibarra C., Luna-Bárcenas G., Solís-Arrieta L. Mechanical and structural response of a hybrid hydrogel based on chitosan and poly(vinyl alcohol) cross-linked with epichlorohydrin for potential use in tissue engineering. J. Biomater. Sci. Polym. Ed. 2014;25:32–50. doi: 10.1080/09205063.2013.833441. PubMed DOI
Hezaveh H., Muhamad I.I. Controlled drug release via minimization of burst release in pH-response kappa-carrageenan/polyvinyl alcohol hydrogels. Chem. Eng. Res. Des. 2013;91:508–519. doi: 10.1016/j.cherd.2012.08.014. DOI
Crank J. The Mathematics of Diffusion. 2nd ed. Oxford University Press USA; New York, NY, USA: 1979.
Mlynáriková K., Samek O., Bernatová S., Růžička F., Ježek J., Hároniková A., Šiler M., Zemánek P., Holá V. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. Sensors. 2015;15:29635–29647. doi: 10.3390/s151129635. PubMed DOI PMC